|
[1]H. Chen, B. Wei, and D. Ma, Energy storage and management system with carbon nanotube supercapacitor and multidirectional power delivery capability for autonomous wireless sensor nodes, IEEE Trans. Power Electron., vol. 25, no. 12, pp. 28972909, Dec. 2010. [2]B. Murmann, "ADC Performance Survey 1997-2024," [Online]. Available: https://github.com/bmurmann/ADC-survey. [3]R. H. Walden, ‘‘Analog-to-digital converter survey and analysis,’’ IEEE J. Sel. Areas Commun., vol. 17, no. 4, pp. 539–550, Apr. 1999 [4]R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New York: IEEE Press, 2005. [5]X. Tang et al., “Low-power SAR ADC design: Overview and survey of state-of-the-art techniques,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 6, pp. 2249–2262, Jun. 2022. [6]P. Harpe, “Low-power SAR ADCs: Basic techniques and trends,” IEEE Open J. Solid-State Circuits Soc., vol. 2, pp. 73–81, 2022. [7]R. Suarez, P. Gray, and D. Hodges, “All-MOS charge-redistribution analog-to-digital conversion techniques. II,” IEEE Journal of Solid-State Circuits, vol. 10, no. 6, pp. 379–385, 1975. [8]B. Ginsburg and A. Chandrakasan, “An energy-efficient charge recycling approach for a sar converter with capacitive dac,” in 2005 IEEE International Symposium on Circuits and Systems, 2005, pp. 184–187 Vol. 1. [9]C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 0.92 mW10-bit 50-MS/s SAR ADC in 0.13 m CMOS process,” in IEEE Symp. VLSI Circuits Dig., Jun. 2009, pp. 236–237. [10] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010. [11]V. Hariprasath, J. Guerber, S.-H. Lee and U.-K. Moon, "Merged capacitor switching based SAR ADC with highest switching energy efficiency", Electron. Lett., vol. 46, no. 9, pp. 620-621, Apr. 2010. [12]Y. Zhu et al., “A 10-bit 100 MS/s reference-free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111–1121, Jun. 2010. [13]C.-Y. Liou and C.-C. Hsieh, “A 2.4-to-5.2 fJ/conversion-step 10 b 0.5-to-4 MS/s SAR ADC with charge-average switching DAC in 90nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2013, pp. 280–281. [14]Y. -H. Ou-Yang, C. -C. Wu and K. -T. Tang, "A 0.65-V 10-bit 320-kS/s SAR ADC with Charge Average and Skip Switching Algorithm," 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2018, pp. 98-101. [15]J.-Y. Lin and C.-C. Hsieh, “A 0.3 V 10-bit 1.17 f SAR ADC with merge and split switching in 90 nm CMOS,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 62, no. 1, pp. 70–79, Jan. 2015. [16]K.-T. Lin, Y.-W. Cheng, and K.-T. Tang, “A 0.5 V 1.28-MS/s 4.68-fJ/conversion-step SAR ADC with energy-efficient DAC and trilevel switching scheme,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 7, pp. 1441–1449, Apr. 2016. [17]Z. Zhu and Y. Liang, “A 0.6-V 38-nW 9.4-ENOB 20-kS/s SAR ADC in 0.18-μm CMOS for medical implant devices,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 9, pp. 2167–2176, Sep. 2015. [18]P.-C. Lee, J.-Y. Lin, and C.-C. Hsieh, “A 0.4 V 1.94 fJ/conversion-step 10 bit 750 kS/s SAR ADC with input-range-adaptive switching,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 12, pp. 2149–2157, Dec. 2016. [19]J.-Y. Lin and C.-C. Hsieh, “A 0.3 V 10-bit SAR ADC with first 2-bit guess in 90-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 3, pp. 562–572, Mar. 2017. [20]J. Song, J. Jun, and C. Kim, “A 0.5 V 10-bit 3 MS/s SAR ADC with adaptive-reset switching scheme and near-threshold voltage-optimized design technique,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 7, pp. 1184–1188, Jul. 2020. [21]K. Yoshioka and H. Ishikuro, “A 13b SAR ADC with eye-opening VCO based comparator,” in Proc. 40th Eur. Solid State Circuits Conf. (ESSCIRC), Sep. 2014, pp. 411–414. [22]K. Yoshioka, “VCO-based comparator: A fully adaptive noise scaling comparator for high-precision and low-power SAR ADCs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 29, no. 12, pp. 2143–2152, Dec. 2021. [23]M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self calibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2008, pp. 269–272. [24]M. Hesener, T. Eicher, A. Hanneberg, D. Herbison, F. Kuttner, and H. Wenske, “A 14b 4OMS/s redundant SAR ADC with 480 MHz clock in 0.13μ CMOS,” in IEEE Int. Solid-State Circuits Conference. Dig. Tech. Papers, 2007, pp. 248–600. [25]P. Harpe, E. Cantatore, and A. V. Roermund, “A 10b/12b 40 kS/s SAR ADC with data-driven noise reduction achieving up to 10.1 b ENOB at 2.2 fJ/conversion-step,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3011–3018, Dec. 2013. [26]M. Shim et al., “Edge-pursuit comparator: An energy-scalable oscillator collapse-based comparator with application in a 74.1 dB SNDR and 20 kS/s 15 b SAR ADC,” IEEE J. Solid-State Circuits, vol. 52, no. 4, pp. 1077–1090, Jan. 2017. [27]Z. Ding, X. Zhou, and Q. Li, “A 0.5–1.1-V adaptive bypassing SAR ADC utilizing the oscillation-cycle information of a VCO-based comparator,” IEEE J. Solid-State Circuits, vol. 54, no. 4, pp. 968–977, Apr. 2019. [28]S. Chang, X. Zhou, Z. Ding, and Q. Li, “A 12-bit 30ms/s SAR ADC with VCO-based comparator and split-and-recombination redundancy for bypass logic,” in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), May 2019, pp. 1–5. [29]S. E. Hsieh and C. C. Hsieh, "A 0.44-fJ/Conversion-Step 11-Bit 600-kS/s SAR ADC with Semi-Resting DAC," IEEE J. Solid-State Circuits, vol. 53, no. 9, pp. 2595-2603, Sep. 2018. [30]S.-E. Hsieh and C.-C. Hsieh, “A 0.3-v 0.705-fj/conversion-step 10-bit sar adc with a shifted monotonic switching procedure in 90-nm cmos,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 12, pp. 1171–1175, 2016. [31]Z. Zhu et al., “A 14-bit 4-MS/s VCO-Based SAR ADC With Deep Metastability Facilitated Mismatch Calibration,” IEEE J. Solid-State Circuits, vol. 55, no. 6, pp. 1565-1576, Jun. 2020. [32]X. Zhou, X. Gui, M. Gusev, N. Ackovska, Y. Zhang, and L. Geng, “A 12-bit 20-kS/s 640-nW SAR ADC with a VCDL-based open-loop time-domain comparator,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 2, pp. 359–363, 2022. [33]D.-K. Jung, K. Seong, J.-S. Han, Y. Shim, and K.-H. Baek, “A 0.5 V 10 b 3 MS/s 2-then-1b/cycle SAR ADC with digital-based time-domain reference and dual-mode comparator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 3, pp. 909–913, Mar. 2022.
|