跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 20:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳京綸
研究生(外文):Ching-Lun Wu
論文名稱:0.5 伏特十位元具有自適應重置切換和基於電壓控制振盪器之比較器之連續漸近式類比數位轉換器
論文名稱(外文):A 0.5V 10-bit SAR-ADC with Adaptive-Reset Switching and VCO-Based Comparator
指導教授:郭可驥
指導教授(外文):Kuo,Ko-Chi
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:83
中文關鍵詞:連續漸進式類比數位轉換器基於壓控振盪器之比較器電容陣列切換低功耗低電壓
外文關鍵詞:SAR ADCVCO-based comparatorCapacitor Array SwitchingLow PowerLow Voltage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一顆供應電壓為0.5伏特,每秒五百萬次取樣之低功耗十位元連續漸進式類比數位轉換器(SAR ADC)。由於連續漸進式架構大多搭配電容式數位類比轉換器(CDAC),而其所引入的劣勢便是功耗及面積,因此本論文採用自適應重置(Adaptive-reset)切換方式來減輕上述問題,該切換方式相對於傳統切換方式減少了90%的CDAC平均切換能量,且該切換方式於SAR轉換期間的共模電壓保持不變,能夠放寬比較器的設計。此外,相較於傳統的設計,本設計採用基於壓控振盪器(VCO)架構之時域比較器,該比較器能夠根據輸入電壓差自適應地調整其雜訊性能,通過利用此種特性,減少了比較器所需花費之功耗。藉由結合上述優勢,提高整體SAR ADC之能源效率。

本論文使用TSMC 40nm 1P9M CMOS製程實現,核心面積為0.044 mm^2,供應電壓為0.5 V、取樣頻率為每秒五百萬次、在輸入信號接近奈奎斯特頻率下,微分非線性誤差 (DNL) 為0.251/-0.249 LSB,積分非線性誤差 (INL) 為0.265/-0.197 LSB,信號失真比 (SNDR) 為60.484 dB,無雜散動態範圍 (SFDR) 為73.418 dB,有效位元數 (ENOB) 為 9.755 bit,平均功耗為19.3 uW,FoM 為 4.47(fJ/conv-step) 。
This paper presents a 10-bit low power SAR ADC operating at a supply voltage of 0.5 volts with a sampling rate of five million samples per second. Traditional SAR architectures typically employ CDAC, which are known to introduce disadvantages in terms of power consumption and area . To address these issues, this study employs an Adaptive-Reset switching scheme, mitigating the aforementioned drawbacks. This switching scheme reduces the average switching energy of the CDAC by 90% compared to the traditional scheme. Furthermore, the switching scheme maintains a constant common-mode voltage during the SAR conversion, which can relax the design requirements of the comparator. In addition, distinct from conventional design, this design employs a time-domain comparator based on VCO structure. This comparator can adaptively adjust its noise performance according to the input voltage difference, thereby reducing the power consumption required by the comparator. By combining the aforementioned advantages, the overall energy efficiency of the SAR ADC is improved.

This work uses the TSMC 40nm 1P9M CMOS process, and the core area is 0.044 mm^2. The supply voltage is 0.5 V, sampling rate is 5 MHz. When tested with input signals approaching the Nyquist frequency, the ADC achieves a DNL error of +0.251/-0.249 LSB, an INL error of +0.275/-0.157 LSB, SNDR of 60.878 dB, SFDR of 72.9 dB and an ENOB of 9.82 bits. The average power consumption is 19.5 µW, resulting in a FoM of 4.31 fJ/conv-step.
論文審定書 i
中文摘要 ii
Abstract iii
Chapter1 緒論 1
1.1 研究動機與目標 1
1.2 論文主要架構 4
Chapter2 性能參數與基本架構說明 5
2.1 類比數位轉換器介紹 5
2.2 類比數位轉換器性能參數介紹 6
2.2.1 基本性能參數 6
2.2.2 靜態性能參數 8
2.2.3 動態性能參數 11
Chapter3 相關文獻介紹 14
3.1 連續漸進式類比數位轉換器介紹 14
3.2 電容陣列切換演算法介紹 16
3.2.1 傳統切換方式(Conventional Switching) 16
3.2.2 單調切換方式(Monotonic Switching) 17
3.2.3 基於共模切換方式(Vcm-based Switching) 19
3.2.4 平均充電切換方式(Charge Average Switching) 20
3.2.5 拆分合併切換方式(Merge and Split Switching) 21
3.2.6 單邊和高位元切換方式( One-side Switching Instead and Higher-bit Switching Instead) 22
3.2.7 輸入範圍自適應切換方式(Input-Range-Adaptive Switching) 24
3.2.8 猜測首兩位元切換方式(First 2-bit Guess Switching) 25
3.2.9 自適應重置切換方式(Adaptive-Reset Switching) 27
3.2.10 切換演算法總結 29
3.3 時域比較器介紹 30
3.3.1 基於Eye-opening VCO比較器 30
3.3.2 Edge-Pursuit比較器 32
3.3.3 應用於Adaptive Bypassing SAR ADC之基於VCO比較器 34
Chapter4 類比數位轉換器整體設計 36
4.1 連續漸進式類比數位轉換器之整體架構 36
4.2 連續漸進式類比數位轉換器運作流程 38
4.3 取樣保持電路 39
4.3.1 線性度(Linearity) 40
4.3.2 電荷注入(Charge Injection) 40
4.3.3 時序饋入(Clock Feedthrough) 41
4.3.4 兩階段拔靴帶式取樣保持電路 41
4.4 比較器 43
4.4.1 基於VCO之比較器 43
4.5 非同步控制邏輯 45
4.5.1 非同步控制邏輯架構 45
4.5.2 非同步控制邏輯運作波形 45
4.5.3 移位暫存器 46
4.6 電容陣列切換控制邏輯 47
4.6.1 自適應重置切換控制邏輯 47
4.6.2 CDAC切換控制邏輯 48
4.6.3 正緣觸發正反器 49
4.6.4 切換開關 49
4.7 電容陣列 50
Chapter5 模擬結果與佈局 52
5.1 取樣保持電路模擬與佈局 52
5.2 比較器模擬與佈局 54
5.3 全電路模擬與佈局 57
5.3.1 靜態分析 57
5.3.2 動態分析 59
5.3.3 功耗分佈 63
5.3.4 提出之SAR ADC佈局 64
5.4 效能比較 65
Chapter6 結論與未來展望 66
6.1 結論 66
6.2 未來展望 67
參考文獻 68
[1]H. Chen, B. Wei, and D. Ma, Energy storage and management system with carbon nanotube supercapacitor and multidirectional power delivery capability for autonomous wireless sensor nodes, IEEE Trans. Power Electron., vol. 25, no. 12, pp. 28972909, Dec. 2010.
[2]B. Murmann, "ADC Performance Survey 1997-2024," [Online]. Available: https://github.com/bmurmann/ADC-survey.
[3]R. H. Walden, ‘‘Analog-to-digital converter survey and analysis,’’ IEEE J. Sel. Areas Commun., vol. 17, no. 4, pp. 539–550, Apr. 1999
[4]R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New York: IEEE Press, 2005.
[5]X. Tang et al., “Low-power SAR ADC design: Overview and survey of state-of-the-art techniques,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 6, pp. 2249–2262, Jun. 2022.
[6]P. Harpe, “Low-power SAR ADCs: Basic techniques and trends,” IEEE Open J. Solid-State Circuits Soc., vol. 2, pp. 73–81, 2022.
[7]R. Suarez, P. Gray, and D. Hodges, “All-MOS charge-redistribution analog-to-digital conversion techniques. II,” IEEE Journal of Solid-State Circuits, vol. 10, no. 6, pp. 379–385, 1975.
[8]B. Ginsburg and A. Chandrakasan, “An energy-efficient charge recycling approach for a sar converter with capacitive dac,” in 2005 IEEE International Symposium on Circuits and Systems, 2005, pp. 184–187 Vol. 1.
[9]C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 0.92 mW10-bit 50-MS/s SAR ADC in 0.13 m CMOS process,” in IEEE Symp. VLSI Circuits Dig., Jun. 2009, pp. 236–237.
[10] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010.
[11]V. Hariprasath, J. Guerber, S.-H. Lee and U.-K. Moon, "Merged capacitor switching based SAR ADC with highest switching energy efficiency", Electron. Lett., vol. 46, no. 9, pp. 620-621, Apr. 2010.
[12]Y. Zhu et al., “A 10-bit 100 MS/s reference-free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111–1121, Jun. 2010.
[13]C.-Y. Liou and C.-C. Hsieh, “A 2.4-to-5.2 fJ/conversion-step 10 b 0.5-to-4 MS/s SAR ADC with charge-average switching DAC in 90nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2013, pp. 280–281.
[14]Y. -H. Ou-Yang, C. -C. Wu and K. -T. Tang, "A 0.65-V 10-bit 320-kS/s SAR ADC with Charge Average and Skip Switching Algorithm," 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2018, pp. 98-101.
[15]J.-Y. Lin and C.-C. Hsieh, “A 0.3 V 10-bit 1.17 f SAR ADC with merge and split switching in 90 nm CMOS,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 62, no. 1, pp. 70–79, Jan. 2015.
[16]K.-T. Lin, Y.-W. Cheng, and K.-T. Tang, “A 0.5 V 1.28-MS/s 4.68-fJ/conversion-step SAR ADC with energy-efficient DAC and trilevel switching scheme,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 7, pp. 1441–1449, Apr. 2016.
[17]Z. Zhu and Y. Liang, “A 0.6-V 38-nW 9.4-ENOB 20-kS/s SAR ADC in 0.18-μm CMOS for medical implant devices,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 9, pp. 2167–2176, Sep. 2015.
[18]P.-C. Lee, J.-Y. Lin, and C.-C. Hsieh, “A 0.4 V 1.94 fJ/conversion-step 10 bit 750 kS/s SAR ADC with input-range-adaptive switching,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 12, pp. 2149–2157, Dec. 2016.
[19]J.-Y. Lin and C.-C. Hsieh, “A 0.3 V 10-bit SAR ADC with first 2-bit guess in 90-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 3, pp. 562–572, Mar. 2017.
[20]J. Song, J. Jun, and C. Kim, “A 0.5 V 10-bit 3 MS/s SAR ADC with adaptive-reset switching scheme and near-threshold voltage-optimized design technique,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 7, pp. 1184–1188, Jul. 2020.
[21]K. Yoshioka and H. Ishikuro, “A 13b SAR ADC with eye-opening VCO based comparator,” in Proc. 40th Eur. Solid State Circuits Conf. (ESSCIRC), Sep. 2014, pp. 411–414.
[22]K. Yoshioka, “VCO-based comparator: A fully adaptive noise scaling comparator for high-precision and low-power SAR ADCs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 29, no. 12, pp. 2143–2152, Dec. 2021.
[23]M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self calibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2008, pp. 269–272.
[24]M. Hesener, T. Eicher, A. Hanneberg, D. Herbison, F. Kuttner, and H. Wenske, “A 14b 4OMS/s redundant SAR ADC with 480 MHz clock in 0.13μ CMOS,” in IEEE Int. Solid-State Circuits Conference. Dig. Tech. Papers, 2007, pp. 248–600.
[25]P. Harpe, E. Cantatore, and A. V. Roermund, “A 10b/12b 40 kS/s SAR ADC with data-driven noise reduction achieving up to 10.1 b ENOB at 2.2 fJ/conversion-step,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3011–3018, Dec. 2013.
[26]M. Shim et al., “Edge-pursuit comparator: An energy-scalable oscillator collapse-based comparator with application in a 74.1 dB SNDR and 20 kS/s 15 b SAR ADC,” IEEE J. Solid-State Circuits, vol. 52, no. 4, pp. 1077–1090, Jan. 2017.
[27]Z. Ding, X. Zhou, and Q. Li, “A 0.5–1.1-V adaptive bypassing SAR ADC utilizing the oscillation-cycle information of a VCO-based comparator,” IEEE J. Solid-State Circuits, vol. 54, no. 4, pp. 968–977, Apr. 2019.
[28]S. Chang, X. Zhou, Z. Ding, and Q. Li, “A 12-bit 30ms/s SAR ADC with VCO-based comparator and split-and-recombination redundancy for bypass logic,” in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), May 2019, pp. 1–5.
[29]S. E. Hsieh and C. C. Hsieh, "A 0.44-fJ/Conversion-Step 11-Bit 600-kS/s SAR ADC with Semi-Resting DAC," IEEE J. Solid-State Circuits, vol. 53, no. 9, pp. 2595-2603, Sep. 2018.
[30]S.-E. Hsieh and C.-C. Hsieh, “A 0.3-v 0.705-fj/conversion-step 10-bit sar adc with a shifted monotonic switching procedure in 90-nm cmos,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 12, pp. 1171–1175, 2016.
[31]Z. Zhu et al., “A 14-bit 4-MS/s VCO-Based SAR ADC With Deep Metastability Facilitated Mismatch Calibration,” IEEE J. Solid-State Circuits, vol. 55, no. 6, pp. 1565-1576, Jun. 2020.
[32]X. Zhou, X. Gui, M. Gusev, N. Ackovska, Y. Zhang, and L. Geng, “A 12-bit 20-kS/s 640-nW SAR ADC with a VCDL-based open-loop time-domain comparator,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 2, pp. 359–363, 2022.
[33]D.-K. Jung, K. Seong, J.-S. Han, Y. Shim, and K.-H. Baek, “A 0.5 V 10 b 3 MS/s 2-then-1b/cycle SAR ADC with digital-based time-domain reference and dual-mode comparator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 3, pp. 909–913, Mar. 2022.
電子全文 電子全文(網際網路公開日期:20290703)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 低抖動小面積快速鎖定之全數位連續漸進式暫存器控制延遲鎖相迴路設計
2. 十位元10MS/s使用基於VCO比較器的次範圍循序漸進式類比數位轉換器
3. 基於兩步單斜率八位元類比數位轉換器應用的高動態範圍CMOS影像感測器
4. 應用於神經訊號記錄之可抗假象類比數位轉換器
5. 僅用一顆反相器為基底之運算放大器製作二階雜訊移頻暨逐次逼近暫存式類比數位轉換器
6. 使用次臨界區PVT偵測器之0.5/0.3 V低電壓高速輸入輸出緩衝器與低功耗之十位元每秒0.72億次轉換連續漸進式類比數位轉換器
7. 在40nm製程下的低功耗5GHz-4.3GHz class D VCO iSSPD 次取樣鎖相迴路
8. 基於改良式時域比較器之十位元連續漸進式類比數位轉換器
9. RISC-V數位信號處理器腦機介面應用
10. 用於植入式生醫晶片系統生理訊號擷取單元具偏移電壓校正雙級比較器之低功率十二位元每秒十萬次取樣切換逐次漸進式類比數位轉換器
11. 應用於生醫訊號感測之雙旁通窗逐漸逼近式轉換器暨適用於類比數位轉換器之具有自適應電源電流高效率輸入驅動器電路設計
12. 以低溫多晶矽薄膜電晶體製程設計之開迴路壓控振盪器類比數位訊號轉換器
13. 支援壓縮傳輸並偵測無效運算之低耗能邊緣計算用深度神經網路加速晶片硬體設計
14. 應用於穿戴式生醫電子之使用內置時脈產生器非同步全差動十一位元連續漸進式類比數位轉換器
15. 適用於生理訊號感測應用之雙旁通切換循序漸進式類比數位轉換器暨高速類比數位轉換器電路設計