|
[1] M. Arav, F. J. Hall, H. van der Holst, Z. Li, A. Mathivanan, J. Pan, H. Xu, Z. Yang. Advances on similarity via transversal intersection of manifolds. Linear Algebra and its Applications, 688:1--20, 2024. [2] W. Barrett, S. Butler, S. M. Fallat, H. T. Hall, L. Hogben, J. C.-H. Lin, B. L. Shader, M. Young. The inverse eigenvalue problem of a graph: Multiplicities and minors. Journal of Combinatorial Theory, Series B, 142:276--306, 2020. [3] T. Britz, J. J. McDonald, D. D. Olesky, P. van den Driessche. Minimal spectrally arbitrary sign patterns. SIAM Journal on Matrix Analysis and Applications, 26-1:257--271, 2004. [4] M. S. Cavers, K. Vander Meulen. Spectrally and inertially arbitrary sign patterns. Linear Algebra and its Applications, 394:53--72, 2005. [5] A. Daniilidis, J. Malick, H. Sendov. Spectral (isotropic) manifolds and their dimension. Journal d''Analyse Mathématique, 128:369--397, 2016. [6] J. H. Drew, C. R. Johnson, D. D. Olesky, P. van den Driessche. Spectrally arbitrary patterns. Linear Algebra and its Applications, 308:121--137, 2000. [7] S. M. Fallat, H. T. Hall, J. C.-H. Lin, B. L. Shader. The bifurcation lemma for strong properties in the inverse eigenvalueproblem of a graph. Linear Algebra and its Applications, 648:70--87, 2022. [8] P. M. Gadea, J. Muñoz Masqué, I. V. Mykytyuk. Analysis and Algebra on Differentiable Manifolds. Springer Netherlands, 2nd edition, 2013. [9] C. Garnett, B. L. Shader. The Nilpotent-Centralizer Method for spectrally arbitrary patterns. Linear Algebra and its Applications, 438:3836--3850, 2013. [10] H. van der Holst, L. Lovász, A. Schrijver. The Colin de Verdière graph parameter, in: Graph Theory and Computational Biology. Bolyai Socielty Mathematical Studies, 29--85, 1999.
|