跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 14:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡家蓁
研究生(外文):Chia-Chen Tsai
論文名稱:ATG7反義核酸在促進大腸直腸癌細胞凋亡的機轉
論文名稱(外文):The mechanisms of ATG7 antisense oligonucleotides in promoting apoptosis of colorectal cancer cells
指導教授:徐志文徐志文引用關係
指導教授(外文):Shu, Chih-Wen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生技醫藥研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:75
中文關鍵詞:自噬相關蛋白7ATG7大腸結直腸癌反義寡核苷酸細胞凋亡
外文關鍵詞:Autophagy-related protein 7ATG7colorectal cancerantisense oligonucleotide (ASO)cell death
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大腸結直腸癌是目前全球癌症死亡的重要原因,儘管現在已經有標靶藥物改善病患的預後,但仍在世界癌症相關死亡主因排行中高居第二,顯示目前的藥物療效仍然有限。自噬作用是細胞內新陳代謝的路徑,在最近幾年有很多研究指出其和癌症有相關性,其中,ATG7 是自噬核心的調控基因,它的作用也類似於泛素樣蛋白的E-1 enzyme,會透過和泛素樣蛋白結合來幫助它們向E-2 enzyme轉移,因此ATG7在泛素系統當中做為自噬體初始的重要調節因子。目前已有其它研究報導ATG7在其他癌症中高表達會促進自噬作用,但在大腸結直腸癌當中還沒有太多研究,因此設計了三條反義寡核苷酸 (ASO) 來抑制ATG7的表現,以了解自噬對大腸結直腸癌細胞的影響。根據我們的結果顯示,使用ATG7-ASO處理細胞72小時後,ATG7的蛋白質表現及細胞的存活率明顯的被抑制。同時,透過流式細胞儀檢測發現,凋亡細胞有增加,而細胞週期有受到影響,凋亡蛋白酶3 (caspase-3) 活性及其下游分子聚腺苷酸二磷酸核糖基聚合酶 (Poly ADP-ribose Polymerase,PARP) 的剪切型態都明顯增加,通過添加細胞死亡抑制劑,添加了凋亡抑制劑之後,細胞的存活率會回升,因此,推論ATG7-ASO會導致細胞凋亡。此外, ATG7-ASO會影響細胞的活性,也會抑制腫瘤球體的形成與生長活性,因此, ATG7-ASO在未來或許可以作為治療大腸結直腸癌的潛在治療藥物。
Colorectal cancer currently ranks as a significant cause of cancer-related deaths worldwide, despite advancements in treatments such as surgery and chemotherapy. It remains the second most common cause of cancer-related deaths globally. In recent years, there has been increasing research into the relationship between autophagy and cancer. ATG7, an autophagy-related regulatory gene, functions similarly to the E-1 enzyme in the ubiquitin-like protein system. It assists in the transfer of ubiquitin-like proteins to the E-2 enzyme, thus serving as an initiator and crucial regulatory factor in autophagosome asSDbly within the ubiquitin system. While studies have reported high expression of ATG7 promoting autophagy in other cancers, its role in colorectal cancer remains relatively underexplored. Therefore, three antisense oligonucleotides (ASO) were designed to inhibit the expression of ATG7. To understand the impact of autophagy on colorectal cancer cells. According to our results, after treating cells with ATG7-ASO for 72 hours, the protein expression of ATG7 and the survival rate of cells were significantly inhibited. Moreover, it was found that apoptotic cells was increased and the cell cycle was impacted through flow cytometry. The activity of apoptotic protease (caspase-3) and the cleavage form of its downstream molecule poly ADP-ribose Polymerase (PARP) are significantly increased, and cell death is inhibited by adding an apoptosis inhibitor, the cell survival rate will increase. Therefore, it is inferred that ATG7-ASO will cause cell apoptosis. In addition, ATG7-ASO can inhibit the formation and activity of tumor spheroids and. Therefore, ATG7-ASO may be used as a treatment in the future. Potential therapeutic drugs for colorectal cancer.
論文審定書 ⅰ
中文摘要 ⅱ
Abstract ⅲ
目錄 ⅳ
圖次 ⅶ
縮寫表 ⅷ
第一章 背景介紹1
1.1 大腸結直腸癌 (Colorectal cancer, CRC) 1
1.2 細胞自噬 (Autophagy)2
1.3 自噬在癌症中的作用5
1.4 自噬因子ATG7 (Autophagy related 7) 在自噬過程中參與的作用5
1.5ATG7在癌症中的作用6
1.6反義寡核苷酸 (Antisense Oligonucleotide, ASO) 的分子機制及用途7
1.7研究動機及目的9
第二章 材料與方法10
2.1 化學藥品10
2.2 細胞培養 (Cell culture)12
2.3 ASO轉染 (ASO transfection)15
2.4 西方墨點法 (Western blot)16
2.5 細胞存活率測試 (Cell viability assay)25
2.6 細胞週期分析 (Cell cycle phases analysis)26
2.7 癌細胞球體形成試驗 (Sphere formation assay) 29
2.8 活/死細胞螢光試驗 (Live/Dead cytotoxicity assay)28
2.9 球體細胞存活率試驗 (3D sphere cell viability assay)30
2.10 活性氧化物質產生試驗 (Reactive oxygen species assay)30
2.11 粒線體膜電位分析 (Mitochondria membrane potential assay) 31
2.12 蛋白質體學分析 (Proteomics analysis)32
第三章 實驗結果34
3.1 ATG7-ASO對CRC細胞的蛋白質表現的影響34
3.2 ATG7-ASO對CRC細胞存活率的影響35
3.3 ATG7-ASO對細胞週期的影響35
3.4 ATG7-ASO對CRC細胞中Caspase-3/7的活性測定36
3.5 細胞死亡抑制劑對CRC細胞的存活率影響36
3.6 CRC細胞中p53的參與狀況37
3.7 CRC細胞中活性氧化物質的參與狀況38
3.8 CRC細胞中粒線體膜電位分析38
3.9 ATG7-ASO對CRC細胞的球體形成能力影響39
3.10 ATG7-ASO對HCT116細胞的蛋白質體分析39
第四章 討論42
第五章 結論46
第六章 實驗結果圖47
參考文獻59
Abdel-Aziz, A.K., M.K. Saadeldin, A.H. Salem, S.A. Ibrahim, S. Shouman, A.B. Abdel-Naim, and R. Orecchia. 2022. A Critical Review of Chloroquine and Hydroxychloroquine as Potential Adjuvant Agents for Treating People with Cancer. In Future Pharmacology. Vol. 2. 431-443.
Aburto, M.R., J.M. Hurlé, I. Varela-Nieto, and M. Magariños. 2012. Autophagy during vertebrate development. Cells. 1:428-448.
Ahmed, D., P.W. Eide, I.A. Eilertsen, S.A. Danielsen, M. Eknæs, M. Hektoen, G.E. Lind, and R.A. Lothe. 2013. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis. 2:e71.
Bejarano, E., and A.M. Cuervo. 2010. Chaperone-mediated autophagy. Proc Am Thorac Soc. 7:29-39.
Chan, J.H., S. Lim, and W.S. Wong. 2006. Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol. 33:533-540.
Chen, Y., X.R. Liu, Y.Q. Yin, C.J. Lee, F.T. Wang, H.Q. Liu, X.T. Wu, and J. Liu. 2014. Unravelling the multifaceted roles of Atg proteins to improve cancer therapy. Cell Prolif. 47:105-112.
Cheng, L., C. Eng, L.Z. Nieman, A.S. Kapadia, and X.L. Du. 2011. Trends in colorectal cancer incidence by anatomic site and disease stage in the United States from 1976 to 2005. Am J Clin Oncol. 34:573-580.
Collier, J.J., C. Guissart, M. Oláhová, S. Sasorith, F. Piron-Prunier, F. Suomi, D. Zhang, N. Martinez-Lopez, N. Leboucq, A. Bahr, S. Azzarello-Burri, S. Reich, L. Schöls, T.M. Polvikoski, P. Meyer, L. Larrieu, A.M. Schaefer, H.S. Alsaif, S. Alyamani, S. Zuchner, I.A. Barbosa, C. Deshpande, A. Pyle, A. Rauch, M. Synofzik, F.S. Alkuraya, F. Rivier, M. Ryten, R. McFarland, A. Delahodde, T.G. McWilliams, M. Koenig, and R.W. Taylor. 2021a. Developmental Consequences of Defective ATG7-Mediated Autophagy in Humans. N Engl J Med. 384:2406-2417.
Collier, J.J., F. Suomi, M. Oláhová, T.G. McWilliams, and R.W. Taylor. 2021b. Emerging roles of ATG7 in human health and disease. EMBO Mol Med. 13:e14824.
Collotta, D., I. Bertocchi, E. Chiapello, and M. Collino. 2023. Antisense oligonucleotides: a novel Frontier in pharmacological strategy. Front Pharmacol. 14:1304342.
de Groen, F.L., O. Krijgsman, M. Tijssen, L.E. Vriend, B. Ylstra, E. Hooijberg, G.A. Meijer, R.D. Steenbergen, and B. Carvalho. 2014. Gene-dosage dependent overexpression at the 13q amplicon identifies DIS3 as candidate oncogene in colorectal cancer progression. Genes Chromosomes Cancer. 53:339-348.
Debnath, J., N. Gammoh, and K.M. Ryan. 2023. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560-575.
Dekker, E., P.J. Tanis, J.L.A. Vleugels, P.M. Kasi, and M.B. Wallace. 2019. Colorectal cancer. Lancet. 394:1467-1480.
Desai, S., Z. Liu, J. Yao, N. Patel, J. Chen, Y. Wu, E.E. Ahn, O. Fodstad, and M. Tan. 2013. Heat shock factor 1 (HSF1) controls chemoresistance and autophagy through transcriptional regulation of autophagy-related protein 7 (ATG7). J Biol Chem. 288:9165-9176.
Duan, B., Y. Zhao, J. Bai, J. Wang, X. Duan, X. Luo, R. Zhang, Y. Pu, M. Kou, J. Lei, and S. Yang. 2022. Colorectal Cancer: An Overview. In Gastrointestinal Cancers. J.A. Morgado-Diaz, editor. Exon Publications
Copyright: The Authors.; The authors confirm that the materials included in this chapter do not violate copyright laws. Where relevant, appropriate permissions have been obtained from the original copyright holder(s), and all original sources have been appropriately acknowledged or referenced., Brisbane (AU).
Feng, H., N. Wang, N. Zhang, and H.H. Liao. 2022. Alternative autophagy: mechanisms and roles in different diseases. Cell Commun Signal. 20:43.
Fulda, S. 2017. Autophagy in Cancer Therapy. Front Oncol. 7:128.
Glick, D., S. Barth, and K.F. Macleod. 2010. Autophagy: cellular and molecular mechanisms. J Pathol. 221:3-12.
Hossain, M.S., H. Karuniawati, A.A. Jairoun, Z. Urbi, J. Ooi, A. John, Y.C. Lim, K.M.K. Kibria, A.K.M. Mohiuddin, L.C. Ming, K.W. Goh, and M.A. Hadi. 2022. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers (Basel). 14.
Kaushik, S., and A.M. Cuervo. 2018. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 19:365-381.
Kimmelman, A.C., and E. White. 2017. Autophagy and Tumor Metabolism. Cell Metab. 25:1037-1043.
Krasteva, N., and M. Georgieva. 2022. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics. 14.
Kuipers, E.J., W.M. Grady, D. Lieberman, T. Seufferlein, J.J. Sung, P.G. Boelens, C.J. van de Velde, and T. Watanabe. 2015. Colorectal cancer. Nat Rev Dis Primers. 1:15065.
Kulkarni, J.A., D. Witzigmann, S.B. Thomson, S. Chen, B.R. Leavitt, P.R. Cullis, and R. van der Meel. 2021. The current landscape of nucleic acid therapeutics. Nat Nanotechnol. 16:630-643.
Lévy, J., and B. Romagnolo. 2015. Autophagy, microbiota and intestinal oncogenesis. Oncotarget. 6:34067-34068.
Lauffer, M.C., W. van Roon-Mom, and A. Aartsma-Rus. 2024. Possibilities and limitations of antisense oligonucleotide therapies for the treatment of monogenic disorders. Commun Med (Lond). 4:6.
Li, M., J. Liu, S. Li, Y. Feng, F. Yi, L. Wang, S. Wei, and L. Cao. 2019. Autophagy-related 7 modulates tumor progression in triple-negative breast cancer. Lab Invest. 99:1266-1274.
Li, W., P. He, Y. Huang, Y.F. Li, J. Lu, M. Li, H. Kurihara, Z. Luo, T. Meng, M. Onishi, C. Ma, L. Jiang, Y. Hu, Q. Gong, D. Zhu, Y. Xu, R. Liu, L. Liu, C. Yi, Y. Zhu, N. Ma, K. Okamoto, Z. Xie, J. Liu, R.R. He, and D. Feng. 2021. Selective autophagy of intracellular organelles: recent research advances. Theranostics. 11:222-256.
Li, W.W., J. Li, and J.K. Bao. 2012. Microautophagy: lesser-known self-eating. Cell Mol Life Sci. 69:1125-1136.
Long, J.S., E. Kania, D.G. McEwan, V.J.A. Barthet, M. Brucoli, M. Ladds, C. Nössing, and K.M. Ryan. 2022. ATG7 is a haploinsufficient repressor of tumor progression and promoter of metastasis. Proc Natl Acad Sci U S A. 119:e2113465119.
Onorati, A.V., M. Dyczynski, R. Ojha, and R.K. Amaravadi. 2018. Targeting autophagy in cancer. Cancer. 124:3307-3318.
Pan, Z., J. Bao, L. Zhang, and S. Wei. 2021. UBE2D3 Activates SHP-2 Ubiquitination to Promote Glycolysis and Proliferation of Glioma via Regulating STAT3 Signaling Pathway. Front Oncol. 11:674286.
Plesca, D., S. Mazumder, and A. Almasan. 2008. DNA damage response and apoptosis. Methods Enzymol. 446:107-122.
Prasher, P., M. Sharma, S.K. Singh, M. Gulati, D.K. Chellappan, R. Rajput, G. Gupta, A. Ydyrys, M. Kulbayeva, A.F. Abdull Razis, B. Modu, J. Sharifi-Rad, and K. Dua. 2023. Spermidine as a promising anticancer agent: Recent advances and newer insights on its molecular mechanisms. Front Chem. 11:1164477.
Qiao, J., S.J. Cui, L.L. Xu, S.J. Chen, J. Yao, Y.H. Jiang, G. Peng, C.Y. Fang, P.Y. Yang, and F. Liu. 2015. Filamin C, a dysregulated protein in cancer revealed by label-free quantitative proteomic analyses of human gastric cancer cells. Oncotarget. 6:1171-1189.
Qiao, Z., Z. Xu, Q. Xiao, Y. Yang, J. Ying, L. Xiang, and C. Zhang. 2020. Dysfunction of ATG7-dependent autophagy dysregulates the antioxidant response and contributes to oxidative stress-induced biological impairments in human epidermal melanocytes. Cell Death Discov. 6:31.
Riedl, S.J., and Y. Shi. 2004. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 5:897-907.
Rigaux, E., J.W. Chen, F. George, J. Lemaire, C. Bertrand, L. Faugeras, A. Fattaccioli, Q. Gilliaux, L. D''Hondt, C. Michiels, H.F. Renard, and N. Zanin. 2023. Budget-Friendly Generation, Biochemical Analyses, and Lentiviral Transduction of Patient-Derived Colon Organoids. Curr Protoc. 3:e943.
Roberts, T.C., R. Langer, and M.J.A. Wood. 2020. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 19:673-694.
Sandhu, J., V. Lavingia, and M. Fakih. 2019. Systemic treatment for metastatic colorectal cancer in the era of precision medicine. J Surg Oncol. 119:564-582.
Scherr, A.L., A. Jassowicz, A. Pató, C. Elssner, L. Ismail, N. Schmitt, P. Hoffmeister, L. Neukirch, G. Gdynia, B. Goeppert, H. Schulze-Bergkamen, D. Jäger, and B.C. Köhler. 2020. Knockdown of Atg7 Induces Nuclear-LC3 Dependent Apoptosis and Augments Chemotherapy in Colorectal Cancer Cells. Int J Mol Sci. 21.
Shimizu, S. 2018. Biological Roles of Alternative Autophagy. Mol Cells. 41:50-54.
Siegel, R.L., N.S. Wagle, A. Cercek, R.A. Smith, and A. Jemal. 2023. Colorectal cancer statistics, 2023. CA Cancer J Clin. 73:233-254.
Strohecker, A.M., J.Y. Guo, G. Karsli-Uzunbas, S.M. Price, G.J. Chen, R. Mathew, M. McMahon, and E. White. 2013. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov. 3:1272-1285.
Sun, S., Z. Wang, F. Tang, P. Hu, Z. Yang, C. Xue, J. Gong, L. Shi, and C. Xie. 2016. ATG7 promotes the tumorigenesis of lung cancer but might be dispensable for prognosis predication: a clinicopathologic study. Onco Targets Ther. 9:4975-4981.
Tamargo-Gómez, I., and G. Mariño. 2018. AMPK: Regulation of Metabolic Dynamics in the Context of Autophagy. Int J Mol Sci. 19.
Thanikachalam, K., and G. Khan. 2019. Colorectal Cancer and Nutrition. Nutrients. 11.
Vargas, J.N.S., M. Hamasaki, T. Kawabata, R.J. Youle, and T. Yoshimori. 2023. The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol. 24:167-185.
Wang, L., D.J. Klionsky, and H.M. Shen. 2023. The emerging mechanisms and functions of microautophagy. Nat Rev Mol Cell Biol. 24:186-203.
Wang, Y., L. Miao, A. Satterlee, and L. Huang. 2015. Delivery of oligonucleotides with lipid nanoparticles. Adv Drug Deliv Rev. 87:68-80.
Xi, Y., and P. Xu. 2021. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 14:101174.
Xie, Y.H., Y.X. Chen, and J.Y. Fang. 2020. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 5:22.
Yang, Z., and D.J. Klionsky. 2009. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol. 335:1-32.
Yao, H., J. Li, Z. Liu, C. Ouyang, Y. Qiu, X. Zheng, J. Mu, and Z. Xie. 2023. Ablation of endothelial Atg7 inhibits ischemia-induced angiogenesis by upregulating Stat1 that suppresses Hif1a expression. Autophagy. 19:1491-1511.
Yu, R.Z., J.S. Grundy, and R.S. Geary. 2013. Clinical pharmacokinetics of second generation antisense oligonucleotides. Expert Opin Drug Metab Toxicol. 9:169-182.
Yue, W., A. Hamaï, G. Tonelli, C. Bauvy, V. Nicolas, H. Tharinger, P. Codogno, and M. Mehrpour. 2013. Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy. 9:714-729.
Zhao, X., L.Y. Bie, D.R. Pang, X. Li, L.F. Yang, D.D. Chen, Y.R. Wang, and Y. Gao. 2023. The role of autophagy in the treatment of type II diabetes and its complications: a review. Front Endocrinol (Lausanne). 14:1228045.
Zheng, Z., X. Zhang, J. Bai, L. Long, D. Liu, and Y. Zhou. 2022. PGM1 suppresses colorectal cancer cell migration and invasion by regulating the PI3K/AKT pathway. Cancer Cell International. 22:201.
電子全文 電子全文(網際網路公開日期:20270826)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top