跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/17 00:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:麥守善
研究生(外文):Mai, Shou-Shan
論文名稱:普魯士藍類似物製備的二硒化鈷/二硒化鐵奈米顆粒異質結構對鉀離子電池負極之應用
論文名稱(外文):CoSe2/FeSe2 nanoparticle heterostructure prepared by Prussian blue analogs as electrode materials for Potassium-ion Battery anode
指導教授:段興宇
指導教授(外文):Tuan, Hsing-Yu
口試委員:呂明諺曾院介
口試委員(外文):Lu, Ming-YenTseng, Yuan-Chieh
口試日期:2023-10-30
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:英文
論文頁數:86
中文關鍵詞:普魯士藍類似物異質結構鉀離子電池錯配物劍峰pn結肖特基結
外文關鍵詞:Prussian blue analogsPotassium-ion Batteryheterostructuremisfit layered compoundJanusp-n junctionSchottky junction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
轉換型金屬硒化物電極在鉀離子電池(PIB)中的實際應用遇到了許多挑戰,例如顆粒聚集、穿梭效應和循環過程中的粉化。因此,我們設計了一種具有CoSe2-FeSe2/石墨/N摻雜碳(CFS//g@NC)的Janus異質結構,透過雙異質結(p-n和肖特基結)產生協同效應,增強界面電荷儲存並改善電極結構。當Janus異質結構用作PIB陽極時,它表現出高達10 A g−1的高倍率性能並能提供200 mA h g−1的容量,而在0.5 A g−1下表現出超過2500次循環的優異循環穩定性。根據密度泛函理論(DFT)計算,K離子在CFS//g@NC上的擴散勢壘比CoSe2或FeSe2上的擴散勢壘低兩倍。 Janus 粒子中 n 型和 p 型半導體的分佈已透過暗場電子顯微鏡的定量評估得到證實。除了跨越兩個半導體界面的 p-n 結外,普魯士藍類似物 (PBA) 衍生的石墨層與半導體之間的肖特基結也會產生內置電場,從而增強離子/電子傳輸並增加鉀的擴散離子。這項工作為多層異質介面的架構策略提供了新的見解,並為 PIB 中的陽極設計提供了一條有前景的新途徑。
The practical application of conversion-type metal selenide electrodes in potassium-ion batteries (PIBs) poses several challenges. These challenges include issues like particle aggregation, the shuttle effect, and pulverization during cycling. To address these challenges, we have developed a novel Janus heterostructure, referred to as CoSe2-FeSe2/graphite/N-doped carbon (CFS//g@NC). This Janus heterostructure incorporates dual heterojunctions, namely a p-n junction and a Schottky junction. These dual junctions work synergistically to enhance interface charge storage and bolster the structural integrity of the electrode. When utilized as the anode in PIBs, this Janus heterostructure demonstrates exceptional high-rate performance, supporting current densities of up to 10 A g−1. It boasts a high capacity of 200 mA h g−1 and exhibits outstanding cycling stability, with over 2500 cycles at a current density of 0.5 A g−1. Density functional theory (DFT) calculations reveal that the diffusion barrier for potassium ions on CFS//g@NC is only half that of CoSe2 or FeSe2. Additionally, quantitative analysis through dark-field electron microscopy confirms the distribution of n-type and p-type semiconductors within the Janus particles. Besides the p-n junction that spans two semiconductor interfaces, the Schottky junction formed between the graphite layer, derived from Prussian blue analogues (PBA), and the semiconductor, creates an inherent electric field. This field enhances ion and electron transport and facilitates the diffusion of potassium ions. This research offers valuable insights into the architectural strategy of multi-layer heterointerfaces, presenting a promising new direction for anode design in PIBs.
Table of contents中文摘要............................................................................................................................. 1Abstract .............................................................................................................................. 2Table of contents ................................................................................................................ 3List of Figure....................................................................................................................... 4List of Table ....................................................................................................................... 7Chapter 1. Introduction ...................................................................................................... 81.1 Challenges and development of potassium-ion batteries ............................................. 81.2 Concepts of prussian blue analogs (PBA). .................................................................... 91.3 Bimetallic heterostructure materials for batteries. ..................................................... 121.4 Transition metal selenide for potassium-ion batteries. ............................................... 15Chapter 2. Experimental Section ...................................................................................... 162.1 Materials ..................................................................................................................... 162.2 Synthesis of Co/Fe-Prussian blue analogues (PBA). ................................................. 162.3 Synthesis of Co/Fe−PBA@PDA. ............................................................................... 162.4 Synthesis of CFS//g@NC. .......................................................................................... 172.5 Material characterization. ........................................................................................... 172.6 Electrochemical measurements. ................................................................................. 182.7 Mott-Schottky test ...................................................................................................... 182.8 DFT Calculation ......................................................................................................... 19Chapter 3. Results and discussion for CFS//g@NC ......................................................... 203.1 Structure characterization. .......................................................................................... 203.2 Electrochemical tests and analysis. ............................................................................ 363.3 Energy band diagram, KPFM analysis and DFT calculations ................................... 473.4 Discussion. ................................................................................................................. 51Chapter 4. Conclusion ...................................................................................................... 54Chapter 5. Experimental section of FL-(BiSe)1.10NbSe2 ................................................... 555.1 Materials ..................................................................................................................... 555.2 Material Characterization............................................................................................ 555.3 Synthesis of bulk NbSe2, BiSe, (BiSe)1.10NbSe2 ........................................................ 565.4 Synthesis of few-layered (BiSe)1.10NbSe2. ................................................................. 565.5 Electrochemical measurement .................................................................................... 565.6 Finite element analysis simulation ............................................................................. 57Chapter 6. Result and discussion of FL-(BiSe)1.10NbSe2 ................................................. 58Chapter 7. Conclusion ...................................................................................................... 79Reference .......................................................................................................................... 80
[1] C.-Y. Tsai, C.-H. Chang, T.-L. Kao, K.-T. Chen, H.-Y. Tuan, Shape matters: SnP0. 94 teardrop nanorods with boosted performance for potassium ion storage, Chem. Eng. J. 417 (2021) 128552.[2] X. Min, J. Xiao, M. Fang, W.A. Wang, Y. Zhao, Y. Liu, A.M. Abdelkader, K. Xi, R.V. Kumar, Z. Huang, Potassium-ion batteries: outlook on present and future technologies, Energy Environ. Sci. 14(4) (2021) 2186-2243.[3] J. Liao, Q. Hu, Y. Du, J. Li, L. Duan, J. Bao, X. Zhou, Robust carbon nanotube-interwoven KFeSO4F microspheres as reliable potassium cathodes, Sci. Bull. 67(21) (2022) 2208-2215.[4] W. Zhang, Y. Liu, Z. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering, Sci. Adv. 5(5) (2019) eaav7412.[5] J. Zheng, C. Hu, L. Nie, H. Chen, S. Zang, M. Ma, Q. Lai, Recent Advances in Potassium‐Ion Batteries: From Material Design to Electrolyte Engineering, Adv. Mater. Technol (2023) 2201591.[6] Q. Zhang, Z. Wang, S. Zhang, T. Zhou, J. Mao, Z. Guo, Cathode materials for potassium-ion batteries: current status and perspective, Electrochem. Energy Rev. 1 (2018) 625-658.[7] J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng, S. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual‐doped hard carbon in capacitive potassium‐ion storage, Adv. Mater. 30(4) (2018) 1700104.[8] Y. Xu, H. Zhang, T. Ding, R. Tian, D. Sun, M.-S. Wang, X. Zhou, Synthesis of yolk-shell Bi2O3@ TiO2 submicrospheres with enhanced potassium storage, Sci China Chem 65(9) (2022) 1807-1816.[9] S. Liu, L. Kang, J. Henzie, J. Zhang, J. Ha, M.A. Amin, M.S.A. Hossain, S.C. Jun, Y. Yamauchi, Recent advances and perspectives of battery-type anode materials for potassium ion storage, ACS nano 15(12) (2021) 18931-18973.[10] Y. Du, Z. Zhang, Y. Xu, J. Bao, X. Zhou, Metal sulfide-based potassium-ion battery anodes: storage mechanisms and synthesis strategies, Acta Phys.-Chim. Sin 38 (2022) 2205017.[11] Z. Zhang, L. Duan, Y. Xu, C. Zhao, J. Bao, J. Shen, X. Zhou, Synthesis of multicore-shell FeS2@ C nanocapsules for stable potassium-ion batteries, J. Energy Chem. 73 (2022) 126-132.[12] A. Eftekhari, The rise of lithium–selenium batteries, Sustain. Energy Fuels 1(1) (2017) 14-29.[13] I. Hussain, S. Sahoo, C. Lamiel, T.T. Nguyen, M. Ahmed, C. Xi, S. Iqbal, A. Ali, N. Abbas, M.S. Javed, Research progress and future aspects: Metal selenides as effective electrodes, Energy Stor. Mater.(2022).[14] C.A. Etogo, H. Huang, H. Hong, G. Liu, L. Zhang, Metal–organic-frameworks-engaged formation of Co0. 85Se@ C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage, Energy Stor. Mater. 24 (2020) 167-176.[15] Y. Liu, Q. Wan, J. Gong, Z. Liu, G. Tao, J. Zhao, L. Chen, W. Li, X. Wei, L. Ni, Confine, Defect, and Interface Manipulation of Fe3Se4/3D Graphene Targeting Fast and Stable Potassium‐Ion Storage, Small 19(8) (2023) 2206400.[16] T. Li, Y. Wang, L. Yuan, Q. Zhou, S. Qiao, Z. Liu, S. Chong, An α-MnSe nanorod as anode for superior potassium-ion storage via synergistic effects of physical encapsulation and chemical bonding, Chem. Eng. J. 446 (2022) 137152.[17] M. Lee, T.W. Kim, C.Y. Park, K. Lee, T. Taniguchi, K. Watanabe, M.-g. Kim, D.K. Hwang, Y.T. Lee, Graphene Bridge Heterostructure Devices for Negative Differential Transconductance Circuit Applications, Nanomicro Lett 15(1) (2023) 1-11.[18] A. Zhong, Y. Zhou, H. Jin, H. Yu, Y. Wang, J. Luo, L. Huang, Z. Sun, D. Zhang, P. Fan, Superior Performances of Self‐Driven Near‐Infrared Photodetectors Based on the SnTe: Si/Si Heterostructure Boosted by Bulk Photovoltaic Effect, Small (2023) 2206262.[19] M. Zhang, Y. Lin, J. Li, X. Wei, Y. Peng, Z. Wang, V. Maheskumar, Z. Jiang, A. Du, Interfacial electronic and vacancy defect engineering coupling of the Z-scheme CsSnBr 3/SnS 2 heterostructure for photovoltaic performance: a hybrid DFT study, J. Mater. Chem. A 11(9) (2023) 4758-4768.[20] Y. Li, J. Zhang, Q. Chen, X. Xia, M. Chen, Emerging of heterostructure materials in energy storage: a review, Adv. Mater. 33(27) (2021) 2100855.[21] C. Zhao, Y. Li, W. Zhang, Y. Zheng, X. Lou, B. Yu, J. Chen, Y. Chen, M. Liu, J. Wang, Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells, Energy Environ. Sci. 13(1) (2020) 53-85.[22] W. Li, Q. Song, M. Li, Y. Yuan, J. Zhang, N. Wang, Z. Yang, J. Huang, J. Lu, X. Li, Chemical heterointerface engineering on hybrid electrode materials for electrochemical energy storage, Small Methods 5(8) (2021) 2100444.[23] Y.-Y. Hsieh, H.-Y. Tuan, Architectural van der Waals Bi2S3/Bi2Se3 topological heterostructure as a superior potassium-ion storage material, Energy Stor. Mater. 51 (2022) 789-805.[24] J. Chu, K. Han, Q. Yu, H. Wang, K. Xi, F. Lai, J. Zhang, Y. Bao, Schottky junction and multiheterostructure synergistically enhance rate performance and cycling stability, Chem. Eng. J. 430 (2022) 132994.[25] B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat 12(4) (2005) 537-541.[26] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3) (1999) 1758.[27] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18) (1996) 3865.[28] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15) (2010) 154104.[29] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12) (1976) 5188.[30] A. Zhou, W. Cheng, W. Wang, Q. Zhao, J. Xie, W. Zhang, H. Gao, L. Xue, J. Li, Hexacyanoferrate‐type Prussian blue analogs: principles and advances toward high‐performance sodium and potassium ion batteries, Adv Energy Mater 11(2) (2021) 2000943.[31] X. Wu, Y. Ru, Y. Bai, G. Zhang, Y. Shi, H. Pang, PBA composites and their derivatives in energy and environmental applications, Coord. Chem. Rev. 451 (2022) 214260.[32] H. Yu, H. Fan, X. Wu, H. Wang, Z. Luo, H. Tan, B. Yadian, Y. Huang, Q. Yan, Diffusion induced concave Co3O4@ CoFe2O4 hollow heterostructures for high performance lithium ion battery anode, Energy Stor. Mater. 4 (2016) 145-153.[33] B. Zhang, B. Xu, Z. Xiao, L. Cao, H. Geng, X. Ou, Inner-Stress-Dissipative, Rapid Self-Healing Core-Shell Sulfide Quantum Dots for Remarkable Potassium-Ion Storage, Energy Stor. Mater. (2023).[34] J. Chen, A. Pan, Y. Wang, X. Cao, W. Zhang, X. Kong, Q. Su, J. Lin, G. Cao, S. Liang, Hierarchical mesoporous MoSe2@ CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications, Energy Stor. Mater. 21 (2019) 97-106.[35] F.-W. Yuan, H.-J. Yang, H.-Y. Tuan, Seeded silicon nanowire growth catalyzed by commercially available bulk metals: broad selection of metal catalysts, superior field emission performance, and versatile nanowire/metal architectures, J. Mater. Chem. 21(36) (2011) 13793-13800.[36] H.-J. Yang, C.-Y. Chen, F.-W. Yuan, H.-Y. Tuan, Designed synthesis of solid and hollow Cu2–x Te nanocrystals with tunable near-infrared localized surface plasmon resonance, J. Phys. Chem. C 117(42) (2013) 21955-21964.[37] H. Shan, J. Qin, Y. Ding, H.M.K. Sari, X. Song, W. Liu, Y. Hao, J. Wang, C. Xie, J. Zhang, Controllable heterojunctions with a semicoherent phase boundary boosting the potassium storage of CoSe2/FeSe2, Adv. Mater. 33(37) (2021) 2102471.[38] Z. Lv, J. Fei, Y. You, X. Lv, Q. Li, J. Dang, Synergism and anion-cation dual chemical substitution in heterostructure sprouted on MXene enable high-efficiency and stable overall water splitting, J. Mater. Sci. Technol. 147 (2023) 207-216.[39] J.H. Choi, S.K. Park, Y.C. Kang, A Salt‐Templated Strategy toward Hollow Iron Selenides‐Graphitic Carbon Composite Microspheres with Interconnected Multicavities as High‐Performance Anode Materials for Sodium‐Ion Batteries, Small 15(2) (2019) 1803043.[40] L. Chen, Y. Xu, G. Cao, H.M.K. Sari, R. Duan, J. Wang, C. Xie, W. Li, X. Li, Bifunctional Catalytic Effect of CoSe2 for Lithium–Sulfur Batteries: Single Doping versus Dual Doping, Adv Funct Mater 32(8) (2022) 2107838.[41] C.-B. Chang, Y.-R. Lu, H.-Y. Tuan, High-entropy NaCl-type metal chalcogenides as K-ion storage materials: role of the cocktail effect, Energy Stor. Mater. 59 (2023) 102770.[42] H. Li, C. Chen, Y. Yan, T. Yan, C. Cheng, D. Sun, L. Zhang, Utilizing the Built‐in Electric Field of p–n Junctions to Spatially Propel the Stepwise Polysulfide Conversion in Lithium–Sulfur Batteries, Adv. Mater. 33(51) (2021) 2105067.[43] A.Milbrat, R. Elbersen, R. Kas, R.M. Tiggelaar, H. Gardeniers, G. Mul, J. Huskens, Spatioselective electrochemical and photoelectrochemical functionalization of silicon microwires with axial p/n junctions, Adv. Mater. 28(7) (2016) 1400-1405.[44] S.-x. Yan, Q. Wang, S.-h. Luo, Y.-h. Zhang, X. Liu, Y.-g. Liu, Z.-y. Wang, A.-m. Hao, T.-f. Yi, Coal-based S hybrid self-doped porous carbon for high-performance supercapacitors and potassium-ion batteries, J. Power Sources 461 (2020) 228151.[45] C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao, D. Yang, T. Zhang, X. Wang, J. Arbiol, J. Llorca, Tubular CoFeP@ CN as a Mott–Schottky catalyst with multiple adsorption sites for robust lithium− sulfur batteries, Adv Energy Mater 11(24) (2021) 2100432.[46] X. Zhang, Y. Liu, H. Liu, T. Liang, P. Zhang, Z. Dai, FeSe2/Hematite nn heterojunction with oxygen spillover for highly efficient NO2 gas sensing, Sens. Actuators B Chem. 345 (2021) 130357.[47] S. Ni, H. Qu, Z. Xu, X. Zhu, H. Xing, L. Wang, J. Yu, H. Liu, C. Chen, L. Yang, Interfacial engineering of the NiSe2/FeSe2 pp heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation, Appl. Catal. B 299 (2021) 120638.[48] J. Zheng, Z. Lei, Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability, Appl. Catal. B 237 (2018) 1-8.[49] K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng, Y. Zhao, Y.-R. Lu, T.-S. Chan, F.M. de Groot, Y. Tan, Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction, Nat. Commun.10(1) (2019) 1743.[50] S. Shen, Z. Wang, Z. Lin, K. Song, Q. Zhang, F. Meng, L. Gu, W. Zhong, Crystalline‐amorphous interfaces coupling of CoSe2/CoP with optimized d‐band center and boosted electrocatalytic hydrogen evolution, Adv. Mater. 34(13) (2022) 2110631.[51] S. Jiang, M. Xiang, J. Zhang, S. Chu, A. Marcelli, W. Chu, D. Wu, B. Qian, S. Tao, L. Song, Rational design of hierarchical FeSe 2 encapsulated with bifunctional carbon cuboids as an advanced anode for sodium-ion batteries, Nanoscale 12(43) (2020) 22210-22216.[52] J. Song, Y. Chen, H. Huang, J. Wang, S.C. Huang, Y.F. Liao, A.E. Fetohi, F. Hu, H.y. Chen, L. Li, Heterointerface Engineering of Hierarchically Assembling Layered Double Hydroxides on Cobalt Selenide as Efficient Trifunctional Electrocatalysts for Water Splitting and Zinc‐Air Battery, Adv. Sci. 9(6) (2022) 2104522.[53] S.H. Yang, S.-K. Park, Y.C. Kang, MOF-derived CoSe 2@ N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries, Nanomicro Lett 13 (2021) 1-15.[54] S.-F. Ho, H.-Y. Tuan, Cu3PS4: a sulfur-rich metal phosphosulfide with superior ionic diffusion channel for high-performance potassium ion batteries/hybrid capacitors, Chem. Eng. J. 452 (2023) 139199.[55] W.-W. Shen, Y.-Y. Hsieh, H.-Y. Tuan, 3D space-confined Co0. 85Se architecture with effective interfacial stress relaxation as anode material reveals robust and highly loading potassium-ion batteries, J. Colloid Interface Sci. 643 (2023) 626-639.[56] F. Yuan, Y.-C. Shao, B. Wang, Y.-S. Wu, D. Zhang, Z.-J. Li, Y.-m.A. Wu, Recent progress in application of cobalt-based compounds as anode materials for high-performance potassium-ion batteries, Rare Metals 41(10) (2022) 3301-3321.[57] W. Luo, Y. Feng, D. Shen, J. Zhou, C. Gao, B. Lu, Engineering ion diffusion by CoS@ SnS heterojunction for ultrahigh-rate and stable potassium batteries, ACS Appl. Mater. Interfaces 14(14) (2022) 16379-16385.[58] Y. Lou, P. Li, H. He, M. Zhang, In situ construction of hollow Ni3S2-Co9S8 heterostructures with enhanced reaction kinetics for potassium ion storage, J. Alloys Compd. 937 (2023) 168249.[59] J. Gong, R. Zhang, X. Wei, Y. Liu, Q. Luo, Q. Wan, Q. Zheng, L. Wang, S. Liu, D. Lin, Spatially dual-confined metallic selenide double active centers for boosting potassium ion storage, Chem. Eng. J. 459 (2023) 141609.[60] L. Cao, B. Luo, B. Xu, J. Zhang, C. Wang, Z. Xiao, S. Li, Y. Li, B. Zhang, G. Zou, Stabilizing intermediate phases via efficient entrapment effects of layered VS4/SnS@ C heterostructure for ultralong lifespan potassium‐ion batteries, Adv Funct Mater 31(36) (2021) 2103802.[61] H. Liu, Y. He, H. Zhang, S. Wang, K. Cao, Y. Jiang, X. Liu, Q.-S. Jing, Heterostructure engineering of ultrathin SnS2/Ti3C2Tx nanosheets for high-performance potassium-ion batteries, J. Colloid Interface Sci. 606 (2022) 167-176.[62] G. Suo, S.M. Ahmed, Y. Cheng, J. Zhang, Z. Li, X. Hou, Y. Yang, X. Ye, L. Feng, L. Zhang, Heterostructured CoS2/CuCo2S4@ N-doped carbon hollow sphere for potassium-ion batteries, J. Colloid Interface Sci. 608 (2022) 275-283.[63] D. Sun, C. Tang, H. Cheng, W. Xu, A. Du, H. Zhang, Pumpkin-like MoP-MoS2@ Aspergillus niger spore-derived N-doped carbon heterostructure for enhanced potassium storage, J. Energy Chem. 72 (2022) 479-486.[64] Y.-Y. Hsieh, K.-T. Chen, H.-Y. Tuan, A synergetic SnSb-amorphous carbon composites prepared from polyesterification process as an ultrastable potassium-ion battery anode, Chem. Eng. J. 420 (2021) 130451.[65] X. Yang, A.L. Rogach, Electrochemical techniques in battery research: a tutorial for nonelectrochemists, Adv Energy Mater 9(25) (2019) 1900747.[66] Z. Kong, L. Wang, S. Iqbal, B. Zhang, B. Wang, J. Dou, F. Wang, Y. Qian, M. Zhang, L. Xu, Iron Selenide‐Based Heterojunction Construction and Defect Engineering for Fast Potassium/Sodium‐Ion Storage, Small 18(15) (2022) 2107252.[67] S. Kim, H. Jung, W.G. Lim, E. Lim, C. Jo, K.S. Lee, J.W. Han, J. Lee, A Versatile Strategy for Achieving Fast‐Charging Batteries via Interfacial Engineering: Pseudocapacitive Potassium Storage without Nanostructuring, Small 18(27) (2022) 2202798.[68] W.-C. Lin, Y.-C. Yang, H.-Y. Tuan, Ternary chalcogenide anodes for high-performance potassium-ion batteries and hybrid capacitors via composition-mediated bond softening and intermediate phase, Energy Stor. Mater. 51 (2022) 38-53.[69] Z. Zhang, X. Chen, H. Zhang, W. Liu, W. Zhu, Y. Zhu, A highly crystalline perylene imide polymer with the robust built‐in electric field for efficient photocatalytic water oxidation, Adv. Mater. 32(32) (2020) 1907746.[70] J. Jing, J. Yang, Z. Zhang, Y. Zhu, Supramolecular zinc porphyrin photocatalyst with strong reduction ability and robust built‐in electric field for highly efficient hydrogen production, Adv Energy Mater 11(29) (2021) 2101392.[71] T. Wang, J. Zhao, L. Qi, G. Li, W. Yang, Y. Li, Ultrathin graphdiyne oxide-intercalated MXene: A new heterostructure with interfacial synergistic effect for high performance lithium-ion storage, Energy Stor. Mater. 54 (2023) 10-19.[72] M. Li, X. Pan, M. Jiang, Y. Zhang, Y. Tang, G. Fu, Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction, Chem. Eng. J. 395 (2020) 125160.[73] J. Li, Y. Kang, Z. Lei, P. Liu, Well-controlled 3D flower-like CoP3/CeO2/C heterostructures as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries, Appl. Catal. B 321 (2023) 122029.[74] X. Yun, T. Lu, R. Zhou, Z. Lu, J. Li, Y. Zhu, Heterostructured NiSe2/CoSe2 hollow microspheres as battery-type cathode for hybrid supercapacitors: Electrochemical kinetics and energy storage mechanism, Chem. Eng. J. 426 (2021) 131328.[75] B. Pandit, S.R. Rondiya, S. Shegokar, L.K. Bommineedi, R.W. Cross, N.Y. Dzade, B.R. Sankapal, Combined electrochemical and DFT investigations of iron selenide: a mechanically bendable solid-state symmetric supercapacitor, Sustain. Energy Fuels 5(19) (2021) 5001-5012.[76] C.-H. Chang, K.-T. Chen, Y.-Y. Hsieh, C.-B. Chang, H.-Y. Tuan, Crystal facet and architecture engineering of metal oxide nanonetwork anodes for high-performance potassium ion batteries and hybrid capacitors, ACS nano 16(1) (2022) 1486-1501.[77] Z. Wang, K. Dong, D. Wang, S. Luo, Y. Liu, Q. Wang, Y. Zhang, A. Hao, C. Shi, N. Zhao, A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries, J. Mater. Chem. A 7(23) (2019) 14309-14318.[78] X.-F. Wu, Z.-J. Li, J.-X. Liu, W. Luo, J.-J. Gaumet, L.-Q. Mai, Defect engineering of hierarchical porous carbon microspheres for potassium-ion storage, Rare Metals 41(10) (2022) 3446-3455.[79] D. Wang, K.-H. Tian, J. Wang, Z.-Y. Wang, S.-H. Luo, Y.-G. Liu, Q. Wang, Y.-H. Zhang, A.-M. Hao, T.-F. Yi, Sulfur-doped 3D hierarchical porous carbon network toward excellent potassium-ion storage performance, Rare Metals 40 (2021) 2464-2473.[80] Z. Wang, K. Dong, D. Wang, F. Chen, S. Luo, Y. Liu, C. He, C. Shi, N. Zhao, Monodisperse multicore-shell SnSb@ SnOx/SbOx@ C nanoparticles space-confined in 3D porous carbon networks as high-performance anode for Li-ion and Na-ion batteries, Chem. Eng. J. 371 (2019) 356-365.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top