|
[1]“Global EV Outlook 2024 – Analysis,” IEA. Accessed: Jun. 19, 2024. [Online]. Available: https://www.iea.org/reports/global-ev-outlook-2024 [2]J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos, “Compute Trends Across Three Eras of Machine Learning,” in 2022 International Joint Conference on Neural Networks (IJCNN), Jul. 2022, pp. 1–8. doi: 10.1109/IJCNN55064.2022.9891914. [3]A. Shehabi et al., “United States Data Center Energy Usage Report,” LBNL--1005775, 1372902, Jun. 2016. doi: 10.2172/1372902. [4]R. Carter, A. Cruden, and P. J. Hall, “Optimizing for Efficiency or Battery Life in a Battery/Supercapacitor Electric Vehicle,” IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1526–1533, May 2012, doi: 10.1109/TVT.2012.2188551. [5]C. Jin, X. Bai, C. Yang, W. Mao, and X. Xu, “A review of power consumption models of servers in data centers,” Appl. Energy, vol. 265, p. 114806, May 2020, doi: 10.1016/j.apenergy.2020.114806. [6]J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, and J. Rebollo, “A Survey of Wide Bandgap Power Semiconductor Devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155–2163, May 2014, doi: 10.1109/TPEL.2013.2268900. [7]Y. Qin et al., “Thermal management and packaging of wide and ultra-wide bandgap power devices: a review and perspective,” J. Phys. Appl. Phys., vol. 56, no. 9, p. 093001, Feb. 2023, doi: 10.1088/1361-6463/acb4ff. [8]S. K. Mazumder et al., “Overview of Wide/Ultrawide Bandgap Power Semiconductor Devices for Distributed Energy Resources,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 11, no. 4, pp. 3957–3982, Aug. 2023, doi: 10.1109/JESTPE.2023.3277828. [9]J. W. Milligan, S. Sheppard, W. Pribble, Y.-F. Wu, G. Muller, and J. W. Palmour, “SiC and GaN Wide Bandgap Device Technology Overview,” in 2007 IEEE Radar Conference, Apr. 2007, pp. 960–964. doi: 10.1109/RADAR.2007.374395. [10]A. Hassan, A. Shakil Ahmed, and T. Sultana, “Determination of Characteristics and Performance Appraisal of GaN MESFET,” in 2018 International Conference on Innovations in Science, Engineering and Technology (ICISET), Oct. 2018, pp. 207–210. doi: 10.1109/ICISET.2018.8745661. [11]K. Hoo Teo et al., “Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects,” J. Appl. Phys., vol. 130, no. 16, p. 160902, Oct. 2021, doi: 10.1063/5.0061555. [12]Leroy S., “Silicon carbide: from gold rush to commodity?,” Yole Group. Accessed: Jun. 21, 2024. [Online]. Available: https://www.yolegroup.com/strategy-insights/silicon-carbide-from-gold-rush-to-commodity/ [13]A. M. S. Al-Bayati and M. A. Matin, “Behavior, Switching Losses, and Efficiency Enhancement Potentials of 1200 V SiC Power Devices for Hard-Switched Power Converters,” CPSS Trans. Power Electron. Appl., vol. 7, no. 2, pp. 113–129, Jun. 2022, doi: 10.24295/CPSSTPEA.2022.00011. [14]J. P. Kozak et al., “Stability, Reliability, and Robustness of GaN Power Devices: A Review,” IEEE Trans. Power Electron., vol. 38, no. 7, pp. 8442–8471, Jul. 2023, doi: 10.1109/TPEL.2023.3266365. [15]Shivani, D. Kaur, A. Ghosh, and M. Kumar, “A strategic review on gallium oxide based power electronics: Recent progress and future prospects,” Mater. Today Commun., vol. 33, p. 104244, Dec. 2022, doi: 10.1016/j.mtcomm.2022.104244. [16]Y. Hao, “Gallium oxide: promise to provide more efficient life,” J. Semicond., vol. 40, no. 1, p. 010301, Jan. 2019, doi: 10.1088/1674-4926/40/1/010301. [17]M. H. Wong, O. Bierwagen, R. J. Kaplar, and H. Umezawa, “Ultrawide-bandgap semiconductors: An overview,” J. Mater. Res., vol. 36, no. 23, pp. 4601–4615, Dec. 2021, doi: 10.1557/s43578-021-00458-1. [18]M. Higashiwaki et al., “Recent progress in Ga2O3 power devices,” Semicond. Sci. Technol., vol. 31, no. 3, p. 034001, Jan. 2016, doi: 10.1088/0268-1242/31/3/034001. [19]R. R. Sumathi, “Review—Status and Challenges in Hetero-epitaxial Growth Approach for Large Diameter AlN Single Crystalline Substrates,” ECS J. Solid State Sci. Technol., vol. 10, no. 3, p. 035001, Feb. 2021, doi: 10.1149/2162-8777/abe6f5. [20]J. Yang, K. Liu, X. Chen, and D. Shen, “Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors,” Prog. Quantum Electron., vol. 83, p. 100397, May 2022, doi: 10.1016/j.pquantelec.2022.100397. [21]T. P. Chow, I. Omura, M. Higashiwaki, H. Kawarada, and V. Pala, “Smart Power Devices and ICs Using GaAs and Wide and Extreme Bandgap Semiconductors,” IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 856–873, Mar. 2017, doi: 10.1109/TED.2017.2653759. [22]Y. Zhang, A. Dadgar, and T. Palacios, “Gallium nitride vertical power devices on foreign substrates: a review and outlook,” J. Phys. Appl. Phys., vol. 51, no. 27, p. 273001, Jun. 2018, doi: 10.1088/1361-6463/aac8aa. [23]Y. Zhang, W. Yue, G. Zhang, G. Gao, F. Wang, and X. Huang, “Study of the power-load characteristics in a widely adapted driver circuit for several types power semiconductor device,” in 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), Aug. 2021, pp. 843–848. doi: 10.1109/ICIEA51954.2021.9516149. [24]S. Roy, A. Bhattacharyya, P. Ranga, H. Splawn, J. Leach, and S. Krishnamoorthy, “High-k Oxide Field-Plated Vertical (001) β-Ga2O3 Schottky Barrier Diode With Baliga’s Figure of Merit Over 1 GW/cm2,” IEEE Electron Device Lett., vol. 42, no. 8, pp. 1140–1143, Aug. 2021, doi: 10.1109/LED.2021.3089945. [25]H. Liu et al., “10-kV Lateral β-Ga₂O₃ MESFETs With B Ion Implanted Planar Isolation,” IEEE Electron Device Lett., vol. 44, no. 7, pp. 1048–1051, Jul. 2023, doi: 10.1109/LED.2023.3279431. [26]K. D. Chabak et al., “Recessed-Gate Enhancement-Mode \beta -Ga2O3 MOSFETs,” IEEE Electron Device Lett., vol. 39, no. 1, pp. 67–70, Jan. 2018, doi: 10.1109/LED.2017.2779867. [27]A. K. Mondal, L. K. Ping, M. A. S. M. Haniff, R. Bahru, and M. A. Mohamed, “Recent Advancements in α-Ga2O3 Thin Film Growth for Power Semiconductor Devices via Mist CVD Method: A Comprehensive Review,” Cryst. Res. Technol., vol. 59, no. 3, p. 2300311, 2024, doi: 10.1002/crat.202300311. [28]“製品サービス,” 最先端GaO®パワー半導体を手掛けるFLOSFIA(フロスフィア). Accessed: Jun. 22, 2024. [Online]. Available: https://flosfia.com/products/ [29]Y. Gao et al., “Synthesis of n-type ZrO2 doped ε-Ga2O3 thin films by PLD and fabrication of Schottky diode,” J. Alloys Compd., vol. 900, p. 163120, Apr. 2022, doi: 10.1016/j.jallcom.2021.163120. [30]S. Zhou et al., “A High-Performance ε-Ga2O3-Based Deep-Ultraviolet Photodetector Array for Solar-Blind Imaging,” Materials, vol. 16, no. 1, Art. no. 1, Jan. 2023, doi: 10.3390/ma16010295. [31]J. Wang et al., “Pulsed X-Ray Detector Based on an Unintentionally-Doped High Resistivity ε-Ga₂O₃ Film,” IEEE Photonics Technol. Lett., vol. 35, no. 2, pp. 89–92, Jan. 2023, doi: 10.1109/LPT.2022.3224014. [32]A. Parisini et al., “Study of SnO/ɛ-Ga2O3 p–n diodes in planar geometry,” J. Vac. Sci. Technol. A, vol. 40, no. 4, p. 042701, Jun. 2022, doi: 10.1116/6.0001857. [33]W. Chen, H. Luo, Z. Chen, Y. Pei, G. Wang, and X. Lu, “First demonstration of hetero-epitaxial ε-Ga2O3 MOSFETs by MOCVD and a F-plasma surface doping,” Appl. Surf. Sci., vol. 603, p. 154440, Nov. 2022, doi: 10.1016/j.apsusc.2022.154440. [34]S. Leone et al., “Epitaxial growth of GaN/Ga2O3 and Ga2O3/GaN heterostructures for novel high electron mobility transistors,” J. Cryst. Growth, vol. 534, p. 125511, Mar. 2020, doi: 10.1016/j.jcrysgro.2020.125511. [35]Y. Zhuo, Z. Chen, W. Tu, X. Ma, Y. Pei, and G. Wang, “β-Ga2O3 versus ε-Ga2O3: Control of the crystal phase composition of gallium oxide thin film prepared by metal-organic chemical vapor deposition,” Appl. Surf. Sci., vol. 420, pp. 802–807, Oct. 2017, doi: 10.1016/j.apsusc.2017.05.241. [36]X. Xia et al., “Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition,” Appl. Phys. Lett., vol. 108, no. 20, p. 202103, May 2016, doi: 10.1063/1.4950867. [37]X. Cao et al., “Crystalline properties of ε-Ga2O3 film grown on c-sapphire by MOCVD and solar-blind ultraviolet photodetector,” Mater. Sci. Semicond. Process., vol. 123, p. 105532, Mar. 2021, doi: 10.1016/j.mssp.2020.105532. [38]P. Mazzolini et al., “Substrate-orientation dependence of β-Ga2O3 (100), (010), (001), and (2¯01) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE),” APL Mater., vol. 8, no. 1, p. 011107, Jan. 2020, doi: 10.1063/1.5135772. [39]K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “MBE grown Ga2O3 and its power device applications,” J. Cryst. Growth, vol. 378, pp. 591–595, Sep. 2013, doi: 10.1016/j.jcrysgro.2013.02.015. [40]L. Dimitrocenko, G. Strikis, B. Polyakov, L. Bikse, S. Oras, and E. Butanovs, “The Effect of a Nucleation Layer on Morphology and Grain Size in MOCVD-Grown β-Ga2O3 Thin Films on C-Plane Sapphire,” Materials, vol. 15, no. 23, Art. no. 23, Jan. 2022, doi: 10.3390/ma15238362. [41]C. W. Ahn, S. Park, M. S. Jeong, and E. K. Kim, “Defect dependence of electrical characteristics of β-Ga2O3 Schottky barrier diodes grown with hydride vapor phase epitaxy,” Mater. Sci. Semicond. Process., vol. 167, p. 107787, Nov. 2023, doi: 10.1016/j.mssp.2023.107787. [42]S. Müller, H. von Wenckstern, D. Splith, F. Schmidt, and M. Grundmann, “Control of the conductivity of Si-doped β-Ga2O3 thin films via growth temperature and pressure,” Phys. Status Solidi A, vol. 211, no. 1, pp. 34–39, 2014, doi: 10.1002/pssa.201330025. [43]Y. Xu et al., “Depletion-Mode β-Ga2O3 MOSFETs Grown by Nonvacuum, Cost-Effective Mist-CVD Method on Fe-Doped GaN Substrates,” IEEE Trans. Electron Devices, vol. 69, no. 3, pp. 1196–1199, Mar. 2022, doi: 10.1109/TED.2022.3143472. [44]J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull., vol. 3, no. 1, pp. 37–46, Jan. 1968, doi: 10.1016/0025-5408(68)90023-8. [45]M. Tsuno, M. Suga, M. Tanaka, K. Shibahara, M. Miura-Mattausch, and M. Hirose, “Physically-based threshold voltage determination for MOSFET’s of all gate lengths,” IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1429–1434, Jul. 1999, doi: 10.1109/16.772487. [46]Y. Lv et al., “Influence of gate recess on the electronic characteristics of β-Ga2O3 MOSFETs,” Superlattices Microstruct., vol. 117, pp. 132–136, May 2018, doi: 10.1016/j.spmi.2018.03.013. [47]G. Atmaca and H.-Y. Cha, “Normally-off recessed gate β-Ga2O3 MOSHFETs with a modulation-doped heterostructure back-barrier,” Phys. Scr., vol. 99, no. 3, p. 035901, Feb. 2024, doi: 10.1088/1402-4896/ad213f. [48]C. Joishi et al., “Deep-Recessed β-Ga₂O₃ Delta-Doped Field-Effect Transistors With In Situ Epitaxial Passivation,” IEEE Trans. Electron Devices, vol. 67, no. 11, pp. 4813–4819, Jan. 2020, doi: 10.1109/TED.2020.3023679. [49]V. Khandelwal et al., “Monolithic β-Ga2O3 NMOS IC based on heteroepitaxial E-mode MOSFETs,” Appl. Phys. Lett., vol. 122, no. 14, p. 143502, Apr. 2023, doi: 10.1063/5.0143315.
|