跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/08 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝宗廷
研究生(外文):HSIEH, TSUNG-TING
論文名稱:運用學習鷹架於數位藝術之教學結合生成式人工智慧(SinGAN)探討學習成效、學習焦慮、學習參與度、學習情緒
論文名稱(外文):Using learning scaffolding in digital art teaching combined with generative artificial intelligence (SinGAN) to explore learning outcomes, learning anxiety, learning engagement, and learning emotions
指導教授:林豪鏘林豪鏘引用關係
指導教授(外文):Lin, Hao-Chiang
口試委員:鄭淑真簡聖芬
口試委員(外文):Cheng, Shu-ChenChien, Sheng-Fen
口試日期:2024-07-11
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:數位學習科技學系碩博士班
學門:教育學門
學類:教育科技學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:62
中文關鍵詞:學習鷹架同儕鷹架生成式人工智慧數位藝術教學學習焦慮學習情緒學習參與度
外文關鍵詞:Learning ScaffoldingPeer ScaffoldingGenerative Artificial IntelligenceDigital Art EducationLearning AnxietyLearning EmotionsLearning Engagement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著人工智慧和數位媒體應用的迅速增長,教育工作者紛紛採用各種新技術進行教學。許多學者致力於研究這些技術,並將其應用於教學領域。許多研究顯示,將人工智慧融入教學或學習中,有助於提升學習成效、學習動機、學習參與度和創造力等。然而,在數位藝術教學中,生成式人工智慧的應用仍相對罕見,尤其是在學生創作自己的藝術作品方面。因此,本研究將探討大學生使用生成式人工智慧可能引發的學習焦慮,並研究運用學習鷹架解決這一問題的可行性。本研究將採用具有潛力的生成式人工智慧工具SinGAN,結合數位藝術課程,增強學生在數位藝術創作和人工智慧應用方面的技能和知識。。
本研究將運用學習鷹架於數位藝術課程,透過數位藝術課程與SinGAN深度學習的結合,將課程內容化分成三種SinGAN深度學習的功能應用,透過教學者運用學習鷹架於數位藝術課程,研究學生是否能有效降低學習焦慮,在製作藝術作品過程中是否能習得成功經驗,以提高學生的學習成效及學習參與度並能有一致性的學習情緒。並採用準實驗設計,對象為南部某大學學生共43人,實驗組以SinGAN深度學習與同儕鷹架來進行學習任務,控制組以SinGAN深度學習進行學習任務,比較兩組學生在「學習成效」、「學習焦慮」、「學習參與度」與「學習情緒」之前、後測成績的差異。運用統計量化分析方法:描述性統計、獨立樣本t檢定及ANCOVA進行分析,統計結果顯示,實驗組在學習成效、學習焦慮以及學習參與度中達到顯著差異,兩組學習情緒無顯著差異。

With the rapid growth of artificial intelligence and digital media applications, educators are increasingly adopting various new technologies for teaching. Many scholars are dedicated to researching these technologies and applying them in educational settings. Numerous studies have shown that integrating artificial intelligence into teaching or learning can enhance learning effectiveness, motivation, engagement, and creativity. However, the application of generative AI in digital art education remains relatively rare, especially in the context of students creating their own art projects. Therefore, this study aims to explore the learning anxiety that university students may experience when using generative AI and investigate the feasibility of using learning scaffolding to address this issue.

This study will apply learning scaffolding in digital art courses by integrating SinGAN deep learning. The course content will be divided into three functional applications of SinGAN deep learning. By using learning scaffolding in digital art courses, the study aims to investigate whether students can effectively reduce learning anxiety, gain successful experiences in the process of creating art, and thereby improve their learning outcomes and engagement while maintaining consistent learning emotions.

摘 要 i
誌 謝 iii
目 次 v
表目次 vii
圖目次 viii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題 3
第三節 研究限制 4
第四節 論文架構 4
第二章 文獻探討 6
第一節 數位藝術教學 6
一、數位藝術教育與實踐 6
二、數位藝術教學與技術 7
第二節 生成式人工智慧 8
一、生成式對抗網路(GAN) 8
二、SinGAN 9
第三節 學習鷹架 10
一、同儕鷹架 10
第四節 學習焦慮 11
第三章 研究方法 12
第一節 研究流程架構 12
第二節 研究設計 13
第三節 實驗設計 19
第四節 研究工具 21
一、學習成效測驗 21
二、學習焦慮量表 21
三、學習參與度量表 22
四、學習情緒量表 22
第四章 實驗結果與分析 25
第一節 學習成效評估結果 25
第二節 學習焦慮評估結果 26
第三節 學習參與度評估結果 28
第四節 學習情緒評估結果 29
第五章 結論與未來展望 30
第一節 結論 30
第二節 研究貢獻與討論 32
第三節 未來展望與建議 34
參考文獻 35
附錄 41

中文文獻
教育部資訊及科技教育司 (2013)。分組合作學習教學手冊。教育部資訊及科技教育司。
簡錦鳳(2007)。文字鷹架對七年級學生科學解釋能力的影響。
陳定邦(2003)。鷹架教學概念在成人學習歷程上應用之研究。
陳育琳、徐照麗 (2007) 。同儕鷹架理論對國三學生數學態度影響之研究.
陳淑苾(2017)。輔以寫作鷹架的開放式探究學習對國小學生形成實驗問題能力與學習成就的影響。
陳銹陵、陳明溥、韓宜娣 (2011)。 鷹架類型與先備知識對高職電腦軟體應用課程之成效探討。數位學習科技期刊, 3(1),頁 101-120。
鄭楹霖 (2009)。以無所不在學習系統降低英語字彙學習焦慮因素之研究。
謝州恩 (2013) 。鷹架理論的發展, 類型, 模式與對科學教學的啟示. 科學教育月刊, (364), 2-16.
英文文獻
Abdelghani, R., Sauzéon, H., & Oudeyer, P. Y. (2023). Generative AI in the classroom: Can students remain active learners? arXiv preprint arXiv:2310.03192.

Al Hashimi, S., Al Muwali, A., Zaki, Y., & Mahdi, N. (2019). The effectiveness of social media and multimedia-based pedagogy in enhancing creativity among art, design, and digital media students. International Journal of Emerging Technologies in Learning (iJET), 14(21), 176-190.

Azevedo, R., & Hadwin, A. F. (2005). Scaffolding self-regulated learning and metacognition–Implications for the design of computer-based scaffolds. Instructional science, 33(5/6), 367-379.

Barahona-Ríos, A., & Collins, T. (2021). SpecSinGAN: Sound effect variation synthesis using single-image GANs. arXiv preprint arXiv:2110.07311.

Bigham, B. S., Fannakhosrow, M., Safipour, A., Jafari, M., & Chenari, K. (2021). E-learning model for art education: Case study in Iran. arXiv preprint arXiv:2110.03904.

Black, J., & Browning, K. (2011). Creativity in digital art education teaching practices. Art Education, 64(5), 19-34.

Brock, A., Donahue, J., & Simonyan, K. (2018). Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096.

Cagiltay, K. (2006). Scaffolding strategies in electronic performance support systems: Types and challenges. Innovations in education and Teaching International, 43(1), 93-103.

Chang, C.-K. (2014). Effects of using Alice and Scratch in an introductoryprogramming course for corrective instruction. Journal of Educational Computing Research, 51(2), 185-204
Davis, E. A., & Miyake, N. (2004). Explorations of Scaffolding in Complex Classroom Systems. Journal of the Learning Sciences, 13(3), 265–272.

Duc, A. N., Lønnestad, T., Sundbø, I., Johannessen, M. R., Gabriela, V., Ahmed, S. U., & El-Gazzar, R. (2023). Generative AI in undergraduate information technology education--Insights from nine courses. arXiv preprint arXiv:2311.10199.

Elgammal, A., Liu, B., Elhoseiny, M., & Mazzone, M. (2017). CAN: Creative adversarial networks, generating "art" by learning about styles and deviating from style norms. arXiv preprint arXiv:1706.07068.

Gregersen, T., & Horwitz, E. K. (2002). Language learning and perfectionism: Anxious and non‐anxious language learners' reactions to their own oral performance. The Modern Language Journal, 86(4), 562-570.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems, 27.

González-Zamar, M. D., & Abad-Segura, E. (2021). Digital design in artistic education: An overview of research in the university setting. Education Sciences, 11(4), 144.

Halverson, E. R. (2013). Digital art making as a representational process. Journal of the Learning Sciences, 22(1), 121-162.

Hannafin, M. J. (1999) .Learning in open-ended environments: tools and technologies for the next millennium. Available online at: http://it.coe.uga.edu/itforum/paper34/paper34.html (accessed 14 March 2005)
Hart, S. G., & Staveland, L. (1986). NASA Task Load Index (TLX). Volume 1.0; Paper and Pencil Package. California, CA: NASA Ames Research Center.

Hart, S. G. (2006). NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the 50th Annual Meeting of the Human Factors and Ergonomics Society, 50(9), 904-908.

Hill, J. R., & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology Research and Development, 49(3), 37-52.
Impett, L., & Offert, F. (2023). There is a digital art history. arXiv preprint arXiv:2308.07464.

Jégo, J. F., & Meneghini, M. B. (2020, July). Let's resonate: How to elicit improvisation and letting go in interactive digital art. In Proceedings of the 7th International Conference on Movement and Computing (pp. 1-8).

Johnson, M., & Skarphol, M. (2018). The effects of digital portfolios and Flipgrid on student engagement and communication in a connected learning secondary visual arts classroom.

Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4401-4410).

Khattak, Z. I., Jamshed, T., Ahmad, A., & Baig, M. N. (2011). An investigation into the causes of English language learning anxiety in students at AWKUM. Procedia-Social and Behavioral Sciences, 15, 1600-1604.

Knochel, A. D., & Patton, R. M. (2015). If art education then critical digital making: Computational thinking and creative code. Studies in Art Education, 57(1), 21-38.

Linton, F. (2000) The Intranet: an open learning environment. Available online at: http://virtcampus.cl-ki.uniosnabrueck.de/its-2000/paper/poster4/ws2-poster-4.htm (accessed 14 March 2005).

Liu, W. (2018). Design of a digital art teaching platform based on automatic recording technology. International Journal of Emerging Technologies in Learning (Online), 13(8), 185.

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.

Nguyen, M. H. (2013). EFL Students' Reflections on Peer Scaffolding in Making a Collaborative Oral Presentation. English Language Teaching, 6(4), 64-73.

Oribhabor, C. B. (2020). Investigating the influence of computer anxiety on the academic performance of junior secondary school students in computer studies in Nigeria. arXiv preprint arXiv:2012.01188.

Paul, C. (2023). Digital art. Thames & Hudson.

Quinn, R. D. (2011). E-learning in art education: Collaborative meaning making through digital art production. Art Education, 64(4), 18-24.

Riazi, M., & Rezaii, M. (2011, October). Teacher-and peer-scaffolding behaviors: Effects on EFL students’ writing improvement. In Clesol 2010: Proceedings of the 12th national conference for community languages and ESOL (pp. 55-63).

Ruiz, N., Theobald, B. J., Ranjan, A., Abdelaziz, A. H., & Apostoloff, N. (2020). MorphGAN: One-shot face synthesis GAN for detecting recognition bias. arXiv preprint arXiv:2012.05225.

Sattigeri, P., Hoffman, S. C., Chenthamarakshan, V., & Varshney, K. R. (2018). Fairness GAN. arXiv preprint arXiv:1805.09910.

Shaham, T. R., Dekel, T., & Michaeli, T. (2019). SinGAN: Learning a generative model from a single natural image. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 4570-4580).

Sharma, P., & Hannafin, M. J. (2007). Scaffolding in technology-enhanced learning environments. Interactive Learning Environments, 15(1), 27-46. doi:10.1080/10494820600996972

Sweeny, R. W. (2004). Lines of sight in the “network society”: Simulation, art education, and a digital visual culture. Studies in Art Education, 46(1), 74-87.

Tang, H., Liu, H., Xu, D., Torr, P. H., & Sebe, N. (2021). AttentionGAN: Unpaired image-to-image translation using attention-guided generative adversarial networks. IEEE Transactions on Neural Networks and Learning Systems, 34(4), 1972-1987.

Taylor, P. G., & Carpenter, B. S. (2007). Mediating art education: Digital kids, art, and technology. Visual Arts Research, 84-95.

Tillander, M. (2011). Creativity, technology, art, and pedagogical practices. Art Education, 64(1), 40-46.

Vygotsky, L. S. (2012). Thought and language. MIT Press.

Warr, P., & Downing, J. (2000). Learning strategies, learning anxiety and knowledge acquisition. British Journal of Psychology, 91(3), 311-333.

Wickens, C. D., Hollands, J. G., Banbury, S., & Parasuraman, R. (2015).

Engineering psychology & human performance. New York, NY: Psychology Press.
Xing, B., & Marwala, T. (2018). Creativity and artificial intelligence: A digital art perspective. arXiv preprint arXiv:1807.08195.

Ye, Y. T. (2016). Design and implementation of digital art teaching system based on interactive virtual technology. International Journal of Emerging Technologies in Learning, 11(11).

Zhang, W., Ma, Y., Zhu, D., Dong, L., & Liu, Y. (2022, August). MetroGAN: Simulating urban morphology with generative adversarial network. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 2482-2492).

Zhou, Y. (2016, September). Research on the integration development of digital art education in the new media environment. In 2016 4th International Education, Economics, Social Science, Arts, Sports and Management Engineering Conference (IEESASM 2016) (pp. 76-79). Atlantis Press.

電子全文 電子全文(網際網路公開日期:20290723)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊