|
1.Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2009, 8 (1), 76–80. https://doi.org/10.1038/nmat2317. 2.Zhou, X.; Liu, N.; Schmidt, J.; Kahnt, A.; Osvet, A.; Romeis, S.; Zolnhofer, E. M.; Marthala, V. R. R.; Guldi, D. M.; Peukert, W. Noble-Metal-Free Photocatalytic Hydrogen Evolution Activity: The Impact of Ball Milling Anatase Nanopowders with TiH2. Adv. Mater. 2017, 29 (5), 1604747. https://doi.org/10.1002/adma.201604747. 3.Maeda, K. Photocatalytic Water Splitting Using Semiconductor Particles: History and Recent Developments. J. Photochem. Photobiol., C 2011, 12 (4), 237–268. https://doi.org/10.1016/j.jphotochemrev.2011.07.001. 4.Li, Y.; Li, Y.-L.; Sa, B.; Ahuja, R. Review of Two-Dimensional Materials for Photocatalytic Water Splitting from a Theoretical Perspective. Catal. Sci. Technol. 2017, 7 (3), 545–559. https://doi.org/10.1039/C6CY01976A. 5.Ganguly, P.; Byrne, C.; Breen, A.; Pillai, S. C. Antimicrobial Activity of Photocatalysts: Fundamentals, Mechanisms, Kinetics and Recent Advances. Appl. Catal., B 2018, 225, 51–75. https://doi.org/10.1016/j.apcatb.2017.11.018. 6.Ida, S.; Ishihara, T. Recent Progress in Two-Dimensional Oxide Photocatalysts for Water Splitting. J. Phys. Chem. Lett. 2014, 5 (15), 2533–2542. https://doi.org/10.1021/jz501055h. 7.Pacilé, D.; Meyer, J. C.; Girit, Ç. Ö.; Zettl, A. The Two-Dimensional Phase of Boron Nitride: Few-Atomic-Layer Sheets and Suspended Membranes. Appl. Phys. Lett. 2008, 92 (13), 133107. https://doi.org/10.1063/1.2903702. 8.Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Two-Dimensional Colloidal Nanocrystals. Chem. Rev. 2016, 116 (18), 10934–10982. https://doi.org/10.1021/acs.chemrev.6b00178. 9.Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D Transition Metal Dichalcogenides. Nat. Rev. Mater. 2017, 2 (8), 17033. https://doi.org/10.1038/natrevmats.2017.33. 10.Zhang, K.; Feng, Y.; Wang, F.; Yang, Z.; Wang, J. Two Dimensional Hexagonal Boron Nitride (2D-hBN): Synthesis, Properties and Applications. J. Mater. Chem. C 2017, 5 (46), 11992–12022. https://doi.org/10.1039/C7TC04300G. 11.Wen, J.; Xie, J.; Chen, X.; Li, X. A Review on g-C3N4-Based Photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. https://doi.org/10.1016/j.apsusc.2016.07.030. 12.Low, J.; Cao, S.; Yu, J.; Wageh, S. Two-Dimensional Layered Composite Photocatalysts. Chem. Commun. 2014, 50 (74), 10768–10777. https://doi.org/10.1039/C4CC03664D. 13.Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal Nanoplatelets with Two-Dimensional Electronic Structure. Nat. Mater. 2011, 10 (12), 936–941. https://doi.org/10.1038/nmat3145. 14.Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B. Spectroscopy of Single CdSe Nanoplatelets. ACS Nano 2012, 6 (8), 6751–6758. https://doi.org/10.1021/nn3014857. 15.Benchamekh, R.; Gippius, N. A.; Even, J.; Nestoklon, M. O.; Jancu, J.-M.; Ithurria, S.; Dubertret, B.; Efros, A. L.; Voisin, P. Tight-Binding Calculations of Image-Charge Effects in Colloidal Nanoscale Platelets of CdSe. Phys. Rev. B 2014, 89 (3), 035307. https://doi.org/10.1103/PhysRevB.89.035307. 16.Feldmann, J.; Peter, G.; Göbel, E. O.; Dawson, P.; Moore, K.; Foxon, C. T.; Elliott, R. J. Linewidth Dependence of Radiative Exciton Lifetimes in Quantum Wells. Phys. Rev. Lett. 1987, 59 (20), 2337–2340. https://doi.org/10.1103/PhysRevLett.59.2337. 17.Li, Q.; Liu, Q.; Schaller, R. D.; Lian, T. Reducing the Optical Gain Threshold in Two-Dimensional CdSe Nanoplatelets by the Giant Oscillator Strength Transition Effect. J. Phys. Chem. Lett. 2019, 10 (7), 1624–1632. https://doi.org/10.1021/acs.jpclett.9b00362. 18.Li, Q.; Lian, T. Area-and Thickness-Dependent Biexciton Auger Recombination in Colloidal CdSe Nanoplatelets: Breaking the “Universal Volume Scaling Law”. Nano Lett. 2017, 17 (5), 3152–3158. https://doi.org/10.1021/acs.nanolett.7b00522. 19.Grim, J. Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.; Moreels, I. Continuous-Wave Biexciton Lasing at Room Temperature Using Solution-Processed Quantum Wells. Nat. Nanotechnol. 2014, 9 (11), 891–895. https://doi.org/10.1038/nnano.2014.187. 20.Klimov, V. I.; Ivanov, S. A.; Nanda, J.; Achermann, M.; Bezel, I.; McGuire, J. A.; Piryatinski, A. Single-Exciton Optical Gain in Semiconductor Nanocrystals. Nature 2007, 447 (7143), 441–446. https://doi.org/10.1038/nature05839. 21.Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H.-J.; Bawendi, M. G. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots. Science 2000, 290 (5490), 314–317. https://doi.org/10.1126/science.290.5490.314. 22.Li, Q.; Lian, T. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets. Acc. Chem. Res. 2019, 52 (9), 2684–2693. https://doi.org/10.1021/acs.accounts.9b00252. 23.Yu, J.; Chen, R. Optical Properties and Applications of Two-Dimensional CdSe Nanoplatelets. InfoMat 2020, 2 (5), 905–927. https://doi.org/10.1002/inf2.12122. 24.Kulakovich, O.; Strekal, N.; Yaroshevich, A.; Maskevich, S.; Gaponenko, S.; Nabiev, I.; Woggon, U.; Artemyev, M. Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids. Nano Lett. 2002, 2 (12), 1449–1452. https://doi.org/10.1021/nl025844w. 25.Zhukovskyi, M.; Tongying, P.; Yashan, H.; Wang, Y.; Kuno, M. Efficient Photocatalytic Hydrogen Generation from Ni Nanoparticle Decorated CdS Nanosheets. ACS Catal. 2015, 5 (11), 6615–6623. https://doi.org/10.1021/acscatal.5b01505. 26.Magana, D.; Perera, S. C.; Harter, A. G.; Dalal, N. S.; Strouse, G. F. Switching-On Superparamagnetism in Mn/CdSe Quantum Dots. J. Am. Chem. Soc. 2006, 128 (9), 2931–2939. https://doi.org/10.1021/ja0581808. 27.Li, C.; Hsu, S.-C.; Lin, J.-X.; Chen, J.-Y.; Chuang, K.-C.; Chang, Y.-P.; Hsu, H.-S.; Chen, C.-H.; Lin, T.-S.; Liu, Y.-H. Giant Zeeman Splitting for Monolayer Nanosheets at Room Temperature. J. Am. Chem. Soc. 2020, 142 (49), 20616–20623. https://doi.org/10.1021/jacs.0c08952. 28.Yu, J. H.; Liu, X.; Kweon, K. E.; Joo, J.; Park, J.; Ko, K.-T.; Lee, D. W.; Shen, S.; Tivakornsasithorn, K.; Son, J. S.; et al. Giant Zeeman Splitting in Nucleation-Controlled Doped CdSe: Mn2+ Quantum Nanoribbons. Nat. Mater. 2010, 9 (1), 47–53. https://doi.org/10.1038/nmat2583. 29.Vlaskin, V. A.; Barrows, C. J.; Erickson, C. S.; Gamelin, D. R. Nanocrystal Diffusion Doping. J. Am. Chem. Soc. 2013, 135 (38), 14380–14389. https://doi.org/10.1021/ja406497s. 30.Saidzhonov, B.; Kozlovsky, V.; Zaytsev, V.; Vasiliev, R. Ultrathin CdSe/CdS and CdSe/ZnS Core-Shell Nanoplatelets: The Impact of the Shell Material on the Structure and Optical Properties. J. Lumin. 2019, 209, 170–178. https://doi.org/10.1016/j.jlumin.2019.01.034. 31.Li, Z. J.; Wang, J. J.; Li, X. B.; Fan, X. B.; Meng, Q. Y.; Feng, K.; Chen, B.; Tung, C. H.; Wu, L. Z. An Exceptional Artificial Photocatalyst, NiH-CdSe/CdS Core/Shell Hybrid, Made In Situ from CdSe Quantum Dots and Nickel Salts for Efficient Hydrogen Evolution. Adv. Mater. 2013, 25 (45), 6613–6618. https://doi.org/10.1002/adma.201302512. 32.Kamat, P. V. Graphene-Based Nanoassemblies for Energy Conversion. J. Phys. Chem. Lett. 2011, 2 (3), 242–251. https://doi.org/10.1021/jz101639v. 33.Geim, A. K.; Novoselov, K. S. The Rise of Graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals; World Scientific: 2010; pp 11–19. 34.Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y. A Facile One-Step Method to Produce Graphene–CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials. Adv. Mater. 2010, 22 (1), 103–106. https://doi.org/10.1002/adma.200902850. 35.Lin, Y.; Zhang, K.; Chen, W.; Liu, Y.; Geng, Z.; Zeng, J.; Pan, N.; Yan, L.; Wang, X.; Hou, J. Dramatically Enhanced Photoresponse of Reduced Graphene Oxide with Linker-Free Anchored CdSe Nanoparticles. ACS Nano 2010, 4 (6), 3033–3038. https://doi.org/10.1021/nn1003166. 36.Luo, J.; Kim, J.; Huang, J. Material Processing of Chemically Modified Graphene: Some Challenges and Solutions. Acc. Chem. Res. 2013, 46 (10), 2225–2234. https://doi.org/10.1021/ar300165g. 37.Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J. The Chemistry of Graphene. J. Mater. Chem. 2010, 20 (12), 2277–2289. https://doi.org/10.1039/B920539J. 38.Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc. 2008, 130 (18), 5856–5857. https://doi.org/10.1021/ja800745y. 39.Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39 (1), 228–240. https://doi.org/10.1039/B917103G. 40.Mao, S.; Pu, H.; Chen, J. Graphene Oxide and Its Reduction: Modeling and Experimental Progress. RSC Adv. 2012, 2 (7), 2643–2662. https://doi.org/10.1039/C2RA00663B. 41.Gómez-Navarro, C.; Meyer, J. C.; Sundaram, R. S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic Structure of Reduced Graphene Oxide. Nano Lett. 2010, 10 (4), 1144–1148. https://doi.org/10.1021/nl9031617. 42.Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H.; Chhowalla, M. Insulator to Semimetal Transition in Graphene Oxide. J. Phys. Chem. C 2009, 113 (35), 15768–15771. https://doi.org/10.1021/jp9051402. 43.Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g‐C3N4‐Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8 (3), 1701503. https://doi.org/10.1002/aenm.201701503. 44.Li, Y.; Li, X.; Zhang, H.; Fan, J.; Xiang, Q. Design and Application of Active Sites in g-C3N4-Based Photocatalysts. J. Mater. Sci. Technol. 2020, 56, 69–88. https://doi.org/10.1016/j.jmst.2020.05.031. 45.Li, X.; Zhang, J.; Huo, Y.; Dai, K.; Li, S.; Chen, S. Two-Dimensional Sulfur-and Chlorine-Codoped g-C3N4/CdSe-Amine Heterostructures Nanocomposite with Effective Interfacial Charge Transfer and Mechanism Insight. Appl. Catal. B Environ. 2021, 280, 119452. https://doi.org/10.1016/j.apcatb.2020.119452. 46.Perreault, F.; De Faria, A. F.; Elimelech, M. Environmental Applications of Graphene-Based Nanomaterials. Chem. Soc. Rev. 2015, 44 (16), 5861–5896. https://doi.org/10.1039/C5CS00021A. 47.Tian, Z.; Li, J.; Zhu, G.; Lu, J.; Wang, Y.; Shi, Z.; Xu, C. Facile Synthesis of Highly Conductive Sulfur-Doped Reduced Graphene Oxide Sheets. Phys. Chem. Chem. Phys. 2016, 18 (2), 1125–1130. https://doi.org/10.1039/C5CP05825K. 48.Song, L.; Zhang, J.; Sun, L.; Xu, F.; Li, F.; Zhang, H.; Si, X.; Jiao, C.; Li, Z.; Liu, S.; Liu, Y.; Zhou, H.; Sun, D.; Du, Y.; Cao, Z.; Gabelica, Z. Mesoporous Metal–Organic Frameworks: Design and Applications. Energy Environ. Sci. 2012, 5 (10), 7508–7520. https://doi.org/10.1039/C2EE22055C. 49.謝, 政穎. 魔術尺寸硒化鎘奈米團簇物及二維結構之合成、鑑定與應用 (Master's thesis, 國立臺灣師範大學, Taipei, 2016). 50.謝, 宗恩. 魔術尺寸-硒化鎘奈米團簇物之結構解析與陰/陽離子取代之二維結構硒化鎘奈米片之應用探討 (Master's thesis, 國立臺灣師範大學, Taipei, 2018). 51.Liu, C.; Sakimoto, K. K.; Colón, B. C.; Silver, P. A.; Nocera, D. G. Ambient Nitrogen Reduction Cycle Using a Hybrid Inorganic–Biological System. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (25), 6450–6455. https://doi.org/10.1073/pnas.1706371114. 52.Huynh, M.; Shi, C.; Billinge, S. J. L.; Nocera, D. G. Nature of Activated Manganese Oxide for Oxygen Evolution. J. Am. Chem. Soc. 2015, 137 (47), 14887–14904. https://doi.org/10.1021/jacs.5b09212. 53.Bediako, D. K.; Surendranath, Y.; Nocera, D. G. Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Thin Film Electrocatalyst. J. Am. Chem. Soc. 2013, 135 (9), 3662–3674. https://doi.org/10.1021/ja312691z. 54.莊, 凱鈞. 錳摻雜單層二維量子結構半導體之合成、鑑定及應用 (Master's thesis, 國立臺灣師範大學, Taipei, 2021). 55.Zubair, M.; Mustafa, M.; Ali, A.; Doh, Y. H.; Choi, K. H. Improvement of Solution Based Conjugate Polymer Organic Light Emitting Diode by ZnO–Graphene Quantum Dots. J. Mater. Sci. Mater. Electron. 2015, 26 (5), 3344–3351. https://doi.org/10.1007/s10854-015-2820-1. 56.Marneffe, J.-F. D.; Chan, B. T.; Spieser, M.; Vereecke, G.; Naumov, S.; Vanhaeren, D.; Wolf, H.; Knoll, A. W. Conversion of a Patterned Organic Resist into a High Performance Inorganic Hard Mask for High Resolution Pattern Transfer. ACS Nano 2018, 12 (11), 11152–11160. https://doi.org/10.1021/acsnano.8b05522. 57.Klein, N.; Senkovska, I.; Gedrich, K.; Stoeck, U.; Henschel, A.; Mueller, U.; Kaskel, S. A Mesoporous Metal–Organic Framework. Angew. Chem., Int. Ed. 2009, 48 (52), 9954–9957. https://doi.org/10.1002/anie.200904637. 58.Dufour, M.; Izquierdo, E.; Livache, C.; Martinez, B.; Silly, M. G.; Pons, T.; Lhuillier, E.; Delerue, C.; Ithurria, S. Doping as a Strategy to Tune Color of 2D Colloidal Nanoplatelets. ACS Appl. Mater. Interfaces 2019, 11 (11), 10128–10134. https://doi.org/10.1021/acsami.8b19700.
|