|
英文文獻 1.Jiang, J., Kelly, B., & Xiu, D. (2023). (Re‐) Imag (in) ing Price Trends. The Journal of Finance, 78(6), 3193-3249. 2.Taylor, M. P., & Allen, H. (1992). The use of technical analysis in the foreign exchange market. Journal of international Money and Finance, 11(3), 304-314. 3.Bessembinder, H., & Chan, K. (1995). The profitability of technical trading rules in the Asian stock markets. Pacific-basin finance journal, 3(2-3), 257-284. 4.Hsu, P. H., Hsu, Y. C., & Kuan, C. M. (2010). Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias. Journal of Empirical Finance, 17(3), 471-484. 5.Park, C. H., & Irwin, S. H. (2007). What do we know about the profitability of technical analysis?. Journal of Economic surveys, 21(4), 786-826. 6.Lee, M. C., Chang, J. W., Hung, J. C., & Chen, B. L. (2021). Exploring the effectiveness of deep neural networks with technical analysis applied to stock market prediction. Computer Science and Information Systems, 18(2), 401-418. 7.Gudelek, M. U., Boluk, S. A., & Ozbayoglu, A. M. (2017, November). A deep learning based stock trading model with 2-D CNN trend detection. In 2017 IEEE symposium series on computational intelligence (SSCI) (pp. 1-8). IEEE. 8.Chen, J. F., Chen, W. L., Huang, C. P., Huang, S. H., & Chen, A. P. (2016, November). Financial time-series data analysis using deep convolutional neural networks. In 2016 7th International conference on cloud computing and big data (CCBD) (pp. 87-92). IEEE. 9.Chen, Y., Fang, R., Liang, T., Sha, Z., Li, S., Yi, Y., ... & Song, H. (2021). Stock Price Forecast Based on CNN‐BiLSTM‐ECA Model. Scientific Programming, 2021(1), 2446543. 10.Peng, Y., Albuquerque, P. H. M., Kimura, H., & Saavedra, C. A. P. B. (2021). Feature selection and deep neural networks for stock price direction forecasting using technical analysis indicators. Machine Learning with Applications, 5, 100060. 11.Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2017, September). Stock price prediction using LSTM, RNN and CNN-sliding window model. In 2017 international conference on advances in computing, communications and informatics (icacci) (pp. 1643-1647). IEEE. 12.Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013, June). Rectifier nonlinearities improve neural network acoustic models. In Proc. icml (Vol. 30, No. 1, p. 3). 13.Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223-2273. 14.Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. 15.Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (pp. 448-456). pmlr. 16.Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958.
書籍雜誌 1. 溫政堯 (譯)。施威銘研究室 (監修) (2021)。自學機器學習:上Kaggle接軌世界,成為資料科學家。旗標出版社。(チーム・カルポ, 2020) 2.François Chollet with J. J. Allaire. (2018). Deep Learning with R. Shelter Island, NY: Manning Publications Co.
|