|
[1]H.J. Meigh, Cast and Wrought Aluminium Bronzes, 2018. [2]I. Richardson, Guide to Nickel Aluminium Bronze for Engineers, Copper Development Association Publication No.222, 2016. [3]X.M. Zhang, K. Sun, X.H. Gong, C.M. Jiang, J. Zhou, F. Xue, IOP Conference Series. Materials Science and Engineering, vol. 436, p. 12-19, 2018 [4]B-148 Standard Specification for Aluminum-Bronze Sand Castings, American Society for Testing and Materials, 2014 [5]C. Weill and A. D: INFLUENCE DE LA COMPOSITION ET DE LA STRUCTURE DES CUPRO-ALUMINIUMS SUR LEUR COMPORTEMENT EN SERVICE, vol. 28, pp. 123-135, 1973 [6]D. Soares, C.G. Vilarinho, R. Silva, F. Castro, Influence of the iron content on the solidification behaviour of cast aluminium bronze used in marine applications, 2001. [7]C.H. Tang, F.T. Cheng, H.C. Man, Effect of laser surface melting on the corrosion and cavitation erosion behaviors of a manganese–nickel–aluminium bronze, Materials Science and Engineering: A, vol. 373, pp. 195-203, 2004 [8]S. Poojary, V. Marakini, R.N. Rao, V. Vijayan, Enhancing microstructure and mechanical properties of nickel aluminium bronze alloy through tin addition, Scientific Report, vol. 13, 2023 [9]F. Hasen, A. Jahanafrooz, G.W. Lorimer, N. Ridley, The Morphology, Crystallography, and Chemistry of Phases in As-Cast Nickel-Aluminum Bronze, Metallurgical Transactions A, vol. 13, pp. 1337-1345, 1982. [10]S. Öztürk, S.E. Sünbül, A. Metoğlu, S. Önal, K. İçin, Characterisation of nickel–aluminium bronze powders produced by the planar flow casting method, Materials Science and Technology, vol. 36, pp. 1771–1784, 2020. [11]F. Hasan, G.W. Lorimer, and N. Ridley, CRYSTALLOGRAPHY OF MARTENSITE IN A Cu-10Al-5Ni-5Fe ALLOY, Journal De Physique, vol. 43, pp. C4 653-658, 1982. [12]G.W. Lorimer, An analytical electron microscopic investigation of a nickel-aluminium-bronze alloy, Ultramicroscopy, vol. 19, pp. 405, 1986 [13]F. Hasan,J. Iqbal, N. Ridley, Microstructure of as-cast aluminium bronze containing iron, Materials Science and Technology, vol. 1, pp. 312-315, 1985. [14]P. Brezina, Heat treatment of complex aluminium bronzes, International Metals Reviews, vol. 27, pp. 77-120, 1952. [15]A. Al-Hashem, W. Riad, The role of microstructure of nickel–aluminium–bronze alloy on its cavitation corrosion behavior in natural seawater, Materials Characterization, vol. 48, pp. 37-41, 2002 [16]G. W. Lorimer, F. Hasan, J. Iqbal, N. Ridley, Observation of microstructure and corrosion behaviour of some aluminium bronzes, British Corrosion Journal, vol. 21, pp. 244-248, 1986 [17]I. Halkijevic, D. Bekic, G. Loncar, K. Potocki, Latest Developments in Sustainable Water Management, Future Trends in Civil Engineering, 2019. [18]M. Dular, T. Požar, J. Zevnik, R. Petkovšek, High speed observation of damage created by a collapse of a single cavitation bubble, Wear, vol. 418-419, pp. 13-23, 2019. [19]A. Al-Hashem, P.G. Caceres, W.T. Riad, H.M. Shalaby, Cavitation Corrosion Behavior of Cast Nickel-Aluminum Bronze in Seawater, Corrosion, vol. 51, pp. 331-342, 1995. [20]Y. Ding, Y. Lv, K. Chen, B. Zhao, Y. Han, L. Wang, W. Lu, Effects of microstructure on the stress corrosion cracking behavior of nickel-aluminum bronze alloy in 3.5% NaCl solution, Materials Science and Engineering: A, vol. 733, pp. 361-373, 2018. [21]A. Alavi, K. Ranjbar, S.M. Mousavi, D.A. Yancheshmeh, Study on Failure Analyses and Material Characterizations of a Damaged Booster Pump, Journal of Failure Analysis and Prevention, vol. 3, pp. 489–495, 2013. [22]W. Neville, P.E. Sachs, Understanding the surface features of fatigue fractures: How they describe the failure cause and the failure history, Journal of Failure Analysis and Prevention, vol. 5, pp. 11-15, 2005. [23]P. Kazanowski, Die Performance Optimization through Understanding of the Surface Features of Fatigue Fractures, 2008. [24]M.Y. Bhuiyan, J. Bap, B. Poddar, V. Giurgiutiu, Analysis of acoustic emission waveforms from fatigue cracks, 2017. [25]P. Zamani, K. Kolasangiani, Experimental Investigation on Fatigue Evaluation of Orthopaedic Locking Compression Plateˮ, Advanced Design and Manufacturing Technology, vol. 11, pp. 47-52, 2018. [26]C. Laird, G.C. Smith, Crack propagation in high stress fatigue, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, vol. 7, pp. 847-857, 1962. [27]A.B. Nissan, K.O. Findley, 12.16 - Microstructures and Mechanical Performance of Induction-Hardened Medium-Carbon Steels, Comprehensive Materials Processing, vol. 12, pp. 581-604, 2014. [28]J. Linder, M. Axelsson, H. Nilsson, The influence of porosity on the fatigue life for sand and permanent mould cast aluminium, International Journal of Fatigue, vol. 28, pp. 1752-1758, 2006. [29]J.T. Wang, Y.K. Zhang, J.F. Chen, J.Y. Zhou, K.Y. Luo, W.S. Tan, L.Y. Sun, Y.L. Lu, Effect of laser shock peening on the high-temperature fatigue performance of 7075 aluminum alloy, Materials Science and Engineering: A, vol. 704, pp. 459-468, 2017. [30]Y. Gao, Improvement of fatigue property in 7050–T7451 aluminum alloy by laser peening and shot peening, Materials Science and Engineering A, vol. 528, pp. 3823-3828, 2011. [31]K. Tanaka, Fatigue Crack Propagation, Comprehensive Structural Integrity, vol. 4, pp. 95-127, 2003. [32]R.O. Ritchie, Near-threshold fatigue-crack propagation in steels, International Metals Reviews, vol. 24, pp. 205-230, 2013. [33]F. Nair, Analysis of the fatigue fracture surface in nitrided AISI H13 steel, Journal of the Balkan Tribological Association, vol. 16, pp. 340-352, 2010. [34]eFunda, High-Cycle Fatigue- The S-N Curve, https://www.efunda.com/formulae/solid_mechanics/fatigue/fatigue_highcycle.cfm [35]Ľ. Gajdos, M. Šperl a, J. Kaiser, V. Mentl, Microplastic Limit of Steels as a Means of Fatigue Limit Determination, Procedia Engineering, vol. 66, pp.635-642, 2013. [36]J. Li, Q. Sun, Z. Zhang, C.W. Li, Y.J, Qiao, Theoretical estimation to the cyclic yield strength and fatigue limit for alloy steels, Mechanics Research Communications, vol. 36, pp.316-321, 2009. [37]O.H. Basquin, The Exponential Law of Endurance Tests, American Society for Testing and Materials Proceedings, vol. 10, pp. 625-630, 1910. [38]C.E. Stromeyer, The determination of fatigue limits under alternating stress conditions, Proceedings of Royal Society A, vol. 90, 1914. [39]A.G. Palmgren, Life Length of Roller Bearings or Durability of Ball Bearings, Zeitschrift des Vereines Deutscher Ingenieure (ZVDI), vol. 14, pp. 339-341, 1924. [40]Y. Murakami, T. Takagi, K. Wada, H. Matsunaga, Essential structure of S-N curve: Prediction of fatigue life and fatigue limit of defective materials and nature of scatter, International Journal of Fatigue, vol. 146, 106138, 2021. [41]X. Xu, Y. Lv, M. Hu, D. Xiong, L. Zhang, L. Wang, W. Lu, Influence of second phases on fatigue crack growth behavior of nickel aluminum bronze, International Journal of Fatigue, vol. 82, pp. 579-587, 2016. [42]E. Maawad, H.G. Brokmeier, L. Wagner, Texture Gradients in Shot Peened Ti2.5Cu, Solid State Phenomena, vol. 160, pp. 141-146, 2010. [43]O. Unal, E. Maleki, I. Karademir, F. Husem, Y. Efe, T. Das, Effects of conventional shot peening, severe shot peening, re-shot peening and precised grinding operations on fatigue performance of AISI 1050 railway axle steel, International Journal of Fatigue, vol. 155, 106613, 2022. [44]Ç. Salim, Determination of Shot Peening Effect on Fatigue Behavior of AISI steel by Non-Destructive Measurement of Surface Residual Stresses, Master’s Thesis, 2018. [45]C.H. Su, T.C. Chen, L.W. Tsay, Improved fatigue strength of Cr-electroplated 7075-T6 Al alloy by micro-shot peening, International Journal of Fatigue, vol. 167, 107354, 2023. [46]X. Li, J. Zhang, B. Yang, J. Zhang, M. Wu, L. Lu, Effect of micro-shot peening, conventional shot peening and their combination on fatigue property of EA4T axle steel, Journal of Materials Processing Technology, vol. 275, 116320, 2020. [47]Y.H. Chung,T.C. Chen ,H.B. Lee, L.W. Tsay, Effect of Micro-Shot Peening on the Fatigue Performance of AISI 304 Stainless Steel, Metals, vol. 11, pp. 1408, 2021. [48]S. Narayanan, S. Park, M. Lee, 2 - Surface modification of magnesium and its alloys for biomedical applications: Opportunities and challenges, Surface Modification of Magnesium and its Alloys for Biomedical Applications, vol. 1, pp. 29-87, 2015. [49]W.L. Xu, T.M. Yue, H.C. Man, C.P. Chan, Laser surface melting of aluminium alloy 6013 for improving pitting corrosion fatigue resistance, Surface and Coatings Technology, vol. 200, pp. 5077-5086, 2006. [50]Z.Q. CUI, H.X. SHI, W.X. WANG, B.S. XU, Laser surface melting AZ31B magnesium alloy with liquid nitrogen-assisted cooling, Transactions of Nonferrous Metals Society of China, vol.25, pp. 1446-1453, 2015. [51]A. Aydogdu, Y. Aydogdu, O. Adiguzel, The influence of ageing on martensite ordering and stabilization in shape memory Cu-Al-Ni alloys, Materials Research Bulletin, vol. 32, pp. 507-513, 1997.
|