跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 18:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李友瑋
研究生(外文):Lee, You-Wei
論文名稱:光波長對臺灣東北角產張氏龍鬚菜和糾結龍鬚菜之成長及洋菜膠品質的影響
論文名稱(外文):Light spectral effects on the growth and agar quality of Gracilaria changii and Gracilaria perplexa from northeastern coast of Taiwan
指導教授:龔紘毅張睿昇張睿昇引用關係
指導教授(外文):Gong, Hong-YiChang, Jui-Sheng
口試委員:李宗徽徐振豐林泓廷龔紘毅張睿昇
口試委員(外文):Lee, Tzong-HueiShyu, Jeng-FengLin, Hong-TingGong, Hong-YiChang, Jui-Sheng
口試日期:2024-01-09
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:49
中文關鍵詞:張氏龍鬚菜糾結龍鬚菜光波長相對成長率洋菜膠產率凝膠強度
外文關鍵詞:Gracilaria changiiGracilaria perplexaLight spectralRelative growth rateAgar yieldGel strength
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
龍鬚菜(Gracilaria)廣泛分布於溫帶至熱帶地區,是一可食用,且作為萃取洋菜膠的主要海藻,藻體可藉由斷裂生殖方式快速成長,是全球海藻養殖產量第三大的種類。本研究培養臺灣東北角產兩種龍鬚菜,確立人工養殖之可行性並探討光波長對於藻體成長率和洋菜膠品質的影響。
兩種採集自臺灣東北角海岸的龍鬚菜,經PCR鑑定比對,分別是張氏龍鬚菜(Gracilaria changii)和糾結龍鬚菜(Gracilaria perplexa)。隨後培養於溫度25℃、光照強度45 μmol photons m-2s-1、光週期12L:12D的室內環境下進行人工馴化,進行保種與後續相關實驗。比較兩種龍鬚菜與東北角產優美石花菜(Gelidium elegan)之洋菜膠含量與凝膠強度的差異,分別是 62.47±7.65%和43.97±1.22%,而優美石花菜只有33.24±0.07%,但凝膠強度測量結果,優美石花菜仍遠優於兩種龍鬚菜。
因兩種龍鬚菜係採自近岸水深3公尺的沙地環境,且有大量聚積的現象,因此本研究使用白、藍、紅及綠色等色種光波長,作為兩種龍鬚菜的培養光源,探討不同光波長對其成長率、洋菜膠產率及凝膠強度的影響。實驗結果顯示,兩種龍鬚菜在白色光波長下具有最高的相對成長率,分別是8.56±0.02%・day-1和7.80±0.21%・day-1,屬於成長快速的龍鬚菜種類。張氏龍鬚菜在不同光波長條件下洋菜膠產率介於52.86±1.62%~56.23±2.46%,無顯著差異;糾結龍鬚菜則是在紅色光波長,有最高的洋菜膠產率67.54±2.17%,高於採自野外的藻體。凝膠強度方面,張氏龍鬚菜在1.5%濃度下無法形成凝膠狀;糾結龍鬚菜在白色光波長下具有最高的凝膠強度26.21±2.17 g/cm2。結果顯示使用白色光波長養殖糾結龍鬚菜有助於藻體成長並且能夠生產品質較好的洋菜膠,而紅色光波長可以提升洋菜膠的產率。目前兩種龍鬚菜皆能夠在室內環境下進行全年養殖,可作為後續臺灣原生種龍鬚菜人工養殖開發與應用之藻種。

Gracilaria are widely distributed in temperate and tropical regions. They are an edible seaweed and the major source for agar extraction, which can grow rapidly through vegetative reproduction, known as the third-largest specie in the global seaweed aquaculture production. The study aims to cultivate two Gracilaria species from northeastern coast of Taiwan, confirm the feasibility of artificial cultivation and investigate the impact of light spectral on the growth and agar quality.
Two Gracilaria species collected from northeastern coast of Taiwan were identified by PCR, they were Gracilaria changii and Gracilaria perplexa. Cultivated under temperature 25℃, light intensity 45 μmol photons m-2s-1 and light period 12L:12D to acclimatize indoor environment. Aimed at species conservation and conducting subsequent relevant experiment. The comparison of agar content and gel strength on G. changii, G. perplexa and Gelidium elegan from northeastern coast of Taiwan. The agar content for G. changii and G. perplexa was 62.47±7.65% and 43.97±1.22%, respectively. While G. elegan had a lower agar content of 33.24±0.07%. However, on gel strength, G. elegan still outperformed than two Gracilaria species.
Due to two Gracilaria species collected from sandy environment with the water depth approximately 3 meters, exhibited the aggregation phenomenon near the shore coast. The study utilized four light spectral, including white, blue, red and green light to cultivate G. changii and G. perplexa, investigating the impact of light spectral on the growth, agar yield and gel strength. The result showed that both G. changii and G. perplexa got the highest relative growth rate under white light spectral, with 8.56±0.02%・day-1 and 7.80±0.21%・day-1, respectively. Furthermore, G. changii under different light spectral showed the range from 52.86±1.62% to 56.23±2.46%, there is no significant difference in statistical analysis.; On the other hand, G. perplexa under red light spectral, with the highest agar yield 67.54±2.17%. Higher than the algae collected from the wild environment. On gel strength, G. changii can’t form to gel at 1.5% concentration; G. perplexa exhibited the highest gel strength 26.21±2.17 g/cm2 under white light spectral. The results indicate white light spectral can promotes growth rate and produces best agar quality in G. perplexa, while red light spectral can elevate the agar yield. Currently, two species of Gracilaria can culture in indoor environment all the year. They can serve as native Gracilaria species in Taiwan for subsequent artificial cultivation development and application.

謝辭 I
摘要 II
Abstract III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 前言 1
一、大型海藻應用 1
二、全球海藻養殖 1
三、光照條件與海藻生長 2
四、龍鬚菜 2
4.1龍鬚菜分類 2
4.2龍鬚菜形態與生活習性 3
4.3龍鬚菜生活史 3
4.4龍鬚菜養殖 3
4.5龍鬚菜應用價值 4
4.6洋菜膠經濟價值與應用 4
五、研究動機與目的 5
第二章 研究材料與方法 7
一、研究材料與儀器 7
1.1 DNA萃取藥品 7
1.2 PCR藥品 7
1.3海藻培養基藥品配製 8
1.4洋菜膠萃取藥品 9
1.5儀器與設備 9
二、研究方法與步驟 10
2.1藻體培養與藻種基因鑑定 10
2.2張氏龍鬚菜與糾結龍鬚菜洋菜膠的萃取 12
2.3光波長對於兩種龍鬚菜成長、洋菜膠產率及凝膠強度的影響 13
2.4統計分析 14
第三章 結果 15
一、臺灣東北角龍鬚菜DNA基因定序鑑定藻種 15
二、張氏龍鬚菜與糾結龍鬚菜洋菜膠的萃取 15
2.1張氏龍鬚菜與糾結龍鬚菜洋菜膠產率的比較 15
2.2張氏龍鬚菜與糾結龍鬚菜洋菜膠凝膠強度的比較 15
三、光波長對於兩種龍鬚菜成長、洋菜膠產率及凝膠強度的影響 16
3.1光波長對於兩種龍鬚菜相對成長率的影響 16
3.2光波長對於兩種龍鬚菜洋菜膠產率的影響 16
3.3光波長對於兩種龍鬚菜洋菜膠凝膠強度的影響 17
3.4鹼處理對於糾結龍鬚菜洋菜膠產率及凝膠強度的影響 17
第四章 討論 18
一、臺灣東北角龍鬚菜DNA基因定序鑑定藻種 18
二、張氏龍鬚菜與糾結龍鬚菜洋菜膠的萃取 18
2.1張氏龍鬚菜與糾結龍鬚菜洋菜膠產率的比較 18
2.2張氏龍鬚菜與糾結龍鬚菜洋菜膠凝膠強度的比較 19
三、不同光波長對於兩種龍鬚菜成長、洋菜膠產率及凝膠強度的影響 19
3.1光波長對於兩種龍鬚菜相對成長率的影響 19
3.2光波長對於兩種龍鬚菜洋菜膠產率的影響 20
3.3光波長對於兩種龍鬚菜洋菜膠凝膠強度的影響 21
3.4鹼處理對於糾結龍鬚菜洋菜膠產率及凝膠強度的影響 22
第五章 結論 23
參考文獻 24

李國誥、劉秉忠、黃之暘、吳韋毅(2016)。養殖九孔細菌性疾病調查研究。水產試驗所特刊第一號「九孔種苗生產及病害防治」,25-30。
劉熾揚(2003)。飼料中龍鬚菜添加量對草蝦成長及脂肪酸組成之影響。海水繁養殖研究,1(2),49-57。
林世榮、丁雲源(2003)。龍鬚菜循環淨化下放養不同密度草蝦之養殖效果。海水繁養殖研究,1(2),25-34。
洪郁嵐、黃培安、朱永淳、吳純衡(2015)。利用反應曲面法探討龍鬚菜類蕈孢素胺基酸之較適萃取條件。水產研究,23 (2),75-87。
鍾國芳、邵廣昭(2022)。臺灣物種名錄 https://taicol.tw (2023-12-16查詢)
Al-Zahrani, A., Al-Haj, N., Omer, H., & Al-Judaibi, A.(2014). Impact of extracts of marine macroalgae on multidrug-resistant bacteria. Journal of Microbiology Research, 4(6A), 18-24.
Araki, C.(1966). Some recent studies on the polysaccharides of agarophytes. Paper presented at the Proceedings of the fifth international seaweed symposium, Halifax, August 25–28, 1965.
Armisen, R.(1995). World-wide use and importance of Gracilaria. Journal of Applied Phycology, 7, 231-243.
Barufi, J. B., Figueroa, F. L., & Plastino, E. M.(2015). Effects of light quality on reproduction, growth and pigment content of Gracilaria birdiae(Rhodophyta: Gracilariales). Scientia Marina, 79(1), 15-24.
Becker, C. F., Guimarães, J. A., Mourão, P. A., & Verli, H. (2007). Conformation of sulfated galactan and sulfated fucan in aqueous solutions: Implications to their anticoagulant activities. Journal of Molecular Graphics and Modelling, 26(1), 391-399.
Biebl, R.(1962). Seaweeds. Physiology and Biochemistry of Algae, 799-815.
Bixler, H. J., & Porse, H.(2011). A decade of change in the seaweed hydrocolloids industry. Journal of Applied Phycology, 23(3), 321-335.
Cai, J., Lovatelli, A., Stankus, A., & Zhou, X.(2021). Seaweed revolution: where is the next milestone? FAO Aquaculture Newsletter(63), 13-16.
Carrol, J. W., Thomas, J., Dunaway, C., & O'kelley, J. C.(1970). Light induced synchronization of algal species that divide preferentially in darkness. Photochemistry and Photobiology, 12(2), 91-98.
Costa, D. S., Araujo, T. S., Sousa, N. A., Souza, L. K., Pacífico, D. M., Sousa, F. B. M., Freitas, A. L. P.(2016). Sulphated polysaccharide isolated from the seaweed Gracilaria caudata exerts an antidiarrhoeal effect in rodents. Basic & Clinical Pharmacology & Toxicology, 118(6), 440-448.
de Aragao, A. P., de Oliveira, T. M., Quelemes, P. V., Perfeito, M. L. G., Araujo, M. C., Santiago, J. d. A. S., da Silva, D. A.(2019). Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arabian Journal of Chemistry, 12(8), 4182-4188.
Di, T., Chen, G., Sun, Y., Ou, S., Zeng, X., & Ye, H. (2017). Antioxidant and immunostimulating activities in vitro of sulfated polysaccharides isolated from Gracilaria rubra. Journal of Functional Foods, 28, 64-75.
Ekman, P., & Pedersén, M. (1990). The influence of photon irradiance, day length, dark treatment, temperature, and growth rate on the agar composition of Gracilaria sordida W. Nelson and Gracilaria verrucosa (Hudson) Papenfuss (Gigartinales, Rhodophyta).
Ekman, P., Yu, S., & Pedersen, M.(1991). Effects of altered salinity, darkness and algal nutrient status on floridoside and starch content, α-galactosidase activity and agar yield of cultivated Gracilaria sordida. British Phycological Journal, 26(2), 123-131.
Essa, M. M., Akbar, M., & Guillemin, G.(2016). The Benefits of Natural Products for Neurodegenerative Diseases (Vol. 232): Springer.
Fisheries, F.(2022). The state of world fisheries and aquaculture. towards blue transformation.
Freile-Pelegrın, Y., & Murano, E.(2005). Agars from three species of Gracilaria (Rhodophyta) from Yucatán Peninsula. Bioresource Technology, 96(3), 295-302.
García-Poza, S., Leandro, A., Cotas, C., Cotas, J., Marques, J. C., Pereira, L., & Gonçalves, A. M. (2020). The evolution road of seaweed aquaculture: cultivation technologies and the industry 4.0. International Journal of Environmental Research and Public Health, 17(18), 6528.
Garza-Sanchez, F., Zertuche-Gonzalez, J., & Chapman, D.(2000). Effect of temperature and irradiance on the release, attachment and survival of spores of Gracilaria pacifica Abbott(Rhodophyta).
Glicksman, M. (1987). Utilization of seaweed hydrocolloids in the food industry. Paper presented at the Twelfth International Seaweed Symposium: Proceedings of the Twelfth International Seaweed Symposium held in Sao Paulo, Brazil, July 27–August 1, 1986.
Gomez, L., Alvarez, C., Zhao, M., Tiwari, U., Curtin, J., Garcia-Vaquero, M., & Tiwari, B.(2020). Innovative processing strategies and technologies to obtain hydrocolloids from macroalgae for food applications. Carbohydrate Polymers, 248, 116784.
Gowdhami, B., Jaabir, M., Archunan, G., & Suganthy, N.(2019). Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis. Materials Science and Engineering: C, 103, 109840.
Guiry, M.D. & Guiry, G.M. 2024. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on 4 February 2024
Guo, J., Qi, M., Chen, H., Zhou, C., Ruan, R., Yan, X., & Cheng, P.(2022). Macroalgae-Derived Multifunctional Bioactive Substances: The Potential Applications for Food and Pharmaceuticals. Foods, 11(21), 3455.
Gurgel, C. F. D., & Fredericq, S.(2004). Systematics of the gracilariaceae(gracilariales, rhodophyta): a critical assessment based on rbcl sequence analyses 1. Journal of Phycology, 40(1), 138-159.
Harley, C. D., Anderson, K. M., Demes, K. W., Jorve, J. P., Kordas, R. L., Coyle, T. A., & Graham, M. H.(2012). Effects of climate change on global seaweed communities. Journal of Phycology, 48(5), 1064-1078.
Jiao, G., Yu, G., Zhang, J., & Ewart, H. S. (2011). Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Marine Drugs, 9(2), 196-223.
Kang, J. H., KrishnaKumar, S., Atulba, S. L. S., Jeong, B. R., & Hwang, S. J.(2013). Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Horticulture, Environment, and Biotechnology, 54, 501-509.
Kannaujiya, V. K., Singh, P. R., Kumar, D., & Sinha, R. P.(2020). Phycobiliproteins in microalgae: Occurrence, distribution, and biosynthesis. Pigments from Microalgae Handbook, 43-68.
Kim, J. K., Mao, Y., Kraemer, G., & Yarish, C.(2015). Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting. Aquaculture, 436, 52-57.
Koenig-Oberhuber, V., & Filipovic, M.(2016). New antiplatelet drugs and new oral anticoagulants. BJA: British Journal of Anaesthesia, 117(suppl_2), ii74-ii84.
Kumar, V., & Fotedar, R.(2009). Agar extraction process for Gracilaria cliftonii. Carbohydrate polymers, 78(4), 813-819.
Kuragodage, A. U., Cumaranatunga, P. R., & Deepananda, K. H.(2022). Effect of light colour on Gracilaria edulis growth and agar. International Aquatic Research, 14(3).
Leandro, A., Pereira, L., & Gonçalves, A. M.(2019). Diverse applications of marine macroalgae. Marine drugs, 18(1), 17.
Lee, W.-K., Lim, Y.-Y., Leow, A. T.-C., Namasivayam, P., Abdullah, J. O., & Ho, C.-L.(2017a). Factors affecting yield and gelling properties of agar. Journal of Applied Phycology, 29, 1527-1540.
Lee, W.-K., Lim, Y.-Y., Leow, A. T.-C., Namasivayam, P., Abdullah, J. O., & Ho, C.-L. (2017b). Factors affecting yield and gelling properties of agar. Journal of Applied Phycology, 29, 1527-1540.
Leódido, A. C. M., Costa, L. E., Araújo, T. S., Costa, D. S., Sousa, N. A., Souza, L. K., Silva, F. R.(2017). Anti-diarrhoeal therapeutic potential and safety assessment of sulphated polysaccharide fraction from Gracilaria intermedia seaweed in mice. International Journal of Biological Macromolecules, 97, 34-45.
Li, H., Yu, X., Jin, Y., Zhang, W., & Liu, Y.(2008). Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis. Bioresource Technology, 99(8), 3301-3305.
Lin, Y.-C., Yeh, S.-T., Li, C.-C., Chen, L.-L., Cheng, A.-C., & Chen, J.-C.(2011). An immersion of Gracilaria tenuistipitata extract improves the immunity and survival of white shrimp Litopenaeus vannamei challenged with white spot syndrome virus. Fish & Shellfish Immunology, 31(6), 1239-1246.
Lobban, C. S., & Harrison, P. J.(1994). Seaweed ecology and physiology: Cambridge University Press.
Macler, B. A. (1986). Regulation of carbon flow by nitrogen and light in the red alga, Gelidium coulteri. Plant Physiology, 82(1), 136-141.
Macler, B. A., & Zupan, J. R.(1991). Physiological basis for the cultivation of the Gelidiaceae. Hydrobiologia, 221, 83-90.
Madhavan, S. (2015). A review on hydrocolloids-agar and alginate. Journal of Pharmaceutical Sciences and Research, 7(9), 704.
Manley, S. L., & Burns, D. J.(1991). Formation of nucleoside diphosphate monosaccharide(NDP‐sugars) by the agarophyte Pterocladia capillacea(Rhodophyceae)1. Journal of Phycology, 27(6), 702-709.
Mantri, V. A., Thakur, M. C., Kumar, M., Reddy, C., & Jha, B.(2009). The carpospore culture of industrially important red alga Gracilaria dura(Gracilariales, Rhodophyta). Aquaculture, 297(1-4), 85-90.
Marinho-Soriano, E., & Bourret, E. (2003). Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresource technology, 90(3), 329-333.
McHugh, D. J.(2003). A guide to the seaweed industry. FAO fisheries technical paper, 441, 105.
McLachlan, J., & Bird, C.(1986). Gracilaria(Gigartinales, Rhodophyta) and productivity. Aquatic Botany, 26, 27-49.
Meena, R., Prasad, K., Ganesan, M., & Siddhanta, A. (2008). Superior quality agar from Gracilaria species (Gracilariales, Rhodophyta) collected from the Gulf of Mannar, India. Journal of Applied Phycology, 20, 397-402.
Mohanta, Y. K., Mishra, A. K., Nayak, D., Patra, B., Bratovcic, A., Avula, S. K., Saravanan, M.(2022). Exploring dose-dependent cytotoxicity profile of Gracilaria edulis-mediated green synthesized silver nanoparticles against MDA-MB-231 breast carcinoma. Oxidative Medicine and Cellular Longevity, 2022.
Monteiro, V. S., Teles, F. B., Coura, C. O., Souza, R. B., Lima, C. N. d. C., Costa, D. V. d. S., Vasconcelos, S. M. M.(2016). Involvement of the GABAergic system in the anxiolytic effect of sulfated polysaccharides from the red seaweed Gracilaria cornea. Journal of Applied Phycology, 28, 1997-2004.
Nagler, P. L., Glenn, E. P., Nelson, S. G., & Napolean, S.(2003). Effects of fertilization treatment and stocking density on the growth and production of the economic seaweed Gracilaria parvispora(Rhodophyta)in cage culture at Molokai, Hawaii. Aquaculture, 219(1-4), 379-391.
Nelson, S. G., Glenn, E. P., Conn, J., Moore, D., Walsh, T., & Akutagawa, M.(2001). Cultivation of Gracilaria parvispora(Rhodophyta) in shrimp-farm effluent ditches and floating cages in Hawaii: a two-phase polyculture system. Aquaculture, 193(3-4), 239-248.
Nishinari, K., & Fang, Y.(2017). Relation between structure and rheological/thermal properties of agar. A mini-review on the effect of alkali treatment and the role of agaropectin. Food Structure, 13, 24-34.
Nishinari, K., & Watase, M.(1983). Effect of alkali pretreatment on the rheological properties of concentrated agar-agar gels. Carbohydrate polymers, 3(1), 39-52.
Oliveira, E. C., Alveal, K., & Anderson, R. J.(2000). Mariculture of the agar-producing Gracilarioid red algae. Reviews in Fisheries Science, 8(4), 345-377.
Peng, C., Hong-BO, S., Di, X., & Song, Q.(2009). Progress in Gracilaria biology and developmental utilization: main issues and prospective. Reviews in Fisheries Science, 17(4), 494-504.
Porse, H., & Rudolph, B.(2017). The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. Journal of Applied Phycology, 29(5), 2187-2200.
Rama Rao, K., & Thomas, P.(1974). Shedding of carpospores in Gracilaria edulis(Gmel. ) Silva. Phykos, 13, 54-59.
Rees, D. A.(1969). Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. Advances in Carbohydrate Chemistry and Biochemistry, 24, 267-332.
Rincones, R. E., Yu, S., & Pedersen, M.(1993). Effect of dark treatment on the starch degradation and the agar quality of cultivated Gracilariopsis lemaneiformis(Rhodophyta, Gracilariales) from Venezuela. Hydrobiologia, 260, 633-640.
Rocha de Souza, M. C., Marques, C. T., Guerra Dore, C. M., Ferreira da Silva, F. R., Oliveira Rocha, H. A., & Leite, E. L. (2007). Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. Journal of Applied Phycology, 19, 153-160.
Shukla, M. K., Kumar, M., Prasad, K., Reddy, C., & Jha, B. (2011). Partial characterization of sulfohydrolase from Gracilaria dura and evaluation of its potential application in improvement of the agar quality. Carbohydrate Polymers, 85(1), 157-163.
Silva-Brito, F., Pereira, S. G., Rocha, C. M., da Costa, E., Domingues, M. R., Azevedo, A., Magnoni, L.(2021). Improving agar properties of farmed Gracilaria gracilis by using filtered sunlight. Journal of Applied Phycology, 33(5), 3397-3411.
Skriptsova, A. V., & Nabivailo, Y. V.(2009). Comparison of three gracilarioids: growth rate, agar content and quality. Journal of Applied Phycology, 21, 443-450.
Sousa, A. M., Alves, V., Morais, S., Delerue-Matos, C., & Gonçalves, M. P. (2010). Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: Evaluation of a microwave-assisted process using response surface methodology. Bioresource Technology, 101(9), 3258-3267.
Souza, R. B., Frota, A. F., Sousa, R. S., Cezario, N. A., Santos, T. B., Souza, L. M. F., Vasconcelos, S. M. M.(2017). Neuroprotective effects of sulphated agaran from marine alga Gracilaria cornea in rat 6‐hydroxydopamine Parkinson's disease model: behavioural, neurochemical and transcriptional alterations. Basic & Clinical Pharmacology & Toxicology, 120(2), 159-170.
Souza, B. W., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Martins, J. T., Teixeira, J. A., Vicente, A. A. (2012). Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids, 27(2), 287-292.
Sudharsan, S., Subhapradha, N., Seedevi, P., Shanmugam, V., Madeswaran, P., Shanmugam, A., & Srinivasan, A. (2015). Antioxidant and anticoagulant activity of sulfated polysaccharide from Gracilaria debilis (Forsskal). International Journal of Biological Macromolecules, 81, 1031-1038.
Yang, L.-E., Lu, Q.-Q., & Brodie, J. (2017). A review of the bladed Bangiales (Rhodophyta) in China: history, culture and taxonomy. European Journal of Phycology, 52(3), 251-263.
Yaphe, W.(1984). Properties of Gracilaria agars. Paper presented at the Eleventh International Seaweed Symposium: Proceedings of the Eleventh International Seaweed Symposium, held in Qingdao, People’s Republic of China, June 19–25, 1983.
Yu, S., & Pedersen, M.(1990). The effect of salinity changes on the activity of α-galactosidase of the red algae Gracilaria sordida and G. tenuistipitata.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top