跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 19:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭毫傑
研究生(外文):Hao-Jie Xiao
論文名稱:基於兩步單斜率八位元類比數位轉換器應用的高動態範圍CMOS影像感測器
論文名稱(外文):A High Dynamic Range CMOS Image Sensor Based On The Application of a Two-step Single-Slope with Eight-bit Analog-to-digital Converter
指導教授:郭可驥
指導教授(外文):Kuo,Ko-Chi
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:69
中文關鍵詞:CMOS影像感測器兩步單斜率類比數位轉換器線性-對數型主動式像素感測器動態範圍填充係數可程式化增益放大器帶差參考電壓電路
外文關鍵詞:CMOS image sensortwo-step single-slope analog-to-digital converterlinear-logarithmic active pixel sensordynamic rangefill factorprogrammable gain amplifierbandgap reference voltage circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文採用 TSMC 0.18μm製程,提出了一種基於兩步單斜率(Two-Step Single-Slope)類比數位轉換器應用的高動態範圍CMOS影像感測器,全電路架構主要分成三個部分,第一部分像素陣列為接收光源的感應端,像素電路能根據接收到的光照強度,產生不同大小的光電流,架構採用線性-對數型主動式像素感測器為基底做改良,此架構增加了在光電流較弱下,感應端電壓值的下降速率,加快了像素單元的運作時間,與改良前的架構相比,有更高的動態範圍(Dynamic Range),且因架構複雜度較低,擁有較高的填充係數(Fill Factor),可達51%;第二部分為可程式化增益放大器(PGA),會將前一級像素陣列所產生的電壓訊號做大,確保像素電壓的大小會符合後端接收電路的輸入範圍,提高電路的精準度,與傳統的PGA架構相比,新增加了通過動態比較器與帶差參考電壓電路組成的增益選擇控制電路,可以實現自動判別所需要的放大倍率,最後透過交換電容式放大器將輸入訊號做放大,其擁有1倍、2倍、4倍及8倍4種不同的放大倍率;第三部分為類比數位轉換器(ADC),可以將接收到的訊號轉換成數位訊號輸出,本篇論文所使用的架構為兩步單斜率類比數位轉換器(Two-Step Single-Slope ADC),轉換過程分為M bit粗略(coarse)轉換和N bit 精細(fine) 轉換,以產生總bit (T-bit) 的分辨率,架構上使用比較器、計數器及多個開關組成,由於架構簡單,減省了面積消耗,且相較於傳統的單斜率(Single-Slope )ADC架構有較少的轉換週期,提升了整體的轉換效率,在取樣頻率1 MHz的設計下,輸出總位元為8bit,ENOB達到7.511 bit,其INL及DNL皆小於 1。
This thesis proposes a high dynamic range CMOS image sensor based on a Two-Step Single-Slope analog-to-digital converter using the TSMC 0.18μm process. The overall circuit architecture is mainly divided into three parts. The first part, the pixel array, serves as the sensing terminal for receiving light sources. The pixel circuit generates photocurrents of varying magnitudes according to the intensity of the received light. The architecture is an improved version of a linear-logarithmic active pixel sensor. This design increases the rate at which the sensing terminal voltage decreases under weaker photocurrent, accelerating the operation time of the pixel units. Compared to the previous architecture, it has a higher dynamic range and, due to the lower complexity of the structure, achieves a higher fill factor of up to 51%.
The second part is the programmable gain amplifier (PGA), which amplifies the voltage signal generated by the preceding pixel array to ensure that the pixel voltage falls within the input range of the subsequent receiving circuit, thus improving the circuit''s accuracy. Compared to traditional PGA structures, it includes a gain selection control circuit composed of a dynamic comparator and a bandgap reference voltage circuit, which enables automatic determination of the required amplification factor. The input signal is then amplified through a switched-capacitor amplifier, providing four different amplification factors: 1x, 2x, 4x, and 8x.
The third part is the analog-to-digital converter (ADC), which converts the received signal into a digital output. The architecture used in this thesis is a Two-Step Single-Slope ADC. The conversion process is divided into an M-bit coarse conversion and an N-bit fine conversion to achieve a total bit (T-bit) resolution. The architecture includes a comparator, a counter, and several switches. Due to its simplicity, it reduces area consumption and, compared to traditional Single-Slope ADC architectures, has fewer conversion cycles, thereby improving overall conversion efficiency. Under a sampling frequency of 1 MHz, the total output bits are 8 bits, the effective number of bits (ENOB) reaches 7.511 bits, and both the integral non-linearity (INL) and differential non-linearity (DNL) are less than 1.
論文審定書 i
摘要 ii
Abstract iii
目錄 v
圖次 viii
表次 ix
第1章 概論 1
1.1 研究動機 1
1.2 章節介紹 3
第2章 CMOS影像感測器架構介紹 4
2.1 感光元件 6
2.1.1 CCD影像感測器 6
2.1.2 CMOS影像感測器 7
2.2 像素電路特性參數介紹 10
2.2.1 動態範圍(Dynamic Range) 10
2.2.2 填充係數(Fill Factor) 11
2.3 可程式增益放大器(PGA) 11
2.4 類比數位轉換器(ADC) 13
2.5 文獻回顧 16
第3章 CMOS影像感測器全電路設計實現 17
3.1 像素架構 19
3.1.1 線性-對數型主動式架構 19
3.1.2 新式線性-對數型主動式像素架構 20
3.2 列解碼器 22
3.3 Interface介面 24
3.4 計數器 24
3.5 PGA 26
3.5.1 PGA整體架構 26
3.5.2 帶差參考電壓電路 26
3.5.3 增益選擇控制電路 28
3.5.4 動態比較器 30
3.5.5 交換電容式放大器 31
3.5.6 摺疊疊接式運算放大器 31
3.6 Two Step Single Slope ADC 33
3.6.1 傳統單斜率(Single Slope) ADC架構 33
3.6.2 兩步單斜率(Two Step Single Slope) ADC架構 34
第4章 模擬結果 36
4.1 全電路佈局 36
4.2 像素電路模擬 38
4.2.1 動態範圍模擬 40
4.3 PGA模擬 42
4.3.1 動態比較器模擬 42
4.3.2 PGA全電路模擬 43
4.4 Two Step Single-Slope ADC模擬 45
4.4.1 靜態參數模擬結果 47
4.4.2 動態參數模擬結果 48
4.5 量測方法 49
4.6 電路規格與文獻比較 53
4.6.1 電路規格 53
4.6.2 文獻比較 54
第5章 結論與未來展望 55
5.1 結論 55
5.2 未來展望 56
參考文獻 56
[1]Ankur Pipara, "Internet of Things (IoT)," 2014, [Online], Available: https://www.slideshare.net/slideshow/internet-of-things-iot-250983547/250983547.
[2]Bin Luo, Fuxing Yang and Lei Yan, "Key technologies and research development of CMOS image sensors," 2010 Second IITA International Conference on Geoscience and Remote Sensing, 2010, pp. 322-325, doi: 10.1109/IITA-GRS.2010.5602944.
[3]N. Lyu, L. Xu, N. Yu and H. Zhang, "Nonlinear CMOS Image Sensor with SOC Integrated Local Contrast Stretch for Bio-Microfluidic Imaging," 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE), 2018, pp. 225-228, doi: 10.1109/BIBE.2018.00050.
[4]M. Kwon et al., "A Low-Power 65/14nm Stacked CMOS Image Sensor," 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020, pp. 1-4, doi: 10.1109/ISCAS45731.2020.9180435.
[5]E. Charbon, C. Bruschini and M. -J. Lee, "3D-Stacked CMOS SPAD Image Sensors: Technology and Applications," 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2018, pp. 1-4, doi: 10.1109/ICECS.2018.8617983.
[6]I. L. Fujimori, Ching-Chun Wang and C. G. Sodini, "A 256/spl times/256 CMOS differential passive pixel imager with FPN reduction techniques," in IEEE Journal of Solid-State Circuits, vol. 35, no. 12, pp. 2031-2037, Dec. 2000, doi: 10.1109/4.890319.
[7]O. Vietze and P. Seitz, "Active pixels for image sensing with programmable, high dynamic range," AT''95: Advanced Technologies Intelligent Vision, Yverdon, Switzerland, 1995, pp. 15-18, doi: 10.1109/AT.1995.535969.
[8]張仟育(2020), "應用於高動態範圍之CMOS影像感測器設計整合"﹝碩士論文。國立中山大學﹞臺灣博碩士論文知識加值系統
[9]R. Saha, P. P. Banik and K. Kim, "Low Dynamic Range Image Set Generation from Single Image," 2019 International Conference on Electronics, Information, and Communication (ICEIC), 2019, pp. 1-3, doi: 10.23919/ELINFOCOM.2019. 8706401.
[10]SONY官網(2023),在我的BRAVIA TV上相容的HDR(高動態範圍)格式為何? https://www.sony.com.tw/zh/electronics/support/articles/00161421
[11]B. Calvo, M. T. Sanz and S. Celma, "Low-voltage Low-power CMOS Programmable Gain Amplifier," 2006 International Caribbean Conference on Devices, Circuits and Systems, 2006, pp. 101-105, doi: 10.1109/ICCDCS.2006.
[12]K. Ragab, M. Kozak and N. Sun, "Thermal Noise Analysis of a Programmable-Gain Switched-Capacitor Amplifier With Input Offset Cancellation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 3, pp. 147-151, March 2013, doi: 10.1109/TCSII.2013.2240831.
[13]R. Jacob Baker(2010), "CMOS: Circuit Design, Layout, and Simulation, 3rd Edition," IEEE Series on Microelectronic Sysems.
[14]H. Zhu et al., "CMOS Image Sensor Data-Readout Method for Convolutional Operations with Processing Near Sensor Architecture," 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 2018, pp. 528-531, doi: 10.1109/APCCAS.2018.8605660.
[15]K. Nie, W. Zha, X. Shi, J. Li, J. Xu and J. Ma, "A Single Slope ADC With Row-Wise Noise Reduction Technique for CMOS Image Sensor," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 9, pp. 2873-2882, Sept. 2020, doi: 10.1109/TCSI.2020.2979321.
[16]H. Im, K. Park, J. H. Cho, H. S. Choo and S. Y. Kim, "Design of a Pseudo-Wide Dynamic Range CMOS Image Sensor by Using the Bidirectional Gamma Curvature Technique," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5, pp. 1596-1599, May 2021, doi: 10.1109/TCSII.2021.3065992.
[17]Ø. Janbu, R. Johansson, T. Martinussen and J. Solhusvik, "A 1.17-Megapixel CMOS Image Sensor With 1.5 A/D Conversions per Digital CDS Pixel Readout and Four In-Pixel Gain Steps," in IEEE Journal of Solid-State Circuits, vol. 54, no. 9, pp. 2568-2578, Sept. 2019, doi: 10.1109/JSSC.2019.2924337.
[18]M. I. Abedin, A. Islam and Q. Delwar Hossain, "A self-adjusting Lin-Log active pixel for wide dynamic range CMOS image sensor," 2015 IEEE International Conference on Telecommunications and Photonics (ICTP), Dhaka, Bangladesh, 2015, pp. 1-4, doi: 10.1109/ICTP.2015.7427935.
[19]K. Park, M. Jin, S. Y. Kim and M. Song, "Design of a high speed CMOS image sensor with a hybrid single-slope column ADC and a finite state machine," 2017 International SoC Design Conference (ISOCC), Seoul, Korea (South), 2017, pp. 95-96, doi: 10.1109/ISOCC.2017.8368786.
[20]S. -F. Yeh, C. -C. Hsieh, C. -J. Cheng and C. -K. Liu, "A novel single slope ADC design for wide dynamic range CMOS image sensors," SENSORS, 2011 IEEE, Limerick, Ireland, 2011, pp. 889-892, doi: 10.1109/ICSENS.2011.6127043.
[21]Yeonseong Hwang, Seongjoo Lee and Minkyu Song, "Design of a CMOS image sensor with a 10-bit two-step single-slope A/D converter and a hybrid correlated double sampling," 2014 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Grenoble, France, 2014, pp. 1-4, doi: 10.1109/PRIME.2014.6872708.
[22]W. -F. Chou, S. -F. Yeh and C. -C. Hsieh, "A 143dB 1.96% FPN linear-logarithmic CMOS image sensor with threshold-voltage cancellation and tunable linear range," SENSORS, 2012 IEEE, Taipei, Taiwan, 2012, pp. 1-4, doi: 10.1109/ICSENS.2012.6411258.
電子全文 電子全文(網際網路公開日期:20290703)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 0.5 伏特十位元具有自適應重置切換和基於電壓控制振盪器之比較器之連續漸近式類比數位轉換器
2. 十位元10MS/s使用基於VCO比較器的次範圍循序漸進式類比數位轉換器
3. 時域分析之連續漸進式類比數位轉換器與每秒取樣10億次之6位元導管式類比數位轉換器
4. 應用於神經訊號記錄之可抗假象類比數位轉換器
5. 一個使用單取樣電容具寬輸入範圍之十二位元連續漸進式類比數位轉換器設計
6. 僅用一顆反相器為基底之運算放大器製作二階雜訊移頻暨逐次逼近暫存式類比數位轉換器
7. 一個10位元、採樣頻率10MHz被動雜訊整形的節能連續漸進式類比數位轉換器
8. 使用次臨界區PVT偵測器之0.5/0.3 V低電壓高速輸入輸出緩衝器與低功耗之十位元每秒0.72億次轉換連續漸進式類比數位轉換器
9. 在40nm製程下的低功耗5GHz-4.3GHz class D VCO iSSPD 次取樣鎖相迴路
10. 低抖動小面積快速鎖定之全數位連續漸進式暫存器控制延遲鎖相迴路設計
11. 基於改良式時域比較器之十位元連續漸進式類比數位轉換器
12. RISC-V數位信號處理器腦機介面應用
13. 一個具有串接積分器的四階雜訊整形逐漸逼近式類比數位轉換器
14. 一個使用逐漸逼近式時域量化之八位元每秒取樣一百億次的類比數位轉換器
15. 實現一個十位元每秒兩千萬次取樣帶冗餘位逐漸趨近式類比數位轉換器