跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 18:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥銘
研究生(外文):YEN-MING CHEN
論文名稱:以幾丁聚醣和界面活性劑改良二硫化鉬奈米花球並應用於多巴胺電化學感測器之研究
論文名稱(外文):Study on the Improvement of Molybdenum Disulfide Nanoflowers with Chitosan and Surfactant for Dopamine Electrochemical Sensing Applications
指導教授:莊豐任
指導教授(外文):Juang,Feng-Renn
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:120
中文關鍵詞:多巴胺感測器水熱成長法幾丁聚醣二硫化鉬電化學分析
外文關鍵詞:Dopamine SensorHydrothermal MethodCitosanMolybdenum disulfideElectrochemical analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:3
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用水熱法合成二硫化鉬奈米材料,並透過添加介面活性劑聚乙烯吡咯烷酮(PVP)和調整水熱法製程溫度與pH值等參數,進而對二硫化鉬結構大小和表面形貌產生改變。藉此提高比表面積以增加更多活性位點,改善多巴胺感測之表現。利用滴塗法將二硫化鉬奈米材料在ITO玻璃基板上形成薄膜,並透過幾丁聚醣改良薄膜的穩定性,提升薄膜重複量測之可能性,以製備出多巴胺電化學感測電極。最後透過電性分析與物性分析SEM、XRD、EDS找出具有最佳感測能力之二硫化鉬奈米結構,進而提升多巴胺感測電極之性能。
根據實驗結果,幾丁聚醣能讓薄膜穩定並可以使電極重複量測,最佳的幾丁聚醣量為0.4 mg/ml且不會影響電性。在製作二硫化鉬材料方面,添加0.3 g介面活性劑PVP並固定pH值為5與溫度為180 ℃的水熱法參數具有最佳感測能力和電性表現。由於其形貌表面有大量的奈米花球進而提升感測性能。氧化電流與靈敏度分別為4.891 mA、123.87 µA/mMcm2,決定係數(R2)為0.99016。並且在掃描速率分析及重現性都有良好的表現。研究證明此材料對多巴胺具有良好的感測能力。
This thesis synthesizes molybdenum disulfide (MoS2) nanomaterials using a hydrothermal method. By adding the surfactant polyvinylpyrrolidone (PVP) and adjusting hydrothermal process parameters such as temperature and pH value, the size and surface morphology of the MoS2 structures were altered. This increased the specific surface area to provide more active sites, thereby improving dopamine sensing performance. The MoS2 nanomaterials were deposited onto ITO glass substrates using a drop-coating method, and chitosan was used to enhance the stability of the film, improving its repeatability for measurements, to fabricate a dopamine electrochemical sensing electrode. Finally, electrical and physical analyses, including SEM, XRD, and EDS, were used to identify the MoS2 nanostructure with the best sensing capabilities, thereby enhancing the performance of the dopamine sensing electrode.
According to the experimental results, chitosan can stabilize the film and enable the electrode to be used for repeated measurements. The optimal chitosan concentration is 0.4 mg/ml, which does not affect the electrical properties. In the fabrication of MoS2, the best sensing capability and electrical performance were achieved with the hydrothermal method parameters of 0.3 g of the surfactant PVP, a fixed pH of 5, and a temperature of 180 °C. The presence of a large number of nanoflowers on the surface morphology enhances the sensing performance. The oxidation current and sensitivity were 4.891 mA and 123.87 µA/mMcm², respectively, with a determination coefficient (R²) of 0.99016. Additionally, the material showed good performance in scan rate analysis and reproducibility. The study demonstrates that this material exhibits excellent sensing performance towards dopamine.
論文審定書i
誌謝ii
摘要iii
Abstract iv
目錄v
圖目錄ix
表目錄xiv
第一章 緒論1
1-1前言1
1-2電化學感測器介紹1
1-3多巴胺介紹2
1-4材料介紹2
1-4-1 二硫化鉬(MoS2)2
1-4-2 幾丁聚醣(Citosan)4
1-5 論文架構4
第二章 理論分析5
2-1 奈米材料生長方法5
2-1-1 水熱合成法(Hydrothermal)6
2-1-2 超聲波法(Photoelectrochemical)7
2-2 奈米材料與感測材料成長機制7
2-2-1 奈米材料成長機制8
2-2-2 感測材料MoS2成長機制8
2-3 界面活性劑之影響9
2-4 感測器製備方式10
2-4-1滴塗法10
2-5 電化學量測原理11
2-6 電化學感測分析方法11
2-6-1 時變安培法12
2-6-2 循環伏安法12
2-7 電化學三電極系統14
2-7-1 輔助電極14
2-7-2 工作電極14
2-7-3 參考電極14
2-8 材料物性分析15
2-8-1 X光繞射儀(XRD)15
2-8-2 場發射掃描式電子顯微鏡(FE-SEM)16
2-8-3 能量色散X射線光譜(EDS)16
2-9多巴胺感測機制17
第三章 實驗與儀器介紹18
3-1 實驗藥品18
3-2 物性分析儀器20
3-2-1 場發射掃描式電子顯微鏡(FE-SEM)20
3-2-2 X光繞射儀(X-Ray Diffraction)21
3-2-3 能量色散X射線光譜儀(EDS)21
3-3 製程設備介紹21
3-3-1高溫爐、高壓釜及鐵氟龍杯22
3-3-2加熱磁力攪拌平台22
3-3-3 pH酸鹼度測試計22
3-3-4微量吸管移液器22
3-4 清洗設備介紹23
3-4-1超聲波震盪機23
3-4-2離心機23
3-5 電性分析儀器23
3-5-1 電化學工作站23
3-6 製程步驟24
3-6-1 玻璃基板清洗流程24
3-6-2 二硫化鉬水熱製備25
3-6-3 二硫化鉬感測電極製備26
第四章 結果與討論27
4-1 ITO玻璃基板對多巴胺感測電性分析27
4-2 滴塗前驅溶液對多巴胺感測影響28
4-2-1不同溶劑之影響28
4-2-2 添加幾丁聚醣之影響28
4-3二硫化鉬感測電極29
4-3-1二硫化鉬生長參數29
4-3-2 0.0g界面活性劑製備之二硫化鉬分析30
4-3-3 0.1g界面活性劑製備之二硫化鉬分析30
4-3-4 0.2g界面活性劑製備之二硫化鉬分析31
4-3-5 0.3g界面活性劑製備之二硫化鉬分析32
4-3-6 0.5g界面活性劑製備之二硫化鉬分析33
4-3-7 不同pH值製備之二硫化鉬分析34
4-4 綜合討論35
4-4-1水熱參數對形貌影響討論35
4-4-2水熱參數對電性影響討論36
4-5 對多巴胺靈敏度分析37
4-6 二硫化鉬物性分析38
4-7 電化學掃描速率分析38
4-8 干擾物分析39
4-9檢測極限40
4-10研究結果比較40
第五章 結論與未來展望42
5-1 實驗結論42
5-2 未來展望43
參考文獻44
附表52
附圖54
[1]Jingchao Chena,Ping He, et al. "Poly(β-cyclodextrin)/carbon quantum dots modified glassy carbon electrode: Preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan." Sensors and Actuators B: Chemical 252 (2017): 9–16.
[2]Jin-Long Chen,Xiu-Ping Yan, et al. "Graphene Oxide Based Photoinduced Charge Transfer Label-FreeNear-Infrared Fluorescent Biosensor for Dopamine." Analytical Chemistry (2011): 83 (22), 8787-8793.
[3]Wagner J. Barretoa, et al. "Raman, IR, UV–vis and EPR characterization of two copper dioxolene complexes derived from L-dopa and dopamine." Spectrochimica Acta Part A 71 (2008): 1419–1424.
[4]Brenda M.C. Costa, Aliceana A. Prado, et al. " Fast methods for simultaneous determination of arginine, ascorbic acid and aspartic acid by capillary electrophoresis." Talanta 204 (2019): 353-358.
[5]Wenyue Gao, Liming Qi, et al. "Efficient lucigenin/thiourea dioxide chemiluminescence system and its application for selective and sensitive dopamine detection." Sensors and Actuators B: Chemical 238 (2017): 468-472.
[6]Pauline Legrand, Rabah Gahoual, et al. " Comprehensive and quantitative stability study of ascorbic acid using capillary zone electrophoresis with ultraviolet detection and high-resolution tandem mass spectrometry." J Sep Sci 43(14) (2020): 2925-2935.
[7]Sankararao Mutyala, Jayaraman Mathiyarasu. " Preparation of graphene nanoflakes and its application for detection of hydrazine." Sensors and Actuators B: Chemical 210 (2015): 692-699.
[8]Ya Zhang, Peng Chen, et al. " Fe3O4 nanospheres on MoS2 nanoflake: Electrocatalysis and detection of Cr(VI) and nitrite." Journal of Electroanalytical Chemistry 761 (2016): 14-20.
[9]Rere Hu,Hao Gou, et al. "Highly selective detection of trace Cu2+ based on polyethyleneimine-reduced graphene oxide nanocomposite modified glassy carbon electrode. " Ionics 21(2015): 3125–3133.
[10] Hui Liu, Xing Su, et al. "A novel hydrogen peroxide biosensor based on immobilized hemoglobin in 3D flower-like MoS2 microspheres structure." Materials Letters 122 (2014): 182-185.
[11]Liwen Xing, and Zhanfang Ma. "A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid." Microchimica Acta 183 (2016): 257-263.
[12]Dapeng Li, Xueying Liu, et al. " Electrochemical sensor based on novel two-dimensional nanohybrids: MoS2 nanosheets conjugated with organic copper nanowires for simultaneous detection of hydrogen peroxide and ascorbic acid." Inorganic Chemistry Frontiers 5 (2018): 112-119.
[13]Ankita Sinha, Dhanjai, et al. " MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: A review." TrAC Trends in Analytical Chemistry 102 (2018): 75-90.
[14]Donita L Robinson, B Jill Venton, et al. "Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo." Clinical Chemistry 49:10 (2003): 1763-1773.
[15]Dongxue Han, Tingting Han, et al. " Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid with Chitosan-Graphene Modified Electrode." Electroanalysis 22 (2010): 2001-2008.
[16]Levy, Florence, and James M. Swanson. "Timing, space and ADHD: the dopamine theory revisited." Australian & New Zealand Journal of Psychiatry 35.4 (2001): 504-511.
[17]Jong-Hoon Kim, J. Auerbach, et al. " Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson''s disease." Nature 418 (2002): 50-56.
[18]Rudren Ganatra, and Qing Zhang. "Few-Layer MoS2: A Promising Layered Semiconductor." ACS Nano 8(5) (2014): 4074-4099.
[19]Jianling Wang, Lihua Sui, et al. " MoS2-based nanocomposites for cancer diagnosis and therapy." BioactiveMaterials 6 (2021): 4209-4242.
[20]Unni Krishnan, Manjot Kaur, et al. " A synoptic review of MoS2: Synthesis to applications." Superlattices and Microstructures 128 (2019): 274-297.
[21]Surya Veerendra Prabhakar Vattikuti, Chan Byon,and Chandragiri Venkata Reddy. "ZrO2/MoS2 heterojunction photocatalysts for efficient photocatalytic degradation of methyl orange." Electron. Mater. Lett. 12 (2016): 812-823.
[22]Xiwen Wang, Zhian Zhang, et al. "Morphology-controlled synthesis of MoS2 nanostructures with different lithium storage properties." Journal of Alloys and Compounds 600 (2014): 84-90.
[23]Eswaraiah Varrla, Claudia Backes, et al. "Large-Scale Production of Size-Controlled MoS2 Nanosheets by Shear Exfoliation." Chemistry of Materials 27(3) (2015): 1129-1139.
[24]Jun Chen, Jun Chen, et al. "Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation." Chemical Communications 16 (2002): 1722-1723.
[25]Lin Ma, Li-Mei Xu, et al. "Biopolymer-assisted hydrothermal synthesis of flower-like MoS2 microspheres and their supercapacitive properties." Materials Letters 132 (2014): 291-294.
[26]Majeti N.V Ravi Kumar. "A review of chitin and chitosan applications." Reactive and Functional Polymers 46 (2000): 1-27.
[27]Claire Chatelet, Odile Damour, and Alain Domard. "Influence of the degree of acetylation on some biological properties of chitosan films." Biomaterials 22(3) (2001): 261-268.
[28]楊正義, 陳俊和等人,"半導體奈米材料的製備、鑑定及應用",科儀新知第二十二卷第六期 90.6 :27-40。
[29]高逢時,《科學發展》2005年2月,386期,66 ~ 71頁。
[30]呂英治、洪敏雄,“奈米材料及製程介紹”,科儀新知第二十二卷第六期 90.6 :21-26。
[31]D. O’Hare. "Hydrothermal Synthesis." Encyclopedia of Materials: Science and Technology(Second Edition) (2001): 3989-3992.
[32]Jonathan N Coleman, Mustafa Lotya, et al. "Two-dimensional nanosheets produced by liquid exfoliation of layered materials." Science 331(2011): 568-571.
[33]Xiaolei Su, Du Wang, et al. "Preparation, microstructure, electromagnetic property and microwave absorption property of MoS2 nanopowder by hydrothermal method at various reaction temperatures." Journal of Materials Science: Materials in Electronics 29 (2018): 4020-4029.
[34]Xiaolei Su, Jing Ning, et al. "Flower-like MoS2 Nanospheres: A Promising Material with Good Microwave Absorption Property in the Frequency Range of 8.2–12.4 GHz." NANO 13(7) (2018):1850084.
[35]Yaru Cui, JiangshanHe, et al. "Preparation of MoS2 microspheres through surfactants-assisted hydrothermal synthesis using thioacetamide as reducing agent." Hydrometallurgy 164 (2016): 184-188
[36]MinLi, Donge Wang, et al. "Surfactant‐assisted hydrothermally synthesized MoS2 samples with controllable morphologies and structures for anthracene hydrogenation." Chinese Journal of Catalysis 38 (2017): 597-606.
[37]Yifang Zhao, Yuqian Gao, et al. "Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode." Talanta 66 (2005): 51-57.
[38]YiyueMa, ZiyiWei, et al. "Surface Oxygen Functionalization of Carbon Cloth toward Enhanced Electrochemical Dopamine Sensing."ACS Sustainable Chem.Eng. 9 (2021): 16063-16072.
[39]Abin Philip,and A. Ruban Kumar. "Solvent effects on the drop cast films of few layers of MoS2 primed by facile exfoliation to realize optical and structural properties." Inorganic Chemistry Communications 154 (2023): 110967.
[40]Xinchuan Liu, Tinglan Wang, et al. "Controllable synthesis of self-assembled MoS2 hollow spheres for photocatalytic application." Mater Electron 29 (2018):753–761.
[41]H. Razmi,and A. Azadbakht. "Electrochemical characteristics of dopamine oxidation at palladium hexacyanoferrate film, electroless plated on aluminum electrode." Electrochimica Acta 50 (2005): 2193-2201.
[42]Appan Roychoudhury, Suddhasatwa Basu, et al. "Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform." Biosensors and Bioelectronics 84 (2016): 72-81.
[43]Guangyu Zhao, Canlong Wu, et al. " PVP incorporated MoS2 as a Mg ion host with enhanced capacity and durability." Journal of Materials Chemistry A (2019): 4426-4430.
[44]YiqianYang, Yu Chen, et al. " Self-Assembly Preparation of Al2O3/MoS2 Bifunctional Catalyst for Highly Efficient Reduction of SO2 to Elemental Sulfur." Industrial & Engineering Chemistry Research 62(13) (2023): 5668-5676.
[45]George L. Donati. "POINT OF VIEW The Case of the Limit of Detection." Brazilian Journal of Analytical Chemistry 9(36) (2022): 8-9.
[46]Hyoung Soon Han, Heejin Seol, et al. "Electrochemical oxidation and determination of dopamine in the presence of AA using ferulic acid functionalized electrochemically reduced graphene." Sensors and Actuators B 204 (2014): 289-296.
[47]Irene Taurino, Sandro Carrara, et al. "Comparison of two different carbon nanotube-based surfaces with respect to potassium ferricyanide electrochemistry." Surface Science 606 (2012): 156-160.
[48]Shaopeng Qi, Bo Zhao, et al. " Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene." Electrochimica Acta 161 (2015): 395-402.
[49]Dhanush Shanbhag, et al. "Hydrothermally synthesized reduced graphene oxide and Sn doped manganese dioxide nanocomposites for supercapacitors and dopamine sensors." Materials Today Energy 4(2017): 66-74.
電子全文 電子全文(網際網路公開日期:20270816)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top