Agarwal, U. P., Ralph, S. A., Baez, C., Reiner, R. S., & Verrill, S. P. (2017). Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose, 24(5), 1971-1984.
Agarwal, U. P., Reiner, R. R., & Ralph, S. A. (2013). Estimation of Cellulose Crystallinity of Lignocelluloses Using Near-IR FT-Raman Spectroscopy and Comparison of the Raman and Segal-WAXS Methods. Journal of Agricultural and Food Chemistry, 61(1), 103-113.
Ahmad, D., van den Boogaert, I., Miller, J., Presswell, R., & Jouhara, H. (2018). Hydrophilic and hydrophobic materials and their applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(22), 2686-2725.
Carrillo-Varela, I., Mendonça, R., Ago, M., & Rojas, O. (2018). Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose, 25.
Ding, L., He, L., Wang, Y., Zhao, X., Ma, H., Luo, Y., Guan, F., & Xiong, Y. (2023). Research progress and challenges of composite wound dressings containing plant extracts. Cellulose, 30(18), 11297-11322.
Fang, Y., He, X., Zhou, Y., & Zhou, C. (2023). Multiscale anti-disturbance Characterization of nanocellulose concrete. Construction and Building Materials, 408, 133722.
Forsman, N., Johansson, L.-S., Koivula, H., Tuure, M., Kääriäinen, P., & Österberg, M. (2020). Open coating with natural wax particles enables scalable, non-toxic hydrophobation of cellulose-based textiles. Carbohydrate Polymers, 227, 115363.
Freitas, P. A. V., Santana, L. G., González-Martínez, C., & Chiralt, A. (2024). Combining subcritical water extraction and bleaching with hydrogen peroxide to obtain cellulose fibres from rice straw. Carbohydrate Polymer Technologies and Applications, 7, 100491.
Hayyan, M., Looi, C. Y., Hayyan, A., Wong, W. F., & Hashim, M. A. (2015). In vitro and In vivo toxicity profiling of ammonium-based deep eutectic solvents. PLOS ONE, 10(2), e0117934.
Hong, S., Song, Y., Yuan, Y., Lian, H., & Liimatainen, H. (2020). Production and characterization of lignin containing nanocellulose from luffa through an acidic deep eutectic solvent treatment and systematic fractionation. Industrial Crops and Products, 143, 111913.
Hoo, D. Y., Low, Z. L., Low, D. Y. S., Tang, S. Y., Manickam, S., Tan, K. W., & Ban, Z. H. (2022). Ultrasonic cavitation: An effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose. Ultrasonics Sonochemistry, 90, 106176.
Jiang, B., Chen, C., Liang, Z., He, S., Kuang, Y., Song, J., Mi, R., Chen, G., Jiao, M., & Hu, L. (2020). Lignin as a wood-Inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement. Advanced Functional Materials, 30(4), 1906307.
Jiang, J., Zhu, Y., & Jiang, F. (2021). Sustainable isolation of nanocellulose from cellulose and lignocellulosic feedstocks: Recent progress and perspectives. Carbohydrate Polymers, 267, 118188.
Jingyu, Z., Li, S., Yao, L., Yi, Y., Shen, L., Li, Z., & Qiu, H. (2023). Responsive switchable deep eutectic solvents: A review. Chinese Chemical Letters, 34(5), 107750.
Jungang, J., Carrillo-Enríquez, N. C., Oguzlu, H., Han, X., Bi, R., Saddler, J. N., Sun, R.-C., & Jiang, F. (2020). Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp. Carbohydrate Polymers, 247, 116727.
Kibria, M. G., Paul, U. K., Hasan, A., Mohtasim, M. S., Das, B. K., & Mourshed, M. (2024). Current prospects and challenges for biomass energy conversion in Bangladesh: Attaining sustainable development goals. Biomass and Bioenergy, 183, 107139.
Kim, H. K., & Lee, H. K. (2010). Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Applied Acoustics, 71(7), 607-615.
Kärkäs, M. D., Matsuura, B. S., Monos, T. M., Magallanes, G., & Stephenson, C. R. J. (2016). Transition-metal catalyzed valorization of lignin: the key to a sustainable carbon-neutral future. Organic & Biomolecular Chemistry, 14(6), 1853-1914.
Lal, R. (2005). World crop residues production and implications of its use as a biofuel. Environment International, 31(4), 575-584.
Le, H. A., Khoi, N. Q., & Mallick, J. (2022). Integrated emission inventory and modelling to assess the distribution of particulate matters from rice straw open burning in Hanoi, Vietnam. Atmospheric Pollution Research, 13(5), 101416.
Liu, X., Sun, H., Mu, T., Fauconnier, M. L., & Li, M. (2023). Preparation of cellulose nanofibers from potato residues by ultrasonication combined with high-pressure homogenization. Food Chemistry, 413, 135675.
Liu, Y., Xu, X., Gao, M., Guo, Y., Xu, T., Jiang, H., Zhang, Z., Ji, X., & Si, C. (2024). Nanocellulose-based functional materials for physical, chemical, and biological sensing: A review of materials, properties, and perspectives. Industrial Crops and Products, 212, 118326.
Lorenci Woiciechowski, A., Dalmas Neto, C. J., Porto de Souza Vandenberghe, L., de Carvalho Neto, D. P., Novak Sydney, A. C., Letti, L. A. J., Karp, S. G., Zevallos Torres, L. A., & Soccol, C. R. (2020). Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances. Bioresource Technology, 304, 122848.
Malaeke, H., Housaindokht, M. R., Monhemi, H., & Izadyar, M. (2018). Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification. Journal of Molecular Liquids, 263, 193-199.
Mbous, Y. P., Hayyan, M., Wong, W. F., Hayyan, A., Looi, C. Y., & Hashim, M. A. (2020). Simulation of Deep Eutectic Solvents’ Interaction with membranes of cancer cells using COSMO-RS. The Journal of Physical Chemistry B, 124(41), 9086-9094.
Misaka, M., Teshima, H., Hirokawa, S., Li, Q.-Y., & Takahashi, K. (2024). Nano-captured water affects the wettability of cellulose nanofiber films. Surfaces and Interfaces, 46, 103923.
Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941.
Nechyporchuk, O., Belgacem, M. N., & Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93, 2-25.
Pawcenis, D., Leśniak, M., Szumera, M., Sitarz, M., & Profic-Paczkowska, J. (2022). Effect of hydrolysis time, pH and surfactant type on stability of hydrochloric acid hydrolyzed nanocellulose. International Journal of Biological Macromolecules, 222, 1996-2005.
Pradhan, D., Jaiswal, A. K., & Jaiswal, S. (2022). Emerging technologies for the production of nanocellulose from lignocellulosic biomass. Carbohydrate Polymers, 285, 119258.
Qian, Y., Qiu, X., & Zhu, S. (2015). Lignin: A nature-inspired sun blocker for broad-spectrum sunscreens. Green Chemistry, 17(1), 320-324.
Radošević, K., Cvjetko Bubalo, M., Gaurina Srček, V., Grgas, D., Landeka Dragičević, T., & Radojčić Redovniković, I. (2015). Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicology and Environmental Safety, 112, 46-53.
Sarangi, P. K., Srivastava, R. K., Sahoo, U. K., Singh, A. K., Parikh, J., Bansod, S., Parsai, G., Luqman, M., Shadangi, K. P., Diwan, D., Lanterbecq, D., & Sharma, M. (2024). Biotechnological innovations in nanocellulose production from waste biomass with a focus on pineapple waste. Chemosphere, 349, 140833.
Serrano, M., Coluccia, F., Torres, M., L''Haridon, F., & Métraux, J. P. (2014). The cuticle and plant defense to pathogens. Front Plant Sci, 5, 274.
Shojaeiarani, J., Bajwa, D., & Holt, G. (2020). Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion. Nanocomposites, 6(1), 41-46.
Sirviö, J. A., Ismail, M. Y., Zhang, K., Tejesvi, M. V., & Ämmälä, A. (2020). Transparent lignin-containing wood nanofiber films with UV-blocking, oxygen barrier, and anti-microbial properties [10.1039/C9TA13182E]. Journal of Materials Chemistry A, 8(16), 7935-7946.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass, in: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory.
Song, G., Huang, D., Li, A., Li, R., Hu, S., Xu, K., Ren, Q., Han, H., Wang, Y., Su, S., & Xiang, J. (2024). Quick measurement method of three components in lignocellulosic biomass based on kinetic mechanism analysis of PT-TGA. Fuel, 367, 131521.
Song, X., Zhu, Z., Tang, S., Chi, X., Han, G., & Cheng, W. (2023). Efficient extraction of nanocellulose from lignocellulose using aqueous butanediol fractionation to improve the performance of waterborne wood coating. Carbohydrate Polymers, 322, 121347.
Sun, R., Yang, C., Fang, Z., Zhu, N., Zheng, M., Guo, K., & Zhang, T. (2024). Selective C–C and C–O bond cleavage strategies for the thermochemical upgrading of (hemi)cellulosic biomass. Applied Catalysis B: Environment and Energy, 344, 123599.
Suopajärvi, T., Ricci, P., Karvonen, V., Ottolina, G., & Liimatainen, H. (2019). Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues. Industrial Crops and Products, 145, 111956.
Suopajärvi, T., Ricci, P., Karvonen, V., Ottolina, G., & Liimatainen, H. (2020). Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues. Industrial Crops and Products, 145, 111956.
Taglieri, L., Spera, A., & Gallifuoco, A. (2024). Green recovery of platform chemicals from hydrothermal carbonization process water. Bioresource Technology Reports, 26, 101815.
Tan, K., Heo, S., Foo, M., Chew, I. M., & Yoo, C. (2019). An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability. Science of The Total Environment, 650, 1309-1326.
Wang, P. W., Hung, Y. C., Lin, T. Y., Fang, J. Y., Yang, P. M., Chen, M. H., & Pan, T. L. (2019). Comparison of the biological impact of UVA and UVB upon the skin with functional proteomics and immunohistochemistry. Antioxidants (Basel), 8(12).
Wang, S., Zou, Q., Zhang, L., Zheng, W., Huang, X., & Zhang, J. (2023). A new nanocellulose prepared from waste coconut shell fibers based on a novel ultrasonic – Active agent combination method: Preparation principle and performances in cement matrix. Industrial Crops and Products, 197, 116607.
Wang, Z., Xu, J., Lu, Y., Hu, L., Fan, Y., Ma, J., & Zhou, X. (2017). Preparation of 3D printable micro/nanocellulose-polylactic acid (MNC/PLA) composite wire rods with high MNC constitution. Industrial Crops and Products, 109, 889-896.
Yang, X., Xie, H., Du, H., Zhang, X., Zou, Z., Zou, Y., Liu, W., Lan, H., Zhang, X., & Si, C. (2019). Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-Catalyzed deep eutectic solvent system. ACS Sustainable Chemistry & Engineering, 7(7), 7200-7208.
Zdanowicz, M., Wilpiszewska, K., & Spychaj, T. (2018). Deep eutectic solvents for polysaccharides processing. A review. Carbohydr Polym, 200, 361-380.
Zhang, C.-W., Xia, S.-Q., & Ma, P.-S. (2016). Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technology, 219, 1-5.
Zhang, J., Huang, F., Wu, Y., Fu, T., Huang, B., Liu, W., & Qiu, R. (2022). Mechanical properties and interface improvement of bamboo cellulose nanofibers reinforced autoclaved aerated concrete. Cement and Concrete Composites, 134, 104760.
Zhang, Q., De Oliveira Vigier, K., Royer, S., & Jérôme, F. (2012). Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 41(21), 7108.
Zhang, S., Zhang, X., Wan, X., Zhang, H., & Tian, J. (2023). Fabrication of biodegradable films with UV-blocking and high-strength properties from spent coffee grounds. Carbohydrate Polymers, 321, 121290.
Zulkefli, S., Abdulmalek, E., & Abdul Rahman, M. B. (2017). Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renewable Energy, 107, 36-41.
李明儒,2022,利用多尺度遙測技術分析臺灣稻稈燃燒碳排放,國立屏東科技大學森林系碩士班,碩士論文。陳巧萍,2020,以溶劑熱法搭配深共熔溶劑預處理稻稈製備奈米纖維素,國立中山大學環境工程研究所碩士班,碩士論文。陳俊瑋,2017,酸水解時間對不同木質纖維原料製備奈米結晶纖維素之影響,國立臺灣大學森林環境暨資源學研究所碩士班,碩士論文。蘇奕綾, 楊錫賢, 何燕婷, 丁月琴,簡淑美,2006,稻草燃燒期間大氣中多環芳香烴化合物來源與粒徑分佈研究,朝陽科技大學環境工程與管理所碩士班,碩士論文。