|
Afzaal, H., Farooque, A. A., Abbas, F., Acharya, B., & Esau, T. (2019). Groundwater estimation from major physical hydrology components using artificial neural networks and deep learning. *Water, 12*(1), 5. Biq, C. C. (1972). Dual-trench structure in Taiwan–Luzon region. *Proc. Geol. Soc. China, 15*, 65–75. Bonilla, M. G. (1977). Summary of Quaternary faulting and elevation changes in Taiwan. *Mem. Geol. Soc. China, 2*, 43–56. Chan, Y. C., Hu, J. C., Shen, L. C., Chen, R. F., Rau, R. J., Chen, K. H., ... & Nien, P. F. (2007). Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan. *Journal of Asian Earth Sciences*. doi:10.1016/j.jseaes.2006.07.020. Chiang, S. C. (1971). Seismic study of the Chaochou structure, Taiwan. *Pet. Geol. Taiwan, 8*, 281–294. Ching, K. E., Rau, R. J., Lee, J. C., & Hu, J. C. (2007). Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005. Earth and Planetary Science Letters, 262(3-4), 601-619. Cutter, S. L., Ismail-Zadeh, A., Alcántara-Ayala, I., Altan, O., Baker, D. N., Briceño, S., ... & Wu, G. (2015). Global risks: Pool knowledge to stem losses from disasters. Nature, 522(7556), 277-279. Dilley, M. (2005). *Natural disaster hotspots: a global risk analysis* (Vol. 5). World Bank Publications. Gao, W., Li, Z., Chen, Q., Jiang, W., & Feng, Y. (2022). Modelling and prediction of GNSS time series using GBDT, LSTM and SVM machine learning approaches. *Journal of Geodesy, 96*(10), 71. Heflin, M., Donnellan, A., Parker, J., Lyzenga, G., Moore, A., Ludwig, L. G., Rundle, J., Wang, J., & Pierce, M. (2020). Automated estimation and tools to extract positions, velocities, breaks, and seasonal terms from daily GNSS measurements: illuminating nonlinear salton trough deformation. *Earth and Space Science, 7*(7), e2019EA000644. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 Hooker, S., Erhan, D., Kindermans, P. J., & Kim, B. (2018). Evaluating feature importance estimates. arXiv preprint arXiv:1806.10758, 2. Hu, J. C., Angelier, J., & Yu, S. B. (1997). An interpretation of the active deformation of southern Taiwan based on numerical simulation and GPS studies. Tectonophysics, 274(1-3), 145-169. Hu, J. C., Yu, S. B., Angelier, J., & Chu, H. T. (2001). Active deformation of Taiwan from GPS measurements and numerical simulations. Journal of Geophysical Research: Solid Earth, 106(B2), 2265-2280. Hu, J.C., Hou, C.S., Shen, L.C., Chan, Y.C., Chen, R.F., Huang, C., Rau, R.J., Chen, K.H., Lin, C.W., Huang, M.H., Nien, P.F., 2007. Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwest- ern Taiwan. J. Asian Earth Sci. doi:10.1016/j.jseaes.2006.07.020. Jan, C. D., Lee, M. H., & Huang, T. H. (2002). Rainfall threshold criterion for debris flow initiation. Lewis, C., Chen, S. W., & Yen, P. C. (2004). Magnetic surveying of the Chaochou fault of southern Taiwan: culmination of basement-involved surface thrusting in arc–continent collision. *International Geology Review, 46*, 399–408. Liu, Y. H., Yeh, T. C., Chen, K. H., Chen, Y., Yen, Y. Y., & Yen, H. Y. (2019). Investigation of single‐station classification for short tectonic tremor in Taiwan. Journal of Geophysical Research: Solid Earth, 124(8), 8803-8822. Malet, J. P., Maquaire, O., & Calais, E. (2002). The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology, 43(1-2), 33-54. Miao, Y., Shi, Y., & Wang, S. Y. (2018). Temporal change of near-surface shear wave velocity associated with rainfall in Northeast Honshu, Japan. *Earth, Planets and Space, 70*, 1-11. Moss, J., McGuire, B., & Gilman, J. (1997). UNDER TTHE VOLCANO MEASURING DEFORMATION ON ITALY'S MOUNT ETNA. GPS World, 8(4), 22-33. Petit, G. (2010). *IERS conventions* (2010). Petit, G., & Luzum, B. (2010). *IERS conventions*. Technical report, Bureau International des Poids et Mesures, Sevres (France). Puskas CM, Meertens CM, Phillips D (2017) Hydrologic loading model displacements from the national and global data assimilation systems (NLDAS and GLDAS). UNAVCO Geodetic Data Service Group Shirzaei, M., Freymueller, J., Törnqvist, T. E., Galloway, D. L., Dura, T., & Minderhoud, P. S. (2021). Measuring, modelling and projecting coastal land subsidence. Nature Reviews Earth & Environment, 2(1), 40-58. Singh, V. V., Biskupek, L., Müller, J., & Zhang, M. (2021). Impact of non-tidal station loading in LLR. *Advances in Space Research, 67*(12), 3925–3941. Steer, P., Jeandet, L., Cubas, N., Marc, O., Meunier, P., Simoes, M., ... & Hovius, N. (2020). Earthquake statistics changed by typhoon-driven erosion. *Scientific Reports, 10*(1), 10899. Sun, J., Hu, L., Li, D., Sun, K., & Yang, Z. (2022). Data-driven models for accurate groundwater level prediction and their practical significance in groundwater management. Journal of Hydrology, 608, 127630. Take, W. A., Beddoe, R. A., Davoodi-Bilesavar, R., & Phillips, R. (2015). Effect of antecedent groundwater conditions on the triggering of static liquefaction landslides. Landslides, 12, 469-479. Tóth, J. (1970). A conceptual model of the groundwater regime and the hydrogeologic environment. *Journal of Hydrology, 10*(2), 164-176. Vapnik, V., & Chervonenkis, A. (1963). A note on class of perceptrons. Automation and Remote Control, 25, 103-104. Vapnik, V. N., Golowich, S. E., & Smola, A. (1997). Support vector method for function approximation, regression estimation, and signal processing. In Advances in Neural Information Processing Systems (NIPS), 281-287. Wright, S. (1921). Correlation and causation. Journal of agricultural research, 20(7), 557. Yan, H. M., Chen, W., Zhu, Y. Z., Zhang, W. M., Zhong, M., & Liu, G. Y. (2010). Thermal effects on vertical displacement of GPS stations in China. *Chinese Journal of Geophysics, 53*(2), 252–260. Zhai, Q., Peng, Z., Chuang, L. Y., Wu, Y.-M., Hsu, Y.-J., & Wdowinski, S. (2021). Investigating the impacts of a wet typhoon on microseismicity: A case study of the 2009 typhoon Morakot in Taiwan based on a template matching catalog. *Journal of Geophysical Research: Solid Earth, 126*, e2021JB023026. https://doi.org/10.1029/2021JB023026 行政院. (2022). 災害防救白皮書. 行政院. 經濟部水資源局. (1999). 臺灣地區地下水觀測網整體計畫第一期(81∼87年度)成果彙編. 經濟部水利署.(2011). 應用資料同化法推估地下水抽水量. 水利署電子報第 0139 期. 經濟部. 經濟部水利署.(2015). 中華民國 100 年 水利統計. 經濟部. 經濟部水利署. (2023). 地層下陷狀況. 經濟部水利署. 取自https://www.wra.gov.tw/cp.aspx?n=3679 洪偉嘉, & 黃金維. (2008). 應用多重感應器監測雲林地區三維變形 (Doctoral dissertation). 洪如江. (2009). 坡地災害防治. 水利土木科技資訊季刊, 46, 7-15. 簡俊彥. (1987). 台灣沿海地區地層下陷問題. 地工技術雜誌, 20, 50-56. 柯佳宏. (2019). 屏東大潮州地下水人工湖之補注池水文地質特性調查之研究 (Master's thesis, 屏東科技大學土木工程系所), 1-74. 邱正鈞, 萬昱廷, & 王士榮. (2020). 以倒傳遞類神經網路進行地下水位與抽水量推估. Journal of Taiwan Agricultural Engineering, 66(2). 蔡存孝, & 謝勝信. (2020). LSTM於屏東平原地層下陷區地下水位預測模型研究. Journal of Taiwan Agricultural Engineering, 66(2). 陳宏宇. (2000). 台灣山崩之工程地質特性. 地工技術, (79), 59-70. https://doi.org/10.30140/SG.200006.0005 陳振宇, 陳均維, 陳國威, & 林詠喬. (2019). 坡地降雨致災熱區警戒模式. Journal of Chinese Soil and Water Conservation, 50(1), 1-10. 陳樹群, 蔡喬文, 陳振宇, & 陳美珍. (2013). 筒狀模式之土壤雨量指數應用於土石流防災警戒. Journal of Chinese Soil and Water Conservation, 44(2), 131-143. 徐享崑, 劉豐壽, & 鄭昌奇. (1995). 臺灣地區地層下陷之現況, 成因與對策. 台灣水利, 43(3), 19-29. 吳怡瑩, 劉哲欣, & 張志新. (2013). 降雨量與表層土壤含水量關係之研究. 社團法人中華水土保持學會102年度年會.
|