跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 21:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:塔林杜迪爾尚
研究生(外文):Wijesinghe Liyanapathirannahalage Tharindu Dilshan
論文名稱:二氧化碳富集對沉積物有機質的影響:以南沖繩海槽為例
論文名稱(外文):Impact of CO2 enrichment on sedimentary organic matter: case study from the Southern Okinawa Trough
指導教授:林玉詩
指導教授(外文):Lin,Yu-Shih
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋科學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:49
中文關鍵詞:沖繩海槽熱液變質二氧化碳富集有機質木質素
外文關鍵詞:Okinawa TroughHydrothermalismCO2 enrichmentOrganic matterLignin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
作為琉球隱沒系統弧後盆地的一部分,南沖繩海槽被認為是鄰近陸地的沉積物和有機物的重要貯庫。前人對石林隆堆 (GLM) 和棉花火山 (MHV) 熱液場址沉積物孔隙水的研究指出該區可能存在液態二氧化碳。本研究探討二氧化碳富集對沉積物碳地球化學──特別是陸源有機碳──的影響。與參考站點相比,兩個場址的富二氧化碳沉積物的溶解有機碳含量極高(達 11 mM),暗示有機物受到二氧化碳富集孔隙水溶解釋出。然而,總無機碳含量降低僅發生於MHV的富二氧化碳岩心,這暗示該站點暴露於二氧化碳富集狀態的時間比 GLM 富二氧化碳岩心更長。沒有明顯跡象表明,總有機碳和陸源有機碳 (以穩定碳同位素推算) 含量在富二氧化碳的沉積物中有減少。與之相對的是海源有機碳和木質素含量,兩者在MHV富含二氧化碳岩心的下部均有所降低。海源有機碳含量降低可能與是過去通量變化有關,但木質素含量降低與已發表的冰消期記錄不一致。此外,木質素的降解指標 ((Ad/Al)v) 在 MHV 富二氧化碳的沉積物中顯示出較低的比值。這些結果表明,在二氧化碳富集造成的長期弱酸性條件下,木質素發生了選擇性降解與釋出。整體而言,二氧化碳富集能對沉積物有機質造成降解或改變,但改變的程度取決於有機物的類型和沉積物暴露於二氧化碳富集狀態的時間。
Abstract
As part of the back-arc basin of the Ryukyu subduction system, the Southern Okinawa Trough is recognized as a significant repository for sediment and the associated organic matter from the nearby lands. Geochemical anomalies in the sedimentary porewaters of the Geolin Mound (GLM) and Mien-Hua Volcano (MHV) hydrothermal fields indicate the presence of CO2 impregnation. This study examines the effect of CO2 impregnation on sedimentary carbon geochemistry, with a specific focus on terrestrial organic matter. Compared to the reference sites, the CO2-rich sediment of both fields exhibited exceptionally high dissolved organic carbon (up to 11 mM), indicating the mobilization of organic matter by CO2. However, only the CO2-rich sediment of the MHV had lowered total inorganic carbon content, implying a longer exposure time to CO2 than the GLM CO2-rich sediment. There was no clear indication that the total organic carbon content and terrestrial organic carbon, derived from stable carbon isotopic values, decreased in the CO2-rich sediments. In contrast, isotopically derived marine organic carbon and lignin contents were both reduced in the lower part of the MHV CO2-rich core. While the lowered marine organic carbon contents may be explained by a changed carbon supply in the past, the lowered lignin contents do not align with the published deglaciation record. Moreover, the diagenetic alteration proxy of lignin ((Ad/Al)v) displayed a lowered ratios in the MHV CO2-rich sediment. These results suggest selective lignin depolymerization or mobilization under prolonged mild acidic conditions due to CO2 impregnation. Our results suggest that sedimentary organic matter undergoes alteration or degradation under the influence of CO2 impregnation, but the extent of change depends on the type of organic matter and the exposure time of the sediment to CO2.
Contents
論文審定書 ⅰ
摘要 ⅱ
Abstract ⅲ
Contents iv
List of figures vi
List of tables vii
Chapter 1. Introduction 1
1.1. Influence of hydrothermal systems on the chemistry of the marine environment 1
1.2. Water-rock interaction 1
1.3. Sedimentary hydrothermal system 3
1.4. CO2-rich sedimentary hydrothermal system of the Okinawa Trough 4
1.5. Impact of CO2 enrichment on sediment biogeochemistry 5
1.6. Purpose of this study 5
Chapter 2. Material and methods 8
2.1. Geological setting of the study area 8
2.2. Sample collection and pretreatment 9
2.3. Porewater analysis 11
2.4. Bulk analysis 11
2.5. Lignin analysis 12
2.6. Data processing 13
2.7. Data visualization 14
Chapter 3. Results 17
3.1. Porewater geochemistry 17
3.2. Solid-phase geochemistry 19
3.3. Solid-phase geochemistry of the surface sediment 21
Chapter 4. Discussion 26
4.1. Impact of CO2 enrichment on dissolved carbon 26
4.2. Impact of CO2 enrichment on solid-phase bulk carbon 27
4.3. Impact of CO2 enrichment on lignin 31
Chapter 5. Conclusion 35
References 36
References

Allen and Seyfried, (2005) ‘REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperature and pressure’. Geochimica et Cosmochimica Acta, 69(3), 675–683. doi.org/10.1016/j.gca.2004.07.016.
Alt, et al. (1995) ‘Subseafloor processes in mid-ocean ridge hydrothermal systems’. Physical, Chemical, Biological, and Geological Interactions, 91, 85–114. doi.org/10.1029/GM091p0085.
Brauns and Brauns, (1960). The Chemistry of Lignin. Academic Press. New York.
Carvalho, et al. (2017) ‘Comparative study of acid hydrolysis of lignin and polysaccharides in biomasses’. BioResources, 12(4), 6907–6923. doi.org/10.15376/biores.12.4.6907-6923.
Chen, et al. (2017) ‘Geochemical evidence of the indirect pathway of terrestrial particulate material transport to the Okinawa Trough’. Quaternary International, 441, 51–61. doi.org/10.1016/j.quaint.2016.08.006.
Chen, et al. (2020) ‘The focus thermal study around the spreading center of southwestern Okinawa trough’. Tectonophysics, 796, 228649. doi.org/10.1016/j.tecto.2020.228649.
Chen, et al. (2023) ‘Hydrothermal characteristics of the Mienhua submarine volcano in the southernmost Okinawa trough’. Marine Geophysical Research, 44(2), 1–15. doi.org/10.1007/s11001-023-09517-0.
Chou, et al. (2019) ‘Seafloor characterization in the southernmost Okinawa Trough from underwater optical imagery’. Terrestrial, Atmospheric and Oceanic Sciences, 30(5), 717–737. doi.org/10.3319/TAO.2019.03.14.01.
Coumou, et al. (2008) ‘The structure and dynamics of mid-ocean ridge hydrothermal systems’. Science, 321(5897), 1825–1828. doi.org/10.1126/science.1159582.
Cruse, et al. (2001) ‘Metal mobility in sediment-covered ridge-crest hydrothermal systems: Experimental and theoretical constraints’. Geochimica et Cosmochimica Acta, 65(17), 3233–3247. doi.org/10.1016/S0016-7037(01)00680-5.
De Beer, et al. (2013) ‘Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments’. Biogeosciences, 10(8), 5639–5649. doi.org/10.5194/bg-10-5639-2013.
De Beer, et al. (2021) ‘Sediment acidification and temperature increase in an artificial CO2 vent’. International Journal of Greenhouse Gas Control, 105, 103244. doi.org/10.1016/j.ijggc.2020.103244.
Dittmar and Lara, (2001) ‘Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazõnia, Brazil)’. Geochimica et Cosmochimica Acta, 65(9), 1417–1428. doi.org/10.1016/S0016-7037(00)00619-0.
Edmond, et al. (1979) ‘Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data’. Earth and Planetary Science Letters, 46(1), 1–18. doi.org/10.1016/0012-821X(79)90061-X.
Elderfield and Schultz, (1996) ‘Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean’. Annual Review of Earth and Planetary Sciences, 24, 191–224. doi.org/10.1146/annurev.earth.24.1.191.
Elderfield, et al. (1999) ‘Fluid and geochemical transport through oceanic crust: A transect across the eastern flank of the Juan de Fuca Ridge’. Earth and Planetary Science Letters, 172(1–2), 151–165. doi.org/10.1016/S0012-821X(99)00191-0.
Ertel and Hedges, (1985) ‘Sources of sedimentary humic substances: vascular plant debris’. Geochimica et Cosmochimica Acta, 49(10), 2097–2107. doi.org/10.1016/0016-7037(85)90067-5.
Evans, et al. (2023) ‘Nutrient transition metals in a time series of hydrothermal vent fluids from Main Endeavour Field, Juan de Fuca Ridge, Pacific Ocean’. Earth and Planetary Science Letters, 602, 117943. doi.org/10.1016/j.epsl.2022.117943.
German, et al, (2016) ‘Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming?’. Chemical Geology, 420, 114–126. doi.org/10.1016/j.chemgeo.2015.11.006.
Guo, et al, (2015) ‘Seasonal variation in sources and processing of particulate organic carbon in the Pearl River estuary, South China’. Estuarine, Coastal and Shelf Science, 167, 540–548. doi.org/10.1016/j.ecss.2015.11.004.
Hayes, (2001) ‘Fractionation of carbon and hydrogen isotopes in biosynthetic processes’. Stable Isotope Geochemistry, 43, 225–277. doi.org/10.1515/9781501508745-006.
Hedges, et al. (1986) ‘Compositions and fluxes of particulate material in the Amazon River’. Limnology and Oceanography, 31(4). doi.org/10.4319/lo.1986.31.4.0717.
Hedges and Mann, (1979) ‘The lignin geochemistry of marine sediments from the southern Washington coast’. Geochimica et Cosmochimica Acta, 43(11), 1809–1818. doi.org/10.1016/0016-7037(79)90029-2.
Hedges and Parker, (1976) ‘Land-derived organic matter in surface sediments from the Gulf of Mexico’. Geochimica et Cosmochimica Acta, 40(9), 1019–1029. doi.org/10.1016/0016-7037(76)90044-2.
Hsu, et al. (2019) ‘Pseudo-3D seismic imaging of Geolin Mounds hydrothermal field in the Southern Okinawa Trough offshore NE Taiwan’. Terrestrial, Atmospheric and Oceanic Sciences, 30(5), 705–716. doi.org/10.3319/TAO.2019.03.14.02.
Hsu, et al. (2024) ‘Geochemical indications of hydrothermal fluid through sediments within the Geolin Mounds and Mienhua Volcano hydrothermal fields, southernmost Okinawa Trough’. Deep-Sea Research Part I: Oceanographic Research Papers, 207, 104293. doi.org/10.1016/j.dsr.2024.104293.
Humphris, et al. (1995) ‘The internal structure of an active sea-floor massive sulphide deposit’. Nature, 377, 1626–1629. doi.org/10.1038/377713a0.
Hutchings, et al. (2019) ‘Millennial-scale carbon accumulation and molecular transformation in a permafrost core from Interior Alaska’. Geochimica et Cosmochimica Acta, 253, 231–248. doi.org/10.1016/j.gca.2019.03.028.
Inagaki, et al. (2006) ‘Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system’. Proceedings of the National Academy of Sciences of the United States of America, 103(38), 14164–14169. doi.org/10.1073/pnas.0606083103.
Ishibashi, et al. (1988) ‘Geochemical evidence for hydrothermal activity in the Okinawa Trough’. Geochemical Journal, 22(3), 107–114. doi.org/10.2343/geochemj.22.107.
Ishibashi, et al. (Eds.) (2015). Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Springer. Tokyo. doi.org/10.1007/978-4-431-54865-2.
James, et al. (1999) ‘The alkali element and boron geochemistry of the Escanaba Trough sediment-hosted hydrothermal system’. Earth and Planetary Science Letters, 171, 157–169. doi.org/ 10.1016/S0012-821X (99)00140-5.
Jamieson, et al. (2014) ‘Hydrothermal sulfide accumulation along the Endeavour Segment, Juan de Fuca Ridge’. Earth and Planetary Science Letters, 395, 136–148. doi.org/10.1016/j.epsl.2014.03.035.
Jia and Peng, (2003) ‘Temporal and spatial variations in signatures of sedimented organic matter in Lingding Bay (Pearl estuary), Southern China’. Marine Chemistry, 82(1–2), 47–54. doi.org/10.1016/S0304-4203(03)00050-1.
Kao, et al, (2003) ‘Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough’. Deep-Sea Research Part II: Topical Studies in Oceanography, 50(6–7), 1203–1217. doi.org/10.1016/S0967-0645(03)00018-3.
Kao, et al. (2006) ‘Efficient trapping of organic carbon in sediments on the continental margin with high fluvial sediment input off southwestern Taiwan’. Continental Shelf Research, 26(20), 2520–2537. doi.org/10.1016/j.csr.2006.07.030.
Kharaka, et al. (2009) ‘Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA’. Applied Geochemistry, 24(6), 1106–1112. doi.org/10.1016/j.apgeochem.2009.02.010.
Konno, et al. (2006) ‘Liquid CO2 venting on the seafloor: Yonaguni Knoll IV hydrothermal system, Okinawa Trough’. Geophysical Research Letters, 33(16), 4–8. doi.org/10.1029/2006GL026115.
Lee, et al. (1980) ‘Okinawa Trough: Origin of a back-arc basin’. Marine Geology, 35(1–3), 219–241. doi.org/10.1016/0025-3227(80)90032-8.
Lichtschlag, et al. (2021) ‘Impact of CO2 leakage from sub-seabed carbon dioxide storage on sediment and porewater geochemistry’. International Journal of Greenhouse Gas Control, 109, 103352. doi.org/10.1016/j.ijggc.2021.103352.
Lin, et al. (2017) ‘Near-surface heating of young rift sediment causes mass production and discharge of reactive dissolved organic matter’. Scientific Reports, 7. doi.org/10.1038/srep44864.
Lin, et al. (2019a) ‘Early diagenesis and carbon remineralization in young rift sediment of the Southern Okinawa Trough’. Terrestrial, Atmospheric and Oceanic Sciences, 30(5), 633–647. doi.org/10.3319/TAO.2019.01.10.01.
Lin, et al. (2019b) ‘Fates of vent CO2 and its impact on carbonate chemistry in the shallow-water hydrothermal field offshore Kueishantao Islet, NE Taiwan’. Marine Chemistry, 210, 1–12. doi.org/10.1016/j.marchem.2019.02.002.
Lin, et al. (2024) ‘Sources and flux of dissolved inorganic carbon in the hydrothermally active corner of a backarc basin (Southwestern Okinawa Trough)’. Journal of Geophysical Research: Oceans. 129(6), 1–20. doi.org/10.1029/2023JC020429.
Lupton, et al. (2006) ‘Submarine venting of liquid carbon dioxide on a Mariana Arc volcano’. Geochemistry, Geophysics, Geosystems, 7(8), Q08007. doi.org/10.1029/2005GC001152.
Magenheim and Gieskes, (1992) ‘Hydrothermal discharge and alteration in near-surface sediments from the Guaymas Basin, Gulf of California’. Geochimica et Cosmochimica Acta, 56(6), 2329–2338. doi.org/10.1016/0016-7037(92)90192-L.
Marín-Cerón, et al. (2010) ‘Slab decarbonation and CO2 recycling in the Southwestern Colombian volcanic arc’. Geochimica et Cosmochimica Acta, 74(3), 1104–1121. doi.org/10.1016/j.gca.2009.10.031.
Molari, et al. (2018) ‘Dark inorganic carbon fixation sustains the functioning of benthic deep-sea ecosystems’. Global Biogeochemical Cycles, 32(2), 247–258. doi.org/10.1002/2017GB005743.
Peters, et al. (2021) ‘SO2 disproportionation impacting hydrothermal sulfur cycling: Insights from multiple sulfur isotopes for hydrothermal fluids from the Tonga-Kermadec intraoceanic arc and the NE Lau Basin’. Chemical Geology, 586, 120586. doi.org/10.1016/j.chemgeo.2021.120586.
Resing, et al. (2009) ‘Chemistry of hydrothermal plumes above submarine volcanoes of the mariana arc’. Geochemistry, Geophysics, Geosystems, 10(2), 1–23. doi.org/10.1029/2008GC002141.
Sakai, et al. (1990) ‘Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawa Trough backarc basin’. Science, 248(4959), 1093–1096. doi.org/10.1126/science.248.4959.1093.
Schlitzer, (2021). Ocean Data View. https://odv.awi.de.
Seyfried, et al. (1987) ‘Experimental and theoretical constraints on hydrothermal alteration processes at mid-ocean ridges’. Annual Review of Earth and Planetary Sciences, 15(1), 317–335. doi.org/10.1146/annurev.ea.15.050187.001533.
Seyfried and Mottl, (1982) ‘Hydrothermal alteration of basalt by seawater under seawater-dominated conditions’. Geochimica et Cosmochimica Acta, 46(6), 985–1002. doi.org/10.1016/0016-7037(82)90054-0.
Sibuet, et al. (1987) ‘Back arc extension in the Okinawa Trough’. Journal of Geophysical Research: Solid Earth, 92(B13), 14041–14063. doi.org/10.1029/jb092ib13p14041.
Simoneit and Lonsdale, (1982) ‘Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin’. Nature, 295(5846), 198–202. doi.org/10.1038/295198a0.
Suzuki, et al. (2008) ‘Diverse range of mineralization induced by phase separation of hydrothermal fluid: Case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough Back-Arc Basin’. Resource Geology, 58(3), 267–288. doi.org/10.1111/j.1751-3928.2008.00061.x.
Tissot and Welte, (1984). Petroleum Formation and Occurrence. Springer-Verlag. Berlin. doi.org/10.1007/978-3-642-87813-8.
Toki, et al. (2016) ‘Geochemical characteristics of hydrothermal fluids at Hatoma Knoll in the southern Okinawa Trough’. Geochemical Journal, 50(6), 493–525. doi.org/10.2343/geochemj.2.0449.
Ujiié, et al. (2001) ‘Upward decrease of organic C/N ratios in the Okinawa Trough cores: Proxy for tracing the post-glacial retreat of the continental shore line’. Palaeogeography, Palaeoclimatology, Palaeoecology, 165(1–2), 129–140. doi.org/10.1016/S0031-0182(00)00157-7.
Von Damm, et al. (1985) ‘Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California’. Geochimica et Cosmochimica Acta, 49(11), 2221–2237. doi.org/10.1016/0016-7037(85)90223-6.
Wallmann, et al. (2008) ‘Silicate weathering in anoxic marine sediments’. Geochimica et Cosmochimica Acta, 72(12), 2895–2918. doi.org/10.1016/j.gca.2008.03.026.
Wang, et al. (1999) ‘Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough’. Tectonophysics, 308(3), 363–376. doi.org/10.1016/S0040-1951(99)00111-0.
Wu, et al. (2007) ‘Sources and distribution of carbon within the Yangtze River system’. Estuarine, Coastal and Shelf Science, 71(1–2), 13–25. doi.org/10.1016/j.ecss.2006.08.016.
Wu, et al. (2023) ‘Constraining the origin of sedimentary organic matter in the eastern Guangdong coast of China using δ13C and δ15N’. Frontiers in Marine Science, 10, 1–16. doi.org/10.3389/fmars.2023.1234116.
Zeng, et al. (2013) ‘Boron isotope compositions of fluids and plumes from the Kueishantao hydrothermal field off northeastern Taiwan: Implications for fluid origin and hydrothermal processes’. Marine Chemistry, 157, 59–66. doi.org/10.1016/j.marchem.2013.09.001.
電子全文 電子全文(網際網路公開日期:20290704)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文