|
[1]Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., ... & Sutskever, I. (2021, July). Zero-shot text-to-image generation. In International conference on machine learning (pp. 8821-8831). Pmlr. [2]Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In 2004 conference on computer vision and pattern recognition workshop, pages 178–178. IEEE, 2004. [3]Zhang, Renrui, et al. "Tip-adapter: Training-free adaption of clip for few-shot classification." European conference on computer vision. Cham: Springer Nature Switzerland, 2022. [4]Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012 IEEE conference on computer vision and pattern recognition, pages 3498–3505. IEEE, 2012. [5]Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pages 722–729. IEEE, 2008. [6]Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative components with random forests. In European conference on computer vision, pages 446–461. Springer, 2014. [7]Wang, Y., Yao, Q., Kwok, J. T., & Ni, L. M. (2020). Generalizing from a few examples: A survey on few-shot learning. ACM computing surveys (csur), 53(3), 1-34. [8]Hariharan, B., & Girshick, R. (2017). Low-shot visual recognition by shrinking and hallucinating features. In Proceedings of the IEEE international conference on computer vision (pp. 3018-3027). [9]Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual models from natural language supervision. In International conference on machine learning (pp. 8748-8763). PMLR. [10]Zhou, Y., Li, C., Chen, C., Gao, J., & Xu, J. (2022). Lafite2: Few-shot text-to-image generation. arXiv preprint arXiv:2210.14124. [11]Sun, Y., Cheng, C., Zhang, Y., Zhang, C., Zheng, L., Wang, Z., & Wei, Y. (2020). Circle loss: A unified perspective of pair similarity optimization. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6398-6407). [12]Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). Ieee. [13]Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. [14]Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27. [15]Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., ... & He, Q. (2020). A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), 43-76. [16]Benaim, S., & Wolf, L. (2018). One-shot unsupervised cross domain translation. advances in neural information processing systems, 31. [17]Shyam, P., Gupta, S., & Dukkipati, A. (2017, July). Attentive recurrent comparators. In International conference on machine learning (pp. 3173-3181). PMLR. [18]Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266), 1332-1338. [19]Kozerawski, J., & Turk, M. (2018). Clear: Cumulative learning for one-shot one-class image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3446-3455). [20]Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D. (2016). Matching networks for one shot learning. Advances in neural information processing systems, 29. [21]Motiian, S., Jones, Q., Iranmanesh, S., & Doretto, G. (2017). Few-shot adversarial domain adaptation. Advances in neural information processing systems, 30. [22]Yan, L., Zheng, Y., & Cao, J. (2018). Few-shot learning for short text classification. Multimedia Tools and Applications, 77, 29799-29810. [23]Koch, G., Zemel, R., & Salakhutdinov, R. (2015, July). Siamese neural networks for one-shot image recognition. In ICML deep learning workshop (Vol. 2, No. 1). [24]Keshari, R., Vatsa, M., Singh, R., & Noore, A. (2018). Learning structure and strength of CNN filters for small sample size training. In proceedings of the IEEE conference on computer vision and pattern recognition (pp. 9349-9358). [25]Hoffman, J., Tzeng, E., Donahue, J., Jia, Y., Saenko, K., & Darrell, T. (2013). One-shot adaptation of supervised deep convolutional models. arXiv preprint arXiv:1312.6204. [26]Finn, C., Abbeel, P., & Levine, S. (2017, July). Model-agnostic meta-learning for fast adaptation of deep networks. In International conference on machine learning (pp. 1126-1135). PMLR. [27]Dhillon, G. S., Chaudhari, P., Ravichandran, A., & Soatto, S. (2019). A baseline for few-shot image classification. arXiv preprint arXiv:1909.02729. [28]Chen, W. Y., Liu, Y. C., Kira, Z., Wang, Y. C. F., & Huang, J. B. (2019). A closer look at few-shot classification. arXiv preprint arXiv:1904.04232. [29]Zhu, C., Chen, F., Ahmed, U., Shen, Z., & Savvides, M. (2021). Semantic relation reasoning for shot-stable few-shot object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8782-8791). [30]Xian, Y., Akata, Z., Sharma, G., Nguyen, Q., Hein, M., & Schiele, B. (2016). Latent embeddings for zero-shot classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 69-77). [31]Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4), 307-392. [32]Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3), 107-115. [33]Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958. [34]Wah, C., Branson, S., Welinder, P., Perona, P., & Belongie, S. (2011). The caltech-ucsd birds-200-2011 dataset. [35]Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D. (2016). Matching networks for one shot learning. Advances in neural information processing systems, 29.
|