|
中文文獻 教育部資訊及科技教育司 (2013)。分組合作學習教學手冊。教育部資訊及科技教育司。 簡錦鳳(2007)。文字鷹架對七年級學生科學解釋能力的影響。 陳定邦(2003)。鷹架教學概念在成人學習歷程上應用之研究。 陳育琳、徐照麗 (2007) 。同儕鷹架理論對國三學生數學態度影響之研究. 陳淑苾(2017)。輔以寫作鷹架的開放式探究學習對國小學生形成實驗問題能力與學習成就的影響。 陳銹陵、陳明溥、韓宜娣 (2011)。 鷹架類型與先備知識對高職電腦軟體應用課程之成效探討。數位學習科技期刊, 3(1),頁 101-120。 鄭楹霖 (2009)。以無所不在學習系統降低英語字彙學習焦慮因素之研究。 謝州恩 (2013) 。鷹架理論的發展, 類型, 模式與對科學教學的啟示. 科學教育月刊, (364), 2-16. 英文文獻 Abdelghani, R., Sauzéon, H., & Oudeyer, P. Y. (2023). Generative AI in the classroom: Can students remain active learners? arXiv preprint arXiv:2310.03192.
Al Hashimi, S., Al Muwali, A., Zaki, Y., & Mahdi, N. (2019). The effectiveness of social media and multimedia-based pedagogy in enhancing creativity among art, design, and digital media students. International Journal of Emerging Technologies in Learning (iJET), 14(21), 176-190.
Azevedo, R., & Hadwin, A. F. (2005). Scaffolding self-regulated learning and metacognition–Implications for the design of computer-based scaffolds. Instructional science, 33(5/6), 367-379.
Barahona-Ríos, A., & Collins, T. (2021). SpecSinGAN: Sound effect variation synthesis using single-image GANs. arXiv preprint arXiv:2110.07311.
Bigham, B. S., Fannakhosrow, M., Safipour, A., Jafari, M., & Chenari, K. (2021). E-learning model for art education: Case study in Iran. arXiv preprint arXiv:2110.03904.
Black, J., & Browning, K. (2011). Creativity in digital art education teaching practices. Art Education, 64(5), 19-34.
Brock, A., Donahue, J., & Simonyan, K. (2018). Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096.
Cagiltay, K. (2006). Scaffolding strategies in electronic performance support systems: Types and challenges. Innovations in education and Teaching International, 43(1), 93-103.
Chang, C.-K. (2014). Effects of using Alice and Scratch in an introductoryprogramming course for corrective instruction. Journal of Educational Computing Research, 51(2), 185-204 Davis, E. A., & Miyake, N. (2004). Explorations of Scaffolding in Complex Classroom Systems. Journal of the Learning Sciences, 13(3), 265–272.
Duc, A. N., Lønnestad, T., Sundbø, I., Johannessen, M. R., Gabriela, V., Ahmed, S. U., & El-Gazzar, R. (2023). Generative AI in undergraduate information technology education--Insights from nine courses. arXiv preprint arXiv:2311.10199.
Elgammal, A., Liu, B., Elhoseiny, M., & Mazzone, M. (2017). CAN: Creative adversarial networks, generating "art" by learning about styles and deviating from style norms. arXiv preprint arXiv:1706.07068.
Gregersen, T., & Horwitz, E. K. (2002). Language learning and perfectionism: Anxious and non‐anxious language learners' reactions to their own oral performance. The Modern Language Journal, 86(4), 562-570.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems, 27.
González-Zamar, M. D., & Abad-Segura, E. (2021). Digital design in artistic education: An overview of research in the university setting. Education Sciences, 11(4), 144.
Halverson, E. R. (2013). Digital art making as a representational process. Journal of the Learning Sciences, 22(1), 121-162.
Hannafin, M. J. (1999) .Learning in open-ended environments: tools and technologies for the next millennium. Available online at: http://it.coe.uga.edu/itforum/paper34/paper34.html (accessed 14 March 2005) Hart, S. G., & Staveland, L. (1986). NASA Task Load Index (TLX). Volume 1.0; Paper and Pencil Package. California, CA: NASA Ames Research Center.
Hart, S. G. (2006). NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the 50th Annual Meeting of the Human Factors and Ergonomics Society, 50(9), 904-908.
Hill, J. R., & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology Research and Development, 49(3), 37-52. Impett, L., & Offert, F. (2023). There is a digital art history. arXiv preprint arXiv:2308.07464.
Jégo, J. F., & Meneghini, M. B. (2020, July). Let's resonate: How to elicit improvisation and letting go in interactive digital art. In Proceedings of the 7th International Conference on Movement and Computing (pp. 1-8).
Johnson, M., & Skarphol, M. (2018). The effects of digital portfolios and Flipgrid on student engagement and communication in a connected learning secondary visual arts classroom.
Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4401-4410).
Khattak, Z. I., Jamshed, T., Ahmad, A., & Baig, M. N. (2011). An investigation into the causes of English language learning anxiety in students at AWKUM. Procedia-Social and Behavioral Sciences, 15, 1600-1604.
Knochel, A. D., & Patton, R. M. (2015). If art education then critical digital making: Computational thinking and creative code. Studies in Art Education, 57(1), 21-38.
Linton, F. (2000) The Intranet: an open learning environment. Available online at: http://virtcampus.cl-ki.uniosnabrueck.de/its-2000/paper/poster4/ws2-poster-4.htm (accessed 14 March 2005).
Liu, W. (2018). Design of a digital art teaching platform based on automatic recording technology. International Journal of Emerging Technologies in Learning (Online), 13(8), 185.
Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.
Nguyen, M. H. (2013). EFL Students' Reflections on Peer Scaffolding in Making a Collaborative Oral Presentation. English Language Teaching, 6(4), 64-73.
Oribhabor, C. B. (2020). Investigating the influence of computer anxiety on the academic performance of junior secondary school students in computer studies in Nigeria. arXiv preprint arXiv:2012.01188.
Paul, C. (2023). Digital art. Thames & Hudson.
Quinn, R. D. (2011). E-learning in art education: Collaborative meaning making through digital art production. Art Education, 64(4), 18-24.
Riazi, M., & Rezaii, M. (2011, October). Teacher-and peer-scaffolding behaviors: Effects on EFL students’ writing improvement. In Clesol 2010: Proceedings of the 12th national conference for community languages and ESOL (pp. 55-63).
Ruiz, N., Theobald, B. J., Ranjan, A., Abdelaziz, A. H., & Apostoloff, N. (2020). MorphGAN: One-shot face synthesis GAN for detecting recognition bias. arXiv preprint arXiv:2012.05225.
Sattigeri, P., Hoffman, S. C., Chenthamarakshan, V., & Varshney, K. R. (2018). Fairness GAN. arXiv preprint arXiv:1805.09910.
Shaham, T. R., Dekel, T., & Michaeli, T. (2019). SinGAN: Learning a generative model from a single natural image. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 4570-4580).
Sharma, P., & Hannafin, M. J. (2007). Scaffolding in technology-enhanced learning environments. Interactive Learning Environments, 15(1), 27-46. doi:10.1080/10494820600996972
Sweeny, R. W. (2004). Lines of sight in the “network society”: Simulation, art education, and a digital visual culture. Studies in Art Education, 46(1), 74-87.
Tang, H., Liu, H., Xu, D., Torr, P. H., & Sebe, N. (2021). AttentionGAN: Unpaired image-to-image translation using attention-guided generative adversarial networks. IEEE Transactions on Neural Networks and Learning Systems, 34(4), 1972-1987.
Taylor, P. G., & Carpenter, B. S. (2007). Mediating art education: Digital kids, art, and technology. Visual Arts Research, 84-95.
Tillander, M. (2011). Creativity, technology, art, and pedagogical practices. Art Education, 64(1), 40-46.
Vygotsky, L. S. (2012). Thought and language. MIT Press.
Warr, P., & Downing, J. (2000). Learning strategies, learning anxiety and knowledge acquisition. British Journal of Psychology, 91(3), 311-333.
Wickens, C. D., Hollands, J. G., Banbury, S., & Parasuraman, R. (2015).
Engineering psychology & human performance. New York, NY: Psychology Press. Xing, B., & Marwala, T. (2018). Creativity and artificial intelligence: A digital art perspective. arXiv preprint arXiv:1807.08195.
Ye, Y. T. (2016). Design and implementation of digital art teaching system based on interactive virtual technology. International Journal of Emerging Technologies in Learning, 11(11).
Zhang, W., Ma, Y., Zhu, D., Dong, L., & Liu, Y. (2022, August). MetroGAN: Simulating urban morphology with generative adversarial network. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 2482-2492).
Zhou, Y. (2016, September). Research on the integration development of digital art education in the new media environment. In 2016 4th International Education, Economics, Social Science, Arts, Sports and Management Engineering Conference (IEESASM 2016) (pp. 76-79). Atlantis Press.
|