跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 18:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張倍熏
研究生(外文):Chang, Bei-Syun
論文名稱:研究Gsdma3在毛髮生長週期及皮膚免疫中的作用
論文名稱(外文):Studying the Role of Gsdma3 in Hair Cycle and Skin Immunity
指導教授:楊良棟林玉俊
指導教授(外文):Yang, Liang-TungLin, Yu-Chun
口試委員:徐立中廖玉潔
口試委員(外文):Hsu, Li-ChungLiao, Yu-Chieh
口試日期:2023-12-13
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:中文
論文頁數:77
中文關鍵詞:Gasdermin A3毛囊生長週期皮膚免疫
外文關鍵詞:Gasdermin A3hair follicle cyclingskin immunity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
GSDM家族主要在免疫细胞、黏膜和皮膚中表現,與先天免疫和發炎密切相關,先前有研究指出,Gsdma3功能獲得性突變小鼠會出現皮膚發炎及脫髮的表型,但目前Gsdma1/a2/a3在表皮內的生理功能尚未完全明瞭。本論文旨在探討Gsdma3在毛髮生長週期及其在小鼠皮膚免疫中的作用。為了研究Gsdma3在毛髮生長週期中的表達模式,我們建立了Gsdma3-Cre轉基因小鼠,應用Cre/loxP重組系統可以觀察到Gsdma3在毛髮生長週期的每個階段皆在毛囊中表達。為了深入探討Gsdma3基因在生物體內的功能,我們採取基因過表達和基因敲除這兩種方式,讓我們能夠深入了解Gsdma3在皮膚中的具體功能。我們以Gsdma3-Cre作為驅動,使用了Cre/loxP和rtTA/TRE組合系統來實現Gsdma3的時空過表達,發現當Gsdma3在小鼠體內被過量表達後,會導致毛髮生長週期加速,且伴隨脫髮的表型出現;從免疫染色的結果可以得知,基因過表達小鼠皮膚中的免疫浸潤增加,突起部位內層細胞排列不規則、毛胚增殖增加以及突起部位內層細胞死亡等現象。為了瞭解Gsdma3在皮膚免疫中的作用,我們建立了Gsdma1和Gsdma3的複合上皮特異性基因敲除小鼠,並利用MC903處理誘導類異位性皮膚炎小鼠模型,採集其背部皮膚微生物群進行菌相分析,根據分析結果選出一種Staphylococcus菌株進行小鼠皮膚感染實驗,發現表皮Gsdma1/a3基因敲除小鼠抵禦Staphylococcus菌株皮膚感染的能力下降,並在皮下觀察到由球菌菌落形成的肉芽腫,此外,將含有GSDMA3-N端建構體的細胞轉染培養液添加至Staphylococcus菌液中混和培養,發現GSDMA3-N端建構體具有殺菌作用。綜上所述,Gsdma3基因的過表達可能會導致毛囊生長週期加速和毛囊型態的改變,Gsdma1/a3敲除可能會降低對皮膚中某些共生細菌的抗菌能力,由此可知Gsdma3在維持毛囊型態、正常生長週期以及皮膚免疫系統中的重要性。
The GSDM family, mainly expressed in the immune cells, mucosa, and skin, is closely associated with innate immunity and inflammation. Gsdma3 gain-of-function mutations exhibited skin inflammation and alopecia phenotypes in mice, but the physiological function of Gsdma1/a2/a3 in the epidermis remains to be unfolding. We aimed to explore the role of Gsdma3 in hair cycle and skin immunity. In order to investigate the expression pattern of Gsdma3 during the hair cycle, we generated a Gsdma3-Cre knock-in mouse, and applied the Cre/loxP system to monitor the expression pattern of Gsdma3 in the hair follicle during the hair cycle, including anagen, catagen, telogen, and also in the early embryonic phase. To explore the function of Gsdma3, we employed two approaches: gain of function and loss of function to achieve our goal. We studied Gsdma3 gain-of-function effect on the hair cycle using Gsdma3-Cre as a driver. A combined Cre/loxP and rtTA/TRE system was applied to allow spatiotemporal Gsdma3 overexpression. We found that Gsdma3 overexpression caused an accelerated hair cycle and accompanied by a hair loss phenotype. From the results of immunostaining, we found increased immune infiltrates, irregular arrangement of inner bulge layer cells, increased proliferation of hair germs and cell death in the inner bulge. To explore the role of Gsdma3 in the skin immunity, we generated a compound epithelium-specific knockout of Gsdma1 and Gsdma3, and treated with Calcipotriol (MC903) to induce atopic dermatitis-like skin disorder. We collected the back skin microbiota of mice for microbiota analysis. According to the analysis result, we selected one species of Staphylococcus to carry out skin infection experiments. The skin infection results suggest that epithelial Gsdma1/a3 knockout mice displayed decreased capacity to defend against skin infection of Staphylococcus and developed granuloma-containing cocci colonies. Additionally, cell transfection medium containing N terminal construct of GSDMA3 (GSDMA3-N) was added to Staphylococcus cultures, and we observed the bactericidal effect of the GSDMA3-N. In summary, overexpression of Gsdma3 may lead to an accelerated hair follicle growth cycle and changes in hair follicle morphology. Gsdma1/a3 knockout may decrease the antibacterial capacity to certain commensal bacteria of the skin. Gsdma3 plays a role in maintaining hair follicle cycling as well as skin immunity.
摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 x
縮寫表 xi
中英對照表 xiii
第一章 前言 1
1 GSDM家族 1
1.1 GSDM家族基本介紹 1
1.2 Gsdma3突變小鼠和毛囊生長週期缺陷 2
1.2.1 毛囊的形成 2
1.2.2 毛髮生長週期 2
1.2.3 毛囊幹細胞在生長週期中的角色 4
1.2.4 Gsdma3突變造成毛髮生長週期異常 5
2 GSDM家族的生物功能 8
2.1 程序性壞死-細胞焦亡 8
2.2 GSDMs在細胞焦亡中的作用 8
2.3 GSDMA在生物功能上的新發現 11
3 GSDM家族的其他生物功能 12
3.1 非細胞焦亡功能 12
3.1.1 GSDMB 12
3.1.2 GSDMD 13
3.1.3 GSDME 14
3.1.4 GSDMA/Gsdma3 15
3.2 殺菌作用 16
4 研究目的 17
5 實驗設計 18
第二章 材料與方法 19
1 化學藥品與試劑 19
2 動物來源及飼養 20
3 小鼠模型之建立 21
3.1 小鼠表皮障壁破壞模型(Dry skin model) 21
3.2 類異位性皮膚炎小鼠模型(AD-like model) 21
4 細菌菌株和生長培養基 22
5 小鼠皮膚組織處理(冷凍/石蠟) 22
5.1 冷凍組織包埋及切片 22
5.2 石蠟組織包埋及切片 23
6 X-gal染色 23
6.1 小鼠胚胎 23
6.2 成鼠皮膚組織 23
7 免疫染色及TUNEL檢測 24
7.1 免疫染色 24
7.2 TUNEL檢測 24
8 H&E染色 26
9 小鼠表皮裂解物製備 26
10 西方墨點法 27
11 測量皮膚屏障功能 28
12 微生物菌相製備及分析 28
13 重組蛋白的表達及純化 29
13.1 C-GSDMA3-6xHis 29
13.2 GST-GSDMA3 30
14 GSDMA3蛋白裂解反應 32
15 小鼠感染性實驗 32
15.1 皮膚貼布組(Skin patch) 32
15.2 皮下注射組(Subcutaneous injection) 32
16 殺菌實驗 33
第三章 實驗結果 34
1 Gsdma3在毛髮生長週期中的表達模式 34
1.1 工具鼠的建立 34
1.2 組織染色分析Gsdma3在小鼠毛髮週期中的表達模式 35
1.2.1 X-gal染色分析Gsdma3表達模式 35
1.2.2 免疫螢光染色分析Gsdma3表達模式 38
1.2.3 利用GFP對Gsdma3細胞進行譜系追蹤 40
2 Gsdma3過量表達對小鼠表型之影響 45
2.1 建立多西環素-Cre誘導重組系統 45
2.2 Gsdma3過量表達影響小鼠毛囊生長週期及型態 47
3 Gsdma3敲除在小鼠生理病理上的影響 54
3.1 建立類異位性皮膚炎小鼠模型 54
3.2 分析小鼠背部微生物菌群 56
3.3 表皮細菌感染對Gsdma3敲除小鼠所造成之影響 58
3.4 GSDMA3蛋白殺菌效果分析 61
3.5 GSDMA3蛋白裂點位置分析 64
第四章 討論 67
第五章 參考文獻 71
Acuff, N. V., LaGatta, M., Nagy, T., & Watford, W. T. (2017). Severe Dermatitis Associated with Spontaneous Staphylococcus xylosus Infection in Rag(-/-)Tpl2(-/-) Mice. Comp Med, 67(4), 344-349.
Alam, M. J., Xie, L., Yap, Y.-A., & Robert, R. (2023). A Mouse Model of MC903-Induced Atopic Dermatitis. Current Protocols, 3(3), e695. https://doi.org/https://doi.org/10.1002/cpz1.695
Bai, X., Lei, M., Shi, J., Yu, Y., Qiu, W., Lai, X., Liu, Y., Yang, T., Yang, L., Widelitz, R. B., Chuong, C.-M., & Lian, X. (2015). Roles of GasderminA3 in Catagen–Telogen Transition During Hair Cycling. Journal of Investigative Dermatology, 135(9), 2162-2172. https://doi.org/https://doi.org/10.1038/jid.2015.147
Battaglia, M., & Garrett-Sinha, L. A. (2023). Staphylococcus xylosus and Staphylococcus aureus as commensals and pathogens on murine skin. Laboratory Animal Research, 39(1), 18. https://doi.org/10.1186/s42826-023-00169-0
Broz, P., Pelegrín, P., & Shao, F. (2020). The gasdermins, a protein family executing cell death and inflammation. Nature Reviews Immunology, 20(3), 143-157. https://doi.org/10.1038/s41577-019-0228-2
Chao, K. L., Kulakova, L., & Herzberg, O. (2017). Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein. Proceedings of the National Academy of Sciences, 114(7), E1128-E1137. https://doi.org/doi:10.1073/pnas.1616783114
Chen, C.-L., Huang, W.-Y., Wang, E. H. C., Tai, K.-Y., & Lin, S.-J. (2020). Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. Journal of Biomedical Science, 27(1), 43. https://doi.org/10.1186/s12929-020-0624-8
Chu, K., Su, Z., Wetter, J., Namovic, M., Leys, L., Wang, Y., Honore, P., & McGaraughty, S. (2020). Characterization of MC903 induced Atopic Dermatitis-like skin inflammation in mice. The FASEB Journal, 34(S1), 1-1. https://doi.org/https://doi.org/10.1096/fasebj.2020.34.s1.09550
De Schutter, E., Roelandt, R., Riquet, F. B., Van Camp, G., Wullaert, A., & Vandenabeele, P. (2021). Punching Holes in Cellular Membranes: Biology and Evolution of Gasdermins. Trends in Cell Biology, 31(6), 500-513. https://doi.org/https://doi.org/10.1016/j.tcb.2021.03.004
Deng, W., Bai, Y., Deng, F., Pan, Y., Mei, S., Zheng, Z., Min, R., Wu, Z., Li, W., Miao, R., Zhang, Z., Kupper, T. S., Lieberman, J., & Liu, X. (2022). Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature, 602(7897), 496-502. https://doi.org/10.1038/s41586-021-04384-4
Ding, J., Wang, K., Liu, W., She, Y., Sun, Q., Shi, J., Sun, H., Wang, D.-C., & Shao, F. (2016). Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 535(7610), 111-116. https://doi.org/10.1038/nature18590
Fang, Y., Tian, S., Pan, Y., Li, W., Wang, Q., Tang, Y., Yu, T., Wu, X., Shi, Y., Ma, P., & Shu, Y. (2020). Pyroptosis: A new frontier in cancer. Biomedicine & Pharmacotherapy, 121, 109595. https://doi.org/https://doi.org/10.1016/j.biopha.2019.109595
Giordano, N., Corallo, C., Miracco, C., Papakostas, P., Montella, A., Figura, N., & Nuti, R. (2016). Erythema nodosum associated with Staphylococcus xylosus septicemia. Journal of Microbiology, Immunology and Infection, 49(1), 134-137. https://doi.org/https://doi.org/10.1016/j.jmii.2012.10.003
Gozalo, A. S., Hoffmann, V. J., Brinster, L. R., Elkins, W. R., Ding, L., & Holland, S. M. (2010). Spontaneous Staphylococcus xylosus infection in mice deficient in NADPH oxidase and comparison with other laboratory mouse strains. J Am Assoc Lab Anim Sci, 49(4), 480-486.
Greenwood, C. S., Wynosky-Dolfi, M. A., Beal, A. M., & Booty, L. M. (2023). Gasdermins assemble; recent developments in bacteriology and pharmacology [Review]. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1173519
Hergueta-Redondo, M., Sarrió, D., Molina-Crespo, Á., Megias, D., Mota, A., Rojo-Sebastian, A., García-Sanz, P., Morales, S., Abril, S., Cano, A., Peinado, H., & Moreno-Bueno, G. (2014). Gasdermin-B Promotes Invasion and Metastasis in Breast Cancer Cells. PLOS ONE, 9(3), e90099. https://doi.org/10.1371/journal.pone.0090099
Hsu, Y.-C., Pasolli, H. A., & Fuchs, E. (2011). Dynamics between Stem Cells, Niche, and Progeny in the Hair Follicle. Cell, 144(1), 92-105. https://doi.org/https://doi.org/10.1016/j.cell.2010.11.049
Hu, X.-M., Li, Z.-X., Zhang, D.-Y., Yang, Y.-C., Fu, S.-a., Zhang, Z.-Q., Yang, R.-H., & Xiong, K. (2021). A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Research & Therapy, 12(1), 453. https://doi.org/10.1186/s13287-021-02527-y
Huang, L.-Y., Li, S.-T., Lin, S.-C., Kao, C.-H., Hong, C.-H., Lee, C.-H., & Yang, L.-T. (2023). Gasdermin A Is Required for Epidermal Cornification during Skin Barrier Regeneration and in an Atopic Dermatitis-like Model. Journal of Investigative Dermatology. https://doi.org/https://doi.org/10.1016/j.jid.2023.03.1657
Kambara, H., Liu, F., Zhang, X., Liu, P., Bajrami, B., Teng, Y., Zhao, L., Zhou, S., Yu, H., Zhou, W., Silberstein, L. E., Cheng, T., Han, M., Xu, Y., & Luo, H. R. (2018). Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death. Cell Reports, 22(11), 2924-2936. https://doi.org/https://doi.org/10.1016/j.celrep.2018.02.067
Kayagaki, N., Stowe, I. B., Lee, B. L., O’Rourke, K., Anderson, K., Warming, S., Cuellar, T., Haley, B., Roose-Girma, M., Phung, Q. T., Liu, P. S., Lill, J. R., Li, H., Wu, J., Kummerfeld, S., Zhang, J., Lee, W. P., Snipas, S. J., Salvesen, G. S., . . . Dixit, V. M. (2015). Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 526(7575), 666-671. https://doi.org/10.1038/nature15541
Kim, H., Kim, M., Im, S.-K., & Fang, S. (2018). Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. lar, 34(4), 147-159. https://doi.org/10.5625/lar.2018.34.4.147
Kim, Y., Lee, Y. S., Yang, J. Y., Lee, S. H., Park, Y. Y., & Kweon, M. N. (2017). The resident pathobiont Staphylococcus xylosus in Nfkbiz-deficient skin accelerates spontaneous skin inflammation. Sci Rep, 7(1), 6348. https://doi.org/10.1038/s41598-017-05740-z
Kondolf, H. C., D'Orlando, D. A., Dubyak, G. R., & Abbott, D. W. (2023). Protein engineering reveals that gasdermin A preferentially targets mitochondrial membranes over the plasma membrane during pyroptosis. Journal of Biological Chemistry, 299(2), 102908. https://doi.org/https://doi.org/10.1016/j.jbc.2023.102908
Kovacs, S. B., & Miao, E. A. (2017). Gasdermins: Effectors of Pyroptosis. Trends in Cell Biology, 27(9), 673-684. https://doi.org/https://doi.org/10.1016/j.tcb.2017.05.005
Kumar, S., Rathkolb, B., Budde, B. S., Nürnberg, P., de Angelis, M. H., Aigner, B., & Schneider, M. R. (2012). Gsdma3I359N is a novel ENU-induced mutant mouse line for studying the function of Gasdermin A3 in the hair follicle and epidermis. Journal of dermatological science, 67(3), 190-192.
Laer, L. V., Huizing, E. H., Verstreken, M., Zuijlen, D. v., Wauters, J. G., Bossuyt, P. J., Van de Heyning, P., McGuirt, W. T., Smith, R. J. H., Willems, P. J., Legan, P. K., Richardson, G. P., & Van Camp, G. (1998). Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nature Genetics, 20(2), 194-197. https://doi.org/10.1038/2503
LaRock, D. L., Johnson, A. F., Wilde, S., Sands, J. S., Monteiro, M. P., & LaRock, C. N. (2022). Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature, 605(7910), 527-531. https://doi.org/10.1038/s41586-022-04717-x
Lee, J., & Tumbar, T. (2012). Hairy tale of signaling in hair follicle development and cycling. Seminars in Cell & Developmental Biology, 23(8), 906-916. https://doi.org/https://doi.org/10.1016/j.semcdb.2012.08.003
Li, J., Zhou, Y., Yang, T., Wang, N., Lian, X., & Yang, L. (2010). Gsdma3 is required for hair follicle differentiation in mice. Biochemical and Biophysical Research Communications, 403(1), 18-23. https://doi.org/https://doi.org/10.1016/j.bbrc.2010.10.094
Li, S.-T., Suen, W.-J., Kao, C.-H., Yang, M.-K., & Yang, L.-T. (2020). Gasdermin A3–Mediated Cell Death Causes Niche Collapse and Precocious Activation of Hair Follicle Stem Cells. Journal of Investigative Dermatology, 140(11), 2117-2128. https://doi.org/https://doi.org/10.1016/j.jid.2020.02.033
Lin, H.-Y., Lin, P.-H., Wu, S.-H., & Yang, L.-T. (2015). Inducible expression of gasdermin A3 in the epidermis causes epidermal hyperplasia and skin inflammation. Experimental Dermatology, 24(11), 897-899. https://doi.org/https://doi.org/10.1111/exd.12797
Lin, P.-H., Lin, H.-Y., Kuo, C.-C., & Yang, L.-T. (2015). N-terminal functional domain of Gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting. Journal of Biomedical Science, 22(1), 44. https://doi.org/10.1186/s12929-015-0152-0
Liu, X., Zhang, Z., Ruan, J., Pan, Y., Magupalli, V. G., Wu, H., & Lieberman, J. (2016). Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 535(7610), 153-158. https://doi.org/10.1038/nature18629
Lunny, D. P., Weed, E., Nolan, P. M., Marquardt, A., Augustin, M., & Porter, R. M. (2005). Mutations in Gasdermin 3 Cause Aberrant Differentiation of the Hair Follicle and Sebaceous Gland. Journal of Investigative Dermatology, 124(3), 615-621. https://doi.org/https://doi.org/10.1111/j.0022-202X.2005.23623.x
Porter, R. M., Lunny, D. P., Henderson, G., Ross, J., Wilson, N. J., Lane, E. B., Jahoda, C. A. B., Irwin McLean, W. H., Whittock, N. V., Reichelt, J., & Magin, T. M. (2002). Defolliculated (Dfl): A Dominant Mouse Mutation Leading to Poor Sebaceous Gland Differentiation and Total Elimination of Pelage Follicles. Journal of Investigative Dermatology, 119(1), 32-37. https://doi.org/https://doi.org/10.1046/j.1523-1747.2002.01806.x
Ramos-Junior, E. S., & Morandini, A. C. (2017). Gasdermin: A new player to the inflammasome game. Biomedical Journal, 40(6), 313-316. https://doi.org/https://doi.org/10.1016/j.bj.2017.10.002
Reddy, S., Andl, T., Bagasra, A., Lu, M. M., Epstein, D. J., Morrisey, E. E., & Millar, S. E. (2001). Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mechanisms of Development, 107(1), 69-82. https://doi.org/https://doi.org/10.1016/S0925-4773(01)00452-X
Reshamwala, K., Cheung, G. Y. C., Hsieh, R. C., Liu, R., Joo, H.-S., Zheng, Y., Bae, J. S., Nguyen, T. H., Villaruz, A. E., Gozalo, A. S., Elkins, W. R., & Otto, M. (2022). Identification and characterization of the pathogenic potential of phenol-soluble modulin toxins in the mouse commensal Staphylococcus xylosus [Original Research]. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.999201
Rogers, C., Fernandes-Alnemri, T., Mayes, L., Alnemri, D., Cingolani, G., & Alnemri, E. S. (2017). Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nature Communications, 8(1), 14128. https://doi.org/10.1038/ncomms14128
Rompolas, P., & Greco, V. (2014). Stem cell dynamics in the hair follicle niche. Seminars in Cell & Developmental Biology, 25-26, 34-42. https://doi.org/https://doi.org/10.1016/j.semcdb.2013.12.005
Ruan, J., Xia, S., Liu, X., Lieberman, J., & Wu, H. (2018). Cryo-EM structure of the gasdermin A3 membrane pore. Nature, 557(7703), 62-67. https://doi.org/10.1038/s41586-018-0058-6
Runkel, F., Marquardt, A., Stoeger, C., Kochmann, E., Simon, D., Kohnke, B., Korthaus, D., Wattler, F., Fuchs, H., Hrabé de Angelis, M., Stumm, G., Nehls, M., Wattler, S., Franz, T., & Augustin, M. (2004). The dominant alopecia phenotypes Bareskin, Rex-denuded, and Reduced Coat 2 are caused by mutations in gasdermin 3. Genomics, 84(5), 824-835. https://doi.org/https://doi.org/10.1016/j.ygeno.2004.07.003
Salami, A., Bettadapura, S., & Wang, S. (2023). Gasdermin D kills bacteria. Microbiological Research, 272, 127383. https://doi.org/https://doi.org/10.1016/j.micres.2023.127383
Sborgi, L., Rühl, S., Mulvihill, E., Pipercevic, J., Heilig, R., Stahlberg, H., Farady, C. J., Müller, D. J., Broz, P., & Hiller, S. (2016). GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. The EMBO Journal, 35(16), 1766-1778. https://doi.org/https://doi.org/10.15252/embj.201694696
Shi, J., Gao, W., & Shao, F. (2017). Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends in Biochemical Sciences, 42(4), 245-254. https://doi.org/https://doi.org/10.1016/j.tibs.2016.10.004
Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T., Wang, F., & Shao, F. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 526(7575), 660-665. https://doi.org/10.1038/nature15514
Sollberger, G., Choidas, A., Burn, G. L., Habenberger, P., Di Lucrezia, R., Kordes, S., Menninger, S., Eickhoff, J., Nussbaumer, P., Klebl, B., Krüger, R., Herzig, A., & Zychlinsky, A. (2018). Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Science Immunology, 3(26), eaar6689. https://doi.org/doi:10.1126/sciimmunol.aar6689
Swirski, S., Röger, C., Pieńkowska-Schelling, A., Ihlenburg, C., Fischer, G., May, O., Vorm, M., Owczarek-Lipska, M., & Neidhardt, J. (2018). A Novel C-Terminal Mutation in Gsdma3 (C+/H−) Leads to Alopecia and Corneal Inflammatory Response in Mice. Investigative Ophthalmology & Visual Science, 59(1), 561-571. https://doi.org/10.1167/iovs.17-22658
Tanaka, S., Mizushina, Y., Kato, Y., Tamura, M., & Shiroishi, T. (2013). Functional Conservation of Gsdma Cluster Genes Specifically Duplicated in the Mouse Genome. G3 Genes|Genomes|Genetics, 3(10), 1843-1850. https://doi.org/10.1534/g3.113.007393
Tanaka, S., Tamura, M., Aoki, A., Fujii, T., Komiyama, H., Sagai, T., & Shiroishi, T. (2007). A new Gsdma3 mutation affecting anagen phase of first hair cycle. Biochemical and Biophysical Research Communications, 359(4), 902-907. https://doi.org/https://doi.org/10.1016/j.bbrc.2007.05.209
Tang, L., Lu, C., Zheng, G., & Burgering, B. M. (2020). Emerging insights on the role of gasdermins in infection and inflammatory diseases. Clinical & Translational Immunology, 9(10), e1186. https://doi.org/https://doi.org/10.1002/cti2.1186
Weir, A., & Vince, J. E. (2022). No longer married to inflammasome signaling: the diverse interacting pathways leading to pyroptotic cell death. Biochemical Journal, 479(10), 1083-1102. https://doi.org/10.1042/bcj20210711
Won, Y. S., Kwon, H. J., Oh, G. T., Kim, B. H., Lee, C. H., Park, Y. H., Hyun, B. H., & Choi, Y. K. (2002). Identification of Staphylococcus xylosus Isolated from C57BL/6J-Nos2tm1Lau Mice with Dermatitis. Microbiology and Immunology, 46(9), 629-632. https://doi.org/https://doi.org/10.1111/j.1348-0421.2002.tb02744.x
Xu, L., Shi, F., Wu, Y., Yao, S., Wang, Y., Jiang, X., Su, L., & Liu, X. (2023). Gasdermin E regulates the stability and activation of EGFR in human non-small cell lung cancer cells. Cell Communication and Signaling, 21(1), 83. https://doi.org/10.1186/s12964-023-01083-7
Youn, C., Archer, N. K., & Miller, L. S. (2020). Research Techniques Made Simple: Mouse Bacterial Skin Infection Models for Immunity Research. Journal of Investigative Dermatology, 140(8), 1488-1497.e1481. https://doi.org/https://doi.org/10.1016/j.jid.2020.04.012
Zhang, Z., Zhang, Y., Xia, S., Kong, Q., Li, S., Liu, X., Junqueira, C., Meza-Sosa, K. F., Mok, T. M. Y., Ansara, J., Sengupta, S., Yao, Y., Wu, H., & Lieberman, J. (2020). Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature, 579(7799), 415-420. https://doi.org/10.1038/s41586-020-2071-9
Zhou, Y., Jiang, X., Gu, P., Chen, W., Zeng, X., & Gao, X. (2012). Gsdma3 Mutation Causes Bulge Stem Cell Depletion and Alopecia Mediated by Skin Inflammation. The American Journal of Pathology, 180(2), 763-774. https://doi.org/https://doi.org/10.1016/j.ajpath.2011.10.034
Zhou, Z., He, H., Wang, K., Shi, X., Wang, Y., Su, Y., Wang, Y., Li, D., Liu, W., Zhang, Y., Shen, L., Han, W., Shen, L., Ding, J., & Shao, F. (2020). Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 368(6494), eaaz7548. https://doi.org/doi:10.1126/science.aaz7548
Zou, J., Zheng, Y., Huang, Y., Tang, D., Kang, R., & Chen, R. (2021). The Versatile Gasdermin Family: Their Function and Roles in Diseases [Review]. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.751533
國家衛生研究院實驗動物照護及使用委員會. (2023). 動物照護及使用政策與指引(Animal Care and Use Policies and Guidelines).
電子全文 電子全文(網際網路公開日期:20270102)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top