跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 03:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁仲廷
研究生(外文):Jhong-Ting Liang
論文名稱:基於SDN資料中心網路中具屬性感知的流量管理策略
論文名稱(外文):Attribute-Aware Flow Management Strategy in SDN-Based Data Center Networks
指導教授:王友群
指導教授(外文):Wang,You-Chiun
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:70
中文關鍵詞:資料中心流量管理負載平衡OpenFlow軟體定義網路
外文關鍵詞:Data center networkflow managementload balanceOpenFlowsoftware-defined networking (SDN)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著雲端運算、大數據、物聯網以及人工智慧技術的發展,使網路流量呈現爆炸式的增長,作為重要基礎設施的資料中心也面臨著巨大的挑戰,然而,在過去所使用的傳統網路架構中存在許多問題,如由需硬體控制、人工配置管理等,使其難以應對現代多樣化的流量,也容易出現流量分配不均勻等問題,進而降低網路效能。而新型的SDN架構的出現,有效改善傳統網路架構所面臨到的困境,SDN的優勢在於可以根據流量情況自動調整路徑及頻寬分配,從而提升網路的性能。
本論文透過SDN開發一套流量管理策略,該策略可針對不同的鏈結情況進行處理。當所有可用鏈結皆有可用頻寬時,可集中控管流量並進行傳輸路徑的調度以緩解擁塞,當鏈結頻寬皆為飽和時,則會依據當前流量的大小、期間和所賦予的價值進行速率的縮減,使高價值流量優先獲得保障,此外,我們所設計的動態縮減監控機制也會持續監測鏈結狀態,並重新分配最佳頻寬資源,經實驗證明,相較基於鏈結狀態的機制,我們所提出的策略可以提升傳輸效益,同時減少封包遺失。
The recent escalation in network activity triggered by advancements in cloud computing, big data, the Internet of Things, and artificial intelligence has presented significant challenges to data centers. Traditional network architectures, characterized by manual configuration and hardware control, need to help handle the diverse and expanding traffic, leading to issues like uneven distribution and reduced performance. The advent of software-defined networking (SDN) can effectively address the above challenges by automatically adjusting path and bandwidth allocation based on traffic conditions, thereby enhancing network performance.
This paper introduces an SDN-based traffic management policy tailored to address various link conditions. When all available links have ample bandwidth, centralized control optimally schedules transmission paths to alleviate congestion. Conversely, when all links are saturated, the rate is scaled down based on current traffic size, duration, and value, prioritizing the protection of high-value traffic. The proposed dynamic scaling monitoring mechanism continuously assesses link status, facilitating the reallocation of optimal bandwidth resources. Compared with the link status-based mechanisms, our strategy has been empirically proven to enhance transmission efficiency and reduce packet loss.
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 ix
第一章 緒論 1
1.1 簡介 1
1.2 研究動機 2
1.3 論文貢獻與文章架構 3
第二章 研究背景 4
2.1 SDN網路架構 4
2.2 OpenFlow協定 6
2.2.1 Flow Table 7
2.2.2 Meter Table 8
2.3 Ryu控制器 8
2.4 資料中心網路 9
2.5 鏈結負載平衡技術 10
第三章 相關文獻探討 12
第四章 問題定義 17
第五章 研究方法 19
5.1 系統流程介紹 19
5.2 網路環境初始化 21
5.3 流量集中演算法 22
5.4 流量分群演算法 25
5.5 流量工程演算法 27
5.6 流量整形演算法 28
第六章 效能評估 33
6.1 實驗模擬環境 33
6.2 鏈結負載之門檻值設定 36
6.3 頻寬需求遞增之場景 37
6.3.1 利潤與速率呈大致正相關之Flow 37
6.3.2 利潤與速率呈大致負相關之Flow 40
6.3.3 利潤相同之Flow 42
6.4 頻寬需求遞減之場景 45
6.4.1 利潤與速率呈大致負相關之Flow 45
6.4.2 利潤與速率呈大致正相關之Flow 48
6.4.3 利潤相同之Flow 50
第七章 結論與未來展望 53
參考文獻 54
附錄一 流量集中演算法之虛擬碼 57
附錄二 流量分群演算法之虛擬碼 58
附錄三 流量工程演算法之虛擬碼 59
附錄四 流量整形演算法之虛擬碼 60
[1]ONF,“Software-defined networking(SDN)” . [Online] Available: https://opennetworking.org/sdn-definition/
[2]N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74, 2008.
[3]M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 4, pp. 63-74, 2008.
[4]F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN control: Survey, taxonomy, and challenges,” IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 333-354, 2017.
[5]Open Networking Foundation( ONF). [Online] Available: https://www.opennetworking.org/
[6]W. Li, W. Meng, and L. F. Kwok, “A survey on OpenFlow-based Software Defined Networks: Security challenges and countermeasures,” Journal of Network and Computer Applications, vol. 68, pp. 126-139, 2016.
[7]N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX: Towards an operating system for networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105-110, 2008.
[8]Floodlight. [Online] Available: https://github.com/floodlight/floodlight
[9]POX. [Online] Available: https://github.com/noxrepo/pox
[10]Ryu. [Online] Available: https://ryu-sdn.org/
[11]NTT. [Online] Available: https://www.ntt-review.jp/
[12]W. Xia, P. Zhao, Y. Wen, and H. Xie, “A survey on data center networking (DCN): Infrastructure and operations,” IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 640-656, 2016.
[13]C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient supercomputing,” IEEE Transactions on Computers, vol. 100, no. 10, pp. 892-901, 1985.
[14]H. Mcheick, Z. R. Mohammed, and A. Lakiss, “Evaluation of load balance algorithms,” in International Conference on Software Engineering Research, Management and Applications, 2011, pp. 104-109.
[15]D. Thaler and C. Hopps, RFC2991: Multipath Issues in Unicast and Multicast Next-Hop Selection. RFC Editor, 2000.
[16]Y. Liu, H. Gu, Z. Zhou, and N. Wang, “RSLB: Robust and scalable load balancing in software-defined data center networks,” IEEE Transactions on Network and Service Management, vol. 19, no. 4, pp. 4706-4720, 2022.
[17]Y. Liu, H. Gu, and N. Wang, “Hpstos: High-performance and scalable traffic optimization strategy for mixed flows in data center networks,” IEEE Transactions on Cloud Computing, vol. 10, no. 4, pp. 2649-2663, 2021.
[18]A. Angi, A. Sacco, F. Esposito, G. Marchetto, and A. Clemm, “Howdah: Load pofiling via in-band flow classification and P4,” in International Conference on Network and Service Management, 2022, pp. 46-54.
[19]Y. C. Wang and T. J. Hsiao, “URBM: User-rank-based management of flows in data center networks through SDN,” in International Conference on Computer Communication and the Internet, 2022, pp. 142-149.
[20]F. Chahlaoui, H. Dahmouni, and H. El Alami, “Multipath-routing based load-balancing in SDN networks,” in International Conference on Cloud and Internet of Things, 2022, pp. 180-185.
[21]V. Kumar, S. Jangir, and D. G. Patanvariya, “Traffic load balancing in sdn using round-robin and Dijkstra based methodology,” in International Conference for Advancement in Technology, 2022, pp. 1-4.
[22]F. Fan, H. Meng, B. Hu, K. L. Yeung, and Z. Zhao, “Roulette wheel balancing algorithm with dynamic flowlet switching for multipath datacenter networks,” IEEE/ACM Transactions on Networking, vol. 29, no. 2, pp. 834-847, 2021.
[23]F. Tang, H. Zhang, L. T. Yang, and L. Chen, “Elephant flow detection and load-balanced routing with efficient sampling and classification,” IEEE Transactions on Cloud Computing, vol. 9, no. 3, pp. 1022-1036, 2019.
[24]E. Nepolo and G. A. L. Zodi, “A predictive ECMP routing protocol for fat-tree enabled data centre networks,” in International Conference on Ubiquitous Information Management and Communication, 2021, pp. 1-8.
[25]P. Zuo and Y. Shu, “An elephant flows scheduling method based on feedforward neural network,” in World Conference on Computing and Communication Technologies, 2021, pp. 16-20.
[26]Y. K. Chang, H. Y. Wang, and Y. H. Lin, “A congestion aware multi-path label switching in data centers using programmable switches,” in International Conference on Networking, Architecture and Storage, 2021, pp. 1-8.
[27]L. Qin, W. Wei, and X. Diao, “FlowDecider: End-host driven proactive load balancing for data center networks,” in International Conference on Communication Technology, 2021, pp. 931-936.
[28]Z. Wei, Q. Li, K. Zhu, J. Zhou, L. Zou, Y. Jiang, and X. Xiao, “DiffTREAT: Differentiated traffic scheduling based on RNN in data centers,” IEEE Transactions on Cloud Computing, vol. 11, no. 3, pp. 2407-2419, 2022.
[29]R. Xu, W. Li, K. Li, X. Zhou, and H. Qi, “DarkTE: Towards dark traffic engineering in data center networks with ensemble learning,” in IEEE/ACM International Symposium on Quality of Service, 2021, pp. 1-10.
[30]Z. Xu, Y. Lu, and X. Ma, “BOBBLE: A mixed routing-granularity distributed load balancing for data center networks,” in IEEE International Conference on High Performance Computing & Communications, 2021, pp. 470-477.
[31]J. Marron, F. Hernandez-Campos, and F. D. Smith, “Mice and elephants visualization of internet traffic,” in Computational Statistics, 2002, pp. 47-54.
[32]Ubuntu [Online] Available: https://ubuntu.com/
[33]Mininet. [Online] Available: https://mininet.org/
[34]OpenvSwitch. [Online] Available: https://www.openvswitch.org/
[35]Iperf. [Online] Available: https://iperf.fr/
電子全文 電子全文(網際網路公開日期:20290123)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊