|
[1] Ehrlich M. (2009). DNA hypomethylation in cancer cells. Epigenomics, 1(2), 239–259. [2] Grossman, Robert L., Heath, Allison P., Ferretti, Vincent, Varmus, Harold E., Lowy, Douglas R., Kibbe, Warren A., Staudt, Louis M. (2016) Toward a Shared Vision for Cancer Genomic Data. New England Journal of Medicine375:12, 1109-1112. [3] Xu, Z., Langie, S. A., De Boever, P., Taylor, J. A., & Niu, L. (2017). RELIC: a novel dye-bias correction method for Illumina Methylation BeadChip. BMC genomics, 18(1), 4. [4] Niu, L., Xu, Z., & Taylor, J. A. (2016). RCP: a novel probe design bias correction method for Illumina Methylation BeadChip. Bioinformatics (Oxford, England), 32(17), 2659-2663. [5] Smyth G. K. (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology, 3, Article3. [6] Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 15(12), 550. [7] Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 187-202. [8] Snel, B., Lehmann, G., Bork, P., & Huynen, M. A. (2000). STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic acids research, 28(18), 3442–3444. [9] American Cancer Society. Cancer Statistics Center. http://cancerstatisticscenter.cancer.org. 05, 20, 2023. [10] Sharma, S., Kelly, T. K., & Jones, P. A. (2010). Epigenetics in cancer. Carcinogenesis, 31(1), 27–36. [11] Aran, D., Toperoff, G., Rosenberg, M., & Hellman, A. (2011). Replication timing-related and gene body-specific methylation of active human genes. Human molecular genetics, 20(4), 670–680. [12] Ball, M. P., Li, J. B., Gao, Y., Lee, J. H., LeProust, E. M., Park, I. H., Xie, B., Daley, G. Q., & Church, G. M. (2009). Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nature biotechnology, 27(4), 361–368. [13] Jjingo, D., Conley, A. B., Yi, S. V., Lunyak, V. V., & Jordan, I. K. (2012). On the presence and role of human gene-body DNA methylation. Oncotarget, 3(4), 462–474. [14] Kresovich, J. K., Xu, Z., O''Brien, K. M., Weinberg, C. R., Sandler, D. P., & Taylor, J. A. (2019). Methylation-Based Biological Age and Breast Cancer Risk. Journal of the National Cancer Institute, 111(10), 1051–1058. [15] Hoang, T. T., Sikdar, S., Xu, C. J., Lee, M. K., Cardwell, J., Forno, E., Imboden, M., Jeong, A., Madore, A. M., Qi, C., Wang, T., Bennett, B. D., Ward, J. M., Parks, C. G., Beane-Freeman, L. E., King, D., Motsinger-Reif, A., Umbach, D. M., Wyss, A. B., Schwartz, D. A., … London, S. J. (2020). Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study. The European respiratory journal, 56(3), 2000217. [16] Men, C., Chai, H., Song, X., Li, Y., Du, H., & Ren, Q. (2017). Identification of DNA methylation associated gene signatures in endometrial cancer via integrated analysis of DNA methylation and gene expression systematically. Journal of gynecologic oncology, 28(6), e83. [17] Liu, J., Wan, Y., Li, S., Qiu, H., Jiang, Y., Ma, X., Zhou, S., & Cheng, W. (2020). Identification of aberrantly methylated differentially expressed genes and associated pathways in endometrial cancer using integrated bioinformatic analysis. Cancer medicine, 9(10), 3522–3536. [18] Chia-Hsing Lin (2022). Analysis of correlation and pathway via integrated DNA methylation and RNA gene expression in endometrial cancer. [19] Cancer Genome Atlas Research Network, Kandoth, C., Schultz, N., Cherniack, A. D., Akbani, R., Liu, Y., Shen, H., Robertson, A. G., Pashtan, I., Shen, R., Benz, C. C., Yau, C., Laird, P. W., Ding, L., Zhang, W., Mills, G. B., Kucherlapati, R., Mardis, E. R., & Levine, D. A. (2013). Integrated genomic characterization of endometrial carcinoma. Nature, 497(7447), 67–73. [20] Cox, D. R., & Reid, N. (1987). Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society: Series B (Methodological), 49(1), 1-18. [21] Zhang, H., Huang, T., Ren, X., Fang, X., Chen, X., Wei, H., Sun, W., & Wang, Y. (2022). Integrated pan-cancer analysis of CSMD2 as a potential prognostic, diagnostic, and immune biomarker. Frontiers in genetics, 13, 918486. [22] Lédée, N., Munaut, C., Aubert, J., Sérazin, V., Rahmati, M., Chaouat, G., Sandra, O., & Foidart, J. M. (2011). Specific and extensive endometrial deregulation is present before conception in IVF/ICSI repeated implantation failures (IF) or recurrent miscarriages. The Journal of pathology, 225(4), 554–564. [23] He, X., Lei, S., Zhang, Q., Ma, L., Li, N., & Wang, J. (2020). Deregulation of cell adhesion molecules is associated with progression and poor outcomes in endometrial cancer: Analysis of The Cancer Genome Atlas data. Oncology letters, 19(3), 1906–1914. [24] Liu, J., Mei, J., Li, S., Wu, Z., & Zhang, Y. (2020). Establishment of a novel cell cycle-related prognostic signature predicting prognosis in patients with endometrial cancer. Cancer cell international, 20, 329. [25] Wu, H., Feng, H., Miao, X., Ma, J., Liu, C., Zhang, L., & Yang, L. (2022). Construction and validation of a prognostic model based on 11 lymph node metastasis-related genes for overall survival in endometrial cancer. Cancer medicine, 11(23), 4641–4655. [26] Tuerxun, X., Abudumijiti, H., Fen, G. C., & Hasimu, A. (2019). The functional role of RNF113A in cervical carcinogenesis. International journal of clinical and experimental pathology, 12(9), 3570–3582. [27] Li, H., Sun, L., Zhuang, Y., Tian, C., Yan, F., Zhang, Z., Hu, Y., & Liu, P. (2022). Molecular mechanisms and differences in lynch syndrome developing into colorectal cancer and endometrial cancer based on gene expression, methylation, and mutation analysis. Cancer causes & control : CCC, 33(4), 489–501. [28] Sak, M. E., Alanbay, I., Rodriguez, A., Gokaslan, T., Borahay, M., Shureiqi, I., & Kilic, G. S. (2016). The role of 15-lipoxygenase-1 expression and its potential role in the pathogenesis of endometrial hyperplasia and endometrial adenocarcinomas. European journal of gynaecological oncology, 37(1), 36–40. [29] Sun, X., Yang, S., Feng, X. et al. (2020). The modification of ferroptosis and abnormal lipometabolism through overexpression and knockdown of potential prognostic biomarker perilipin2 in gastric carcinoma. Gastric Cancer 23, 241–259. [30] Yu, S.-H., Cai, J.-H., Chen, D.-L., Liao, S.-H., Lin, Y.-Z., Chung, Y.-T., Tsai, J. J. P., et al. (2021). LASSO and Bioinformatics Analysis in the Identification of Key Genes for Prognostic Genes of Gynecologic Cancer. Journal of Personalized Medicine, 11(11), 1177. MDPI AG. [31] Sun, Y., Xiaoyan, H., Yun, L., Chaoqun, L., Jialing, W., Liu, Y., Yingqi, Z., Peipei, Y., Junjun, P., & Yuanming, L. (2019). Identification of Key Candidate Genes and Pathways for Relationship between Ovarian Cancer and Diabetes Mellitus Using Bioinformatical Analysis. Asian Pacific journal of cancer prevention : APJCP, 20(1), 145–155. [32] Jiao, Y., Widschwendter, M., & Teschendorff, A. E. (2014). A systems-level integrative framework for genome-wide DNA methylation and gene expression data identifies differential gene expression modules under epigenetic control. Bioinformatics (Oxford, England), 30(16), 2360–2366.
|