跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥瑜
研究生(外文):Yen-Yu Chen
論文名稱:以鹼性深共熔溶劑預處理稻稈結合超音波破碎製備奈米纖維素
論文名稱(外文):Preparation of nanocellulose by pretreating rice straw with alkaline deep eutectic solvent combined with ultrasonic crushing
指導教授:張耿崚
指導教授(外文):Chang,Ken-Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:107
中文關鍵詞:奈米纖維素超音波破碎鹼性深共熔溶劑增加水泥強度抗紫外光
外文關鍵詞:Cellulose nanofiberUltrasonic fragmentationAlkaline deep eutectic solventIncreased cement strengthUV resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米纖維素(Cellulose nanofiber, CNF)是一種由纖維素製成的奈米材料,具有高強度、輕量、可再生等優點,近年來在多個領域展現出廣泛的應用潛力,但傳統的生產方式是以酸進行預處理,因此生產之餘亦會產生二次汙染。因此本研究主要目的為探討設計綠色且高效的奈米纖維素製備技術,以解決稻稈等農業廢棄物所造成的環境問題。實驗使用鹼性深共熔溶劑(Deep Eutectic Solvent, DES),成分為甘油-碳酸鉀(Gly-K2CO3), 於90℃加熱以降低其黏性。為找出最佳預處理條件,
本研究採用Design Expert 軟體的Box Behnken 設計方法,設定的參數包括DES體積濃度、反應時間和超音波破碎時間。在預處理後,稻稈進行漂白脫色,使用複合型方式(5%雙氧水加4%氫氧化鈉溶劑)進行2小時的反應,並使用濾網進行過濾收集。收集後將處理過後的樣品放置於超音波中進行破碎,最終製得CNF液體。之後,將液體進行冷凍乾燥後即可得到粉末,以便保存。研究中經過預處理的稻稈進行化學成分分析、X光繞射分析、環境掃描式電子顯微鏡及傅立葉轉換紅外光譜分析。而CNF則進行粒徑分析、化學成分分析、穿透式電子顯微鏡及傅立葉轉換
紅外光譜分析。結果顯示DES體積濃度對於木質素的去除有顯著影響,最有利於進行CNF的製備,其中最佳的反應濃度為10%,且反應時間越長,木質素去除效果也會越佳。後續也進行CNF添加於不同材料的實驗,例如混合聚乳酸(Polylactic Acid, PLA)以及水泥進行前後性質變化的。研究顯示CNF與聚乳酸有良好的相容性,並且具備阻擋紫外光的效果。另外,混合0.1%的CNF進入水泥中也可以有效增強水泥受力的均勻性,結果顯示平均抗壓強度可提高6.4%。分析結果說明,本研究不僅成功開發出一種製備CNF的有效方法,亦展示了其在實際應用中的潛力。
Cellulose nanofiber (CNF) is a nanomaterial made from cellulose, characterized by high strength, light weight, and renewability. In recent years, it has shown great potential for applications in various fields. However, traditional production methods involve acid pretreatment, which results in secondary pollution. Therefore, this study aims to design a
green and efficient method for preparing CNF to address environmental issues caused by agricultural waste such as rice straw. The experiment used an alkaline deep eutectic solvent (DES), composed of glycerol and potassium carbonate (Gly-K₂CO₃), heated at 90°C to reduce viscosity. To determine the optimal pretreatment conditions, the Box Behnken design method in the Design Expert software was employed, with parameters
including DES volume concentration, reaction time, and ultrasonic crushing time. After pretreatment, the rice straw was bleached and decolorized using a composite method (5% hydrogen peroxide and 4% sodium hydroxide solution) for 2 hours, and filtered to collect
the treated samples. The collected samples were then subjected to ultrasonic crushing to produce CNF liquid. The liquid was freeze-dried to obtain powder for storage. The study included chemical composition analysis, X-ray diffraction analysis, environmental scanning electron microscopy, and Fourier-transform infrared spectroscopy (FTIR) of the
pretreated rice straw. CNF underwent particle size analysis, chemical composition analysis, transmission electron microscopy, and FTIR analysis. The results indicated that DES volume concentration significantly affected lignin removal, facilitating CNF preparation. The optimal reaction concentration was found to be 10%, with longer reaction times enhancing lignin removal. Subsequent experiments involved adding CNF to various materials, such as polylactic acid (PLA) and cement, to observe changes in
properties. The study demonstrated good compatibility between CNF and PLA, as well as UV-blocking effects. Additionally, incorporating 0.1% CNF into cement effectively improved the uniformity of cement stressdistribution, with an average compressive strength increase of 6.4%. The analysis results indicate that this study successfully developed an effective method for preparing CNF, showcasing its potential for practical
applications.
論文審定書 i
中文摘要 ii
Abstract iii
圖目錄 viii
表目錄 x
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 生質材料 3
2.2 材料成分 4
2.2.1 木質素 5
2.2.2 纖維素 7
2.2.3 半纖維素 7
2.2.4 生質材料需要克服的困難 8
2.3 稻稈 8
2.4 奈米纖維素 9
2.4.1 奈米纖維素製備方式 9
2.4.2 奈米纖維素的特性及應用 14
2.5 深共熔溶劑 (Deep eutectic solvents, DES) 16
2.5.1 DES在生質材料上的預處理及應用 18
2.5.2 鹼性DES 19
2.5.3 鹼性DES結合超音波破碎 20
第三章 實驗材料、設備及方法 22
3.1 實驗流程圖 22
3.2 實驗材料 23
3.3 實驗儀器 24
3.4 稻稈種類與來源 25
3.5 生質材料之預處理與奈米纖維素的製備 25
3.5.1 生質材料之預處理 25
3.5.2 材料脫色漂白 26
3.5.3 奈米纖維素的製備 26
3.6 生質材料化學成分分析方法 28
3.6.1 樣品的分析及水解 28
3.6.2 不可溶解性木質素(Acid Insoluble lignin, AIL)之分析 28
3.6.3 可溶解性木質素(Acid Soluble lignin, ASL)之分析 29
3.6.4 纖維素與半纖維素之分析 31
3.7 顯著性差異分析 32
3.8 樣品結構特徵分析之儀器 33
3.8.1 傅立葉轉換紅外光譜儀 ( Fourier-transform infrared spectroscopy, FTIR ) 33
3.8.2 X光繞射分析儀(X-ray diffraction, XRD) 33
3.8.3 環境掃描式電子顯微鏡(Enviornment scanning electron microscope, SEM) 34
3.8.4 穿透式電子顯微鏡(Transmission electon microscope, TEM) 34
3.8.5 熱重分析(Thremogravimetric analysis, TGA) 35
3.8.6 動態光散射粒徑分析及界達電位量測儀(Dynamiclight scattering, DLS & zeta potential) 35
3.8.7 接觸角量測儀(Contact angle meter, CAM) 36
3.8.8 流度測驗儀 36
3.8.9 固體波速傳遞測試儀(Solid Wave Velocity Tester) 37
3.8.10 混凝土抗壓試驗機(Concrete Compressive Strength Testing Machine, CCSTM) 37
第四章 結果討論 39
4.1 稻稈之組成 39
4.2 實驗器具測試 39
4.3 DES預處理結合超音波結果 42
4.3.1 反應曲面法(產率) 42
4.3.2 反應曲面法(粒徑) 49
4.4 漂白脫色及純化 55
4.4.1 漂白之目的及溶劑配製 55
4.4.2 漂白後之純化效果 56
4.5 預處理前後稻稈表面之型態與結構特徵分析 58
4.5.1 表面型態與特徵分析(SEM) 58
4.5.2 結晶與結晶度分析(XRD) 60
4.5.3 表面官能基分析(FTIR) 62
4.6 奈米纖維素(CNF)的製備 64
4.6.1 粒徑分析 64
4.6.2 CNF表面特徵型態分析(TEM) 67
4.6.3 CNF表面官能基分析(FTIR) 69
4.7 CNF應用分析 70
4.7.1 熱重損失分析(TGA) 70
4.7.2 紫外光阻隔率(UV-blocking) 72
4.7.3 接觸角測試(Contect angle meter, CAM) 75
4.7.4 泥漿方塊試體波速測試 78
4.7.5 泥漿方塊試體抗壓強度測試 79
4.8 二氧化碳排放量的比較 86
4.9 結論 88
4.10 未來展望 89
第五章 參考文獻 90
Agarwal, U. P., Ralph, S. A., Baez, C., Reiner, R. S., & Verrill, S. P. (2017). Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose, 24(5), 1971-1984.
Agarwal, U. P., Reiner, R. R., & Ralph, S. A. (2013). Estimation of Cellulose Crystallinity of Lignocelluloses Using Near-IR FT-Raman Spectroscopy and Comparison of the Raman and Segal-WAXS Methods. Journal of Agricultural and Food Chemistry, 61(1), 103-113.
Ahmad, D., van den Boogaert, I., Miller, J., Presswell, R., & Jouhara, H. (2018). Hydrophilic and hydrophobic materials and their applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(22), 2686-2725.
Carrillo-Varela, I., Mendonça, R., Ago, M., & Rojas, O. (2018). Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose, 25.
Ding, L., He, L., Wang, Y., Zhao, X., Ma, H., Luo, Y., Guan, F., & Xiong, Y. (2023). Research progress and challenges of composite wound dressings containing plant extracts. Cellulose, 30(18), 11297-11322.
Fang, Y., He, X., Zhou, Y., & Zhou, C. (2023). Multiscale anti-disturbance Characterization of nanocellulose concrete. Construction and Building Materials, 408, 133722.
Forsman, N., Johansson, L.-S., Koivula, H., Tuure, M., Kääriäinen, P., & Österberg, M. (2020). Open coating with natural wax particles enables scalable, non-toxic hydrophobation of cellulose-based textiles. Carbohydrate Polymers, 227, 115363.
Freitas, P. A. V., Santana, L. G., González-Martínez, C., & Chiralt, A. (2024). Combining subcritical water extraction and bleaching with hydrogen peroxide to obtain cellulose fibres from rice straw. Carbohydrate Polymer Technologies and Applications, 7, 100491.
Hayyan, M., Looi, C. Y., Hayyan, A., Wong, W. F., & Hashim, M. A. (2015). In vitro and In vivo toxicity profiling of ammonium-based deep eutectic solvents. PLOS ONE, 10(2), e0117934.
Hong, S., Song, Y., Yuan, Y., Lian, H., & Liimatainen, H. (2020). Production and characterization of lignin containing nanocellulose from luffa through an acidic deep eutectic solvent treatment and systematic fractionation. Industrial Crops and Products, 143, 111913.
Hoo, D. Y., Low, Z. L., Low, D. Y. S., Tang, S. Y., Manickam, S., Tan, K. W., & Ban, Z. H. (2022). Ultrasonic cavitation: An effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose. Ultrasonics Sonochemistry, 90, 106176.
Jiang, B., Chen, C., Liang, Z., He, S., Kuang, Y., Song, J., Mi, R., Chen, G., Jiao, M., & Hu, L. (2020). Lignin as a wood-Inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement. Advanced Functional Materials, 30(4), 1906307.
Jiang, J., Zhu, Y., & Jiang, F. (2021). Sustainable isolation of nanocellulose from cellulose and lignocellulosic feedstocks: Recent progress and perspectives. Carbohydrate Polymers, 267, 118188.
Jingyu, Z., Li, S., Yao, L., Yi, Y., Shen, L., Li, Z., & Qiu, H. (2023). Responsive switchable deep eutectic solvents: A review. Chinese Chemical Letters, 34(5), 107750.
Jungang, J., Carrillo-Enríquez, N. C., Oguzlu, H., Han, X., Bi, R., Saddler, J. N., Sun, R.-C., & Jiang, F. (2020). Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp. Carbohydrate Polymers, 247, 116727.
Kibria, M. G., Paul, U. K., Hasan, A., Mohtasim, M. S., Das, B. K., & Mourshed, M. (2024). Current prospects and challenges for biomass energy conversion in Bangladesh: Attaining sustainable development goals. Biomass and Bioenergy, 183, 107139.
Kim, H. K., & Lee, H. K. (2010). Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Applied Acoustics, 71(7), 607-615.
Kärkäs, M. D., Matsuura, B. S., Monos, T. M., Magallanes, G., & Stephenson, C. R. J. (2016). Transition-metal catalyzed valorization of lignin: the key to a sustainable carbon-neutral future. Organic & Biomolecular Chemistry, 14(6), 1853-1914.
Lal, R. (2005). World crop residues production and implications of its use as a biofuel. Environment International, 31(4), 575-584.
Le, H. A., Khoi, N. Q., & Mallick, J. (2022). Integrated emission inventory and modelling to assess the distribution of particulate matters from rice straw open burning in Hanoi, Vietnam. Atmospheric Pollution Research, 13(5), 101416.
Liu, X., Sun, H., Mu, T., Fauconnier, M. L., & Li, M. (2023). Preparation of cellulose nanofibers from potato residues by ultrasonication combined with high-pressure homogenization. Food Chemistry, 413, 135675.
Liu, Y., Xu, X., Gao, M., Guo, Y., Xu, T., Jiang, H., Zhang, Z., Ji, X., & Si, C. (2024). Nanocellulose-based functional materials for physical, chemical, and biological sensing: A review of materials, properties, and perspectives. Industrial Crops and Products, 212, 118326.
Lorenci Woiciechowski, A., Dalmas Neto, C. J., Porto de Souza Vandenberghe, L., de Carvalho Neto, D. P., Novak Sydney, A. C., Letti, L. A. J., Karp, S. G., Zevallos Torres, L. A., & Soccol, C. R. (2020). Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances. Bioresource Technology, 304, 122848.
Malaeke, H., Housaindokht, M. R., Monhemi, H., & Izadyar, M. (2018). Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification. Journal of Molecular Liquids, 263, 193-199.
Mbous, Y. P., Hayyan, M., Wong, W. F., Hayyan, A., Looi, C. Y., & Hashim, M. A. (2020). Simulation of Deep Eutectic Solvents’ Interaction with membranes of cancer cells using COSMO-RS. The Journal of Physical Chemistry B, 124(41), 9086-9094.
Misaka, M., Teshima, H., Hirokawa, S., Li, Q.-Y., & Takahashi, K. (2024). Nano-captured water affects the wettability of cellulose nanofiber films. Surfaces and Interfaces, 46, 103923.
Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941.
Nechyporchuk, O., Belgacem, M. N., & Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93, 2-25.
Pawcenis, D., Leśniak, M., Szumera, M., Sitarz, M., & Profic-Paczkowska, J. (2022). Effect of hydrolysis time, pH and surfactant type on stability of hydrochloric acid hydrolyzed nanocellulose. International Journal of Biological Macromolecules, 222, 1996-2005.
Pradhan, D., Jaiswal, A. K., & Jaiswal, S. (2022). Emerging technologies for the production of nanocellulose from lignocellulosic biomass. Carbohydrate Polymers, 285, 119258.
Qian, Y., Qiu, X., & Zhu, S. (2015). Lignin: A nature-inspired sun blocker for broad-spectrum sunscreens. Green Chemistry, 17(1), 320-324.
Radošević, K., Cvjetko Bubalo, M., Gaurina Srček, V., Grgas, D., Landeka Dragičević, T., & Radojčić Redovniković, I. (2015). Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicology and Environmental Safety, 112, 46-53.
Sarangi, P. K., Srivastava, R. K., Sahoo, U. K., Singh, A. K., Parikh, J., Bansod, S., Parsai, G., Luqman, M., Shadangi, K. P., Diwan, D., Lanterbecq, D., & Sharma, M. (2024). Biotechnological innovations in nanocellulose production from waste biomass with a focus on pineapple waste. Chemosphere, 349, 140833.
Serrano, M., Coluccia, F., Torres, M., L''Haridon, F., & Métraux, J. P. (2014). The cuticle and plant defense to pathogens. Front Plant Sci, 5, 274.
Shojaeiarani, J., Bajwa, D., & Holt, G. (2020). Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion. Nanocomposites, 6(1), 41-46.
Sirviö, J. A., Ismail, M. Y., Zhang, K., Tejesvi, M. V., & Ämmälä, A. (2020). Transparent lignin-containing wood nanofiber films with UV-blocking, oxygen barrier, and anti-microbial properties [10.1039/C9TA13182E]. Journal of Materials Chemistry A, 8(16), 7935-7946.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass, in: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory.
Song, G., Huang, D., Li, A., Li, R., Hu, S., Xu, K., Ren, Q., Han, H., Wang, Y., Su, S., & Xiang, J. (2024). Quick measurement method of three components in lignocellulosic biomass based on kinetic mechanism analysis of PT-TGA. Fuel, 367, 131521.
Song, X., Zhu, Z., Tang, S., Chi, X., Han, G., & Cheng, W. (2023). Efficient extraction of nanocellulose from lignocellulose using aqueous butanediol fractionation to improve the performance of waterborne wood coating. Carbohydrate Polymers, 322, 121347.
Sun, R., Yang, C., Fang, Z., Zhu, N., Zheng, M., Guo, K., & Zhang, T. (2024). Selective C–C and C–O bond cleavage strategies for the thermochemical upgrading of (hemi)cellulosic biomass. Applied Catalysis B: Environment and Energy, 344, 123599.
Suopajärvi, T., Ricci, P., Karvonen, V., Ottolina, G., & Liimatainen, H. (2019). Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues. Industrial Crops and Products, 145, 111956.
Suopajärvi, T., Ricci, P., Karvonen, V., Ottolina, G., & Liimatainen, H. (2020). Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues. Industrial Crops and Products, 145, 111956.
Taglieri, L., Spera, A., & Gallifuoco, A. (2024). Green recovery of platform chemicals from hydrothermal carbonization process water. Bioresource Technology Reports, 26, 101815.
Tan, K., Heo, S., Foo, M., Chew, I. M., & Yoo, C. (2019). An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability. Science of The Total Environment, 650, 1309-1326.
Wang, P. W., Hung, Y. C., Lin, T. Y., Fang, J. Y., Yang, P. M., Chen, M. H., & Pan, T. L. (2019). Comparison of the biological impact of UVA and UVB upon the skin with functional proteomics and immunohistochemistry. Antioxidants (Basel), 8(12).
Wang, S., Zou, Q., Zhang, L., Zheng, W., Huang, X., & Zhang, J. (2023). A new nanocellulose prepared from waste coconut shell fibers based on a novel ultrasonic – Active agent combination method: Preparation principle and performances in cement matrix. Industrial Crops and Products, 197, 116607.
Wang, Z., Xu, J., Lu, Y., Hu, L., Fan, Y., Ma, J., & Zhou, X. (2017). Preparation of 3D printable micro/nanocellulose-polylactic acid (MNC/PLA) composite wire rods with high MNC constitution. Industrial Crops and Products, 109, 889-896.
Yang, X., Xie, H., Du, H., Zhang, X., Zou, Z., Zou, Y., Liu, W., Lan, H., Zhang, X., & Si, C. (2019). Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-Catalyzed deep eutectic solvent system. ACS Sustainable Chemistry & Engineering, 7(7), 7200-7208.
Zdanowicz, M., Wilpiszewska, K., & Spychaj, T. (2018). Deep eutectic solvents for polysaccharides processing. A review. Carbohydr Polym, 200, 361-380.
Zhang, C.-W., Xia, S.-Q., & Ma, P.-S. (2016). Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresource Technology, 219, 1-5.
Zhang, J., Huang, F., Wu, Y., Fu, T., Huang, B., Liu, W., & Qiu, R. (2022). Mechanical properties and interface improvement of bamboo cellulose nanofibers reinforced autoclaved aerated concrete. Cement and Concrete Composites, 134, 104760.
Zhang, Q., De Oliveira Vigier, K., Royer, S., & Jérôme, F. (2012). Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 41(21), 7108.
Zhang, S., Zhang, X., Wan, X., Zhang, H., & Tian, J. (2023). Fabrication of biodegradable films with UV-blocking and high-strength properties from spent coffee grounds. Carbohydrate Polymers, 321, 121290.
Zulkefli, S., Abdulmalek, E., & Abdul Rahman, M. B. (2017). Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renewable Energy, 107, 36-41.
李明儒,2022,利用多尺度遙測技術分析臺灣稻稈燃燒碳排放,國立屏東科技大學森林系碩士班,碩士論文。
陳巧萍,2020,以溶劑熱法搭配深共熔溶劑預處理稻稈製備奈米纖維素,國立中山大學環境工程研究所碩士班,碩士論文。
陳俊瑋,2017,酸水解時間對不同木質纖維原料製備奈米結晶纖維素之影響,國立臺灣大學森林環境暨資源學研究所碩士班,碩士論文。
蘇奕綾, 楊錫賢, 何燕婷, 丁月琴,簡淑美,2006,稻草燃燒期間大氣中多環芳香烴化合物來源與粒徑分佈研究,朝陽科技大學環境工程與管理所碩士班,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊