跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/08 06:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧冠勳
研究生(外文):Lu, Guan-Xun
論文名稱:微粒子珠擊與雷射表面重熔處理對高強度銅合金之疲勞性質影響研究
論文名稱(外文):Study on the Effect of Micro-shot Peening and Laser Surface Melting on Fatigue Properties of High Strength Copper Alloys
指導教授:蔡履文
指導教授(外文):Tsay, Leu-Wen
口試委員:李弘彬薛人愷
口試委員(外文):Lee, Hung-BinShiue, Ren-Kai
口試日期:2024-06-27
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電與材料科技學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:76
中文關鍵詞:鎳鋁青銅微粒子珠擊雷射表面重熔旋轉疲勞
外文關鍵詞:Ni-Al bronzemicro-shot peenlaser-surface-meltingrotating bending fatigue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究是以微粒子珠擊與雷射表面重熔兩種表面改質處理製程,探討高強度鎳鋁青銅之高周疲勞性能與疲勞破斷機構。實驗條件分別為未經表面改質處理、經珠擊處理、經雷射表面重熔和雷射表面重熔後再珠擊等四項條件。實驗內容包含以SEM觀察各條件金相組織、試片表面形貌;使用TEM分析重熔層組織;利用微小維克式硬度試驗機與奈米壓痕試驗機分別量測巨觀硬度分佈與珠擊層硬度變化;以EBSD分析雷射表面重熔層之板條狀組織與珠擊後之奈米晶分佈情形;利用白光干涉儀量測各條件之表面粗糙度;運用XRD分析各試件組成相差異與殘留應力分析;最後進行旋轉疲勞試驗紀錄各條件之疲勞性能,並觀察破斷面分析斷裂機構。
  實驗結果顯示:經雷射表面重熔後之鎳鋁青銅, 表面形成一均勻層具方向性凝固之柱狀晶顯微組織,並伴隨殘留張應力分佈,重熔層結構經XRD繞射分析為具18R疊差類型的β1’介穩麻田散體。經珠擊處理之鎳鋁青銅表面仍殘存層狀κIII相,表層有高的殘留壓應力分佈與細化晶粒,三種表面改質處理試件中具最低粗糙度,並顯示最好的疲勞性能。經雷射表面重熔處理後其疲勞性能相比母材有顯著退化,且破斷面最外層顯現出明顯的方向性破裂形貌。而雷射重熔後再珠擊僅能將疲勞效能提升至與母材相同或略優於母材。

The main goal of this study is to investigate the high-cycle fatigue performance and fatigue fracture mechanism of a high strength copper alloy Ni-Al Bronze (NAB) treated by two surface modification processes, namely, micro-shot peening (MSP) and laser surface melting (LSM). Distinct samples include the as-received substrate (NBM), with the MSP (NSP), with the LSM (LSM), and combined LSM and MSP (LSP) treatments. The microstructure and fatigue-fractured appearance were examined with an SEM. Quantitative chemical compositions of different phases in the examined specimens were analyzed with an electron probe micro-analyzer (EPMA) equipped with a wavelength-dispersive spectroscope (WDS). The surface metrology of the treated NAB was detected with a 3D contour profiler. The refined microstructure after MSP and re-melted microstructure after LSM were identified by electron backscatter diffraction (EBSD). The fatigue performance of the treated NAB was evaluated by rotating bending fatigue tests in laboratory air and compared with the as-received one.
LSM could homogenize the NAB into a uniform microstructure with refined columnar grains in the laser-melt zone, but introduced residual tensile stress (RTS). The generated heat and bombardment induced by MSP could not wholly remove the granular κII precipitates and lamellar κIII phase in the peened zone of the NAB alloy but introduced residual compressive stress (RCS) into the treated sample under the peening intensity of this work. The results of fatigue tests revealed that the LSM sample had the poorest, but the shot-peened (NSP) sample showed the best fatigue performance among the tested samples. Moreover, the fatigue performance of the LSP (LSM+MSP) sample was equivalent to or a little better than that of the NBM sample. The RTS and aligned columnar grains accounted for the degraded fatigue resistance of the LSM sample. The high RCS and the refined structure were responsible for the improved fatigue strength/life of the NSP sample relative to that of the other samples.

目錄
摘要
Abstract
第一章 前言
第二章 文獻回顧
2-1 鋁青銅介紹
2-1-1 合金元素對鋁青銅的影響
2-2 鎳鋁青銅
2-2-1 鑄造鎳鋁青銅之顯微組織與析出相
2-2-2 鎳鋁青銅之腐蝕機構
2-3金屬疲勞簡介
2-3-1 疲勞破斷面特徵
2-3-2 疲勞裂縫的誘發
2-3-3 疲勞裂縫的擴展與動力學
2-3-4 旋轉疲勞試驗(Rotating bending fatigue)
2-3-5 S-N曲線
2-3-6 鎳鋁青銅之疲勞行為
2-4 珠擊簡介
2-4-1 傳統珠擊與微粒子珠擊
2-5 雷射表面改質簡介
2-5-1雷射表面重熔應用
第三章 實驗流程與方法
3-1 實驗材料
3-2 實驗流程
3-3 金相製備方式
3-4 旋轉疲勞試驗流程
3-5 微小維克式硬度(Vickers hardness test)實驗
3-6 奈米壓痕(Nano-indentation)實驗
3-7 殘留應力(Residual stress)分佈量測
3-8 X光晶體繞射(XRD)分析
3-9 顯微組織與破斷面觀察(SEM、TEM)
3-10 電子背像散射繞射(EBSD)分析
3-11 電子微探針(EPMA)分析
3-12 表面粗糙度量測
第四章 實驗結果與討論
4-1 顯微組織觀察
4-2 表面粗糙度分析
4-3 硬度分析
4-4 XRD晶體結構與殘留應力分析
4-5 電子背向散射繞射分析
4-6 旋轉疲勞S-N曲線
4-7 疲勞破斷面觀察
第五章 結論
參考文獻

[1]H.J. Meigh, Cast and Wrought Aluminium Bronzes, 2018.
[2]I. Richardson, Guide to Nickel Aluminium Bronze for Engineers, Copper Development Association Publication No.222, 2016.
[3]X.M. Zhang, K. Sun, X.H. Gong, C.M. Jiang, J. Zhou, F. Xue, IOP Conference Series. Materials Science and Engineering, vol. 436, p. 12-19, 2018
[4]B-148 Standard Specification for Aluminum-Bronze Sand Castings, American Society for Testing and Materials, 2014
[5]C. Weill and A. D: INFLUENCE DE LA COMPOSITION ET DE LA STRUCTURE DES CUPRO-ALUMINIUMS SUR LEUR COMPORTEMENT EN SERVICE, vol. 28, pp. 123-135, 1973
[6]D. Soares, C.G. Vilarinho, R. Silva, F. Castro, Influence of the iron content on the solidification behaviour of cast aluminium bronze used in marine applications, 2001.
[7]C.H. Tang, F.T. Cheng, H.C. Man, Effect of laser surface melting on the corrosion and cavitation erosion behaviors of a manganese–nickel–aluminium bronze, Materials Science and Engineering: A, vol. 373, pp. 195-203, 2004
[8]S. Poojary, V. Marakini, R.N. Rao, V. Vijayan, Enhancing microstructure and mechanical properties of nickel aluminium bronze alloy through tin addition, Scientific Report, vol. 13, 2023
[9]F. Hasen, A. Jahanafrooz, G.W. Lorimer, N. Ridley, The Morphology, Crystallography, and Chemistry of Phases in As-Cast Nickel-Aluminum Bronze, Metallurgical Transactions A, vol. 13, pp. 1337-1345, 1982.
[10]S. Öztürk, S.E. Sünbül, A. Metoğlu, S. Önal, K. İçin, Characterisation of nickel–aluminium bronze powders produced by the planar flow casting method, Materials Science and Technology, vol. 36, pp. 1771–1784, 2020.
[11]F. Hasan, G.W. Lorimer, and N. Ridley, CRYSTALLOGRAPHY OF MARTENSITE IN A Cu-10Al-5Ni-5Fe ALLOY, Journal De Physique, vol. 43, pp. C4 653-658, 1982.
[12]G.W. Lorimer, An analytical electron microscopic investigation of a nickel-aluminium-bronze alloy, Ultramicroscopy, vol. 19, pp. 405, 1986
[13]F. Hasan,J. Iqbal, N. Ridley, Microstructure of as-cast aluminium bronze containing iron, Materials Science and Technology, vol. 1, pp. 312-315, 1985.
[14]P. Brezina, Heat treatment of complex aluminium bronzes, International Metals Reviews, vol. 27, pp. 77-120, 1952.
[15]A. Al-Hashem, W. Riad, The role of microstructure of nickel–aluminium–bronze alloy on its cavitation corrosion behavior in natural seawater, Materials Characterization, vol. 48, pp. 37-41, 2002
[16]G. W. Lorimer, F. Hasan, J. Iqbal, N. Ridley, Observation of microstructure and corrosion behaviour of some aluminium bronzes, British Corrosion Journal, vol. 21, pp. 244-248, 1986
[17]I. Halkijevic, D. Bekic, G. Loncar, K. Potocki, Latest Developments in Sustainable Water Management, Future Trends in Civil Engineering, 2019.
[18]M. Dular, T. Požar, J. Zevnik, R. Petkovšek, High speed observation of damage created by a collapse of a single cavitation bubble, Wear, vol. 418-419, pp. 13-23, 2019.
[19]A. Al-Hashem, P.G. Caceres, W.T. Riad, H.M. Shalaby, Cavitation Corrosion Behavior of Cast Nickel-Aluminum Bronze in Seawater, Corrosion, vol. 51, pp. 331-342, 1995.
[20]Y. Ding, Y. Lv, K. Chen, B. Zhao, Y. Han, L. Wang, W. Lu, Effects of microstructure on the stress corrosion cracking behavior of nickel-aluminum bronze alloy in 3.5% NaCl solution, Materials Science and Engineering: A, vol. 733, pp. 361-373, 2018.
[21]A. Alavi, K. Ranjbar, S.M. Mousavi, D.A. Yancheshmeh, Study on Failure Analyses and Material Characterizations of a Damaged Booster Pump, Journal of Failure Analysis and Prevention, vol. 3, pp. 489–495, 2013.
[22]W. Neville, P.E. Sachs, Understanding the surface features of fatigue fractures: How they describe the failure cause and the failure history, Journal of Failure Analysis and Prevention, vol. 5, pp. 11-15, 2005.
[23]P. Kazanowski, Die Performance Optimization through Understanding of the Surface Features of Fatigue Fractures, 2008.
[24]M.Y. Bhuiyan, J. Bap, B. Poddar, V. Giurgiutiu, Analysis of acoustic emission waveforms from fatigue cracks, 2017.
[25]P. Zamani, K. Kolasangiani, Experimental Investigation on Fatigue Evaluation of Orthopaedic Locking Compression Plateˮ, Advanced Design and Manufacturing Technology, vol. 11, pp. 47-52, 2018.
[26]C. Laird, G.C. Smith, Crack propagation in high stress fatigue, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, vol. 7, pp. 847-857, 1962.
[27]A.B. Nissan, K.O. Findley, 12.16 - Microstructures and Mechanical Performance of Induction-Hardened Medium-Carbon Steels, Comprehensive Materials Processing, vol. 12, pp. 581-604, 2014.
[28]J. Linder, M. Axelsson, H. Nilsson, The influence of porosity on the fatigue life for sand and permanent mould cast aluminium, International Journal of Fatigue, vol. 28, pp. 1752-1758, 2006.
[29]J.T. Wang, Y.K. Zhang, J.F. Chen, J.Y. Zhou, K.Y. Luo, W.S. Tan, L.Y. Sun, Y.L. Lu, Effect of laser shock peening on the high-temperature fatigue performance of 7075 aluminum alloy, Materials Science and Engineering: A, vol. 704, pp. 459-468, 2017.
[30]Y. Gao, Improvement of fatigue property in 7050–T7451 aluminum alloy by laser peening and shot peening, Materials Science and Engineering A, vol. 528, pp. 3823-3828, 2011.
[31]K. Tanaka, Fatigue Crack Propagation, Comprehensive Structural Integrity, vol. 4, pp. 95-127, 2003.
[32]R.O. Ritchie, Near-threshold fatigue-crack propagation in steels, International Metals Reviews, vol. 24, pp. 205-230, 2013.
[33]F. Nair, Analysis of the fatigue fracture surface in nitrided AISI H13 steel, Journal of the Balkan Tribological Association, vol. 16, pp. 340-352, 2010.
[34]eFunda, High-Cycle Fatigue- The S-N Curve, https://www.efunda.com/formulae/solid_mechanics/fatigue/fatigue_highcycle.cfm
[35]Ľ. Gajdos, M. Šperl a, J. Kaiser, V. Mentl, Microplastic Limit of Steels as a Means of Fatigue Limit Determination, Procedia Engineering, vol. 66, pp.635-642, 2013.
[36]J. Li, Q. Sun, Z. Zhang, C.W. Li, Y.J, Qiao, Theoretical estimation to the cyclic yield strength and fatigue limit for alloy steels, Mechanics Research Communications, vol. 36, pp.316-321, 2009.
[37]O.H. Basquin, The Exponential Law of Endurance Tests, American Society for Testing and Materials Proceedings, vol. 10, pp. 625-630, 1910.
[38]C.E. Stromeyer, The determination of fatigue limits under alternating stress conditions, Proceedings of Royal Society A, vol. 90, 1914.
[39]A.G. Palmgren, Life Length of Roller Bearings or Durability of Ball Bearings, Zeitschrift des Vereines Deutscher Ingenieure (ZVDI), vol. 14, pp. 339-341, 1924.
[40]Y. Murakami, T. Takagi, K. Wada, H. Matsunaga, Essential structure of S-N curve: Prediction of fatigue life and fatigue limit of defective materials and nature of scatter, International Journal of Fatigue, vol. 146, 106138, 2021.
[41]X. Xu, Y. Lv, M. Hu, D. Xiong, L. Zhang, L. Wang, W. Lu, Influence of second phases on fatigue crack growth behavior of nickel aluminum bronze, International Journal of Fatigue, vol. 82, pp. 579-587, 2016.
[42]E. Maawad, H.G. Brokmeier, L. Wagner, Texture Gradients in Shot Peened Ti2.5Cu, Solid State Phenomena, vol. 160, pp. 141-146, 2010.
[43]O. Unal, E. Maleki, I. Karademir, F. Husem, Y. Efe, T. Das, Effects of conventional shot peening, severe shot peening, re-shot peening and precised grinding operations on fatigue performance of AISI 1050 railway axle steel, International Journal of Fatigue, vol. 155, 106613, 2022.
[44]Ç. Salim, Determination of Shot Peening Effect on Fatigue Behavior of AISI steel by Non-Destructive Measurement of Surface Residual Stresses, Master’s Thesis, 2018.
[45]C.H. Su, T.C. Chen, L.W. Tsay, Improved fatigue strength of Cr-electroplated 7075-T6 Al alloy by micro-shot peening, International Journal of Fatigue, vol. 167, 107354, 2023.
[46]X. Li, J. Zhang, B. Yang, J. Zhang, M. Wu, L. Lu, Effect of micro-shot peening, conventional shot peening and their combination on fatigue property of EA4T axle steel, Journal of Materials Processing Technology, vol. 275, 116320, 2020.
[47]Y.H. Chung,T.C. Chen ,H.B. Lee, L.W. Tsay, Effect of Micro-Shot Peening on the Fatigue Performance of AISI 304 Stainless Steel, Metals, vol. 11, pp. 1408, 2021.
[48]S. Narayanan, S. Park, M. Lee, 2 - Surface modification of magnesium and its alloys for biomedical applications: Opportunities and challenges, Surface Modification of Magnesium and its Alloys for Biomedical Applications, vol. 1, pp. 29-87, 2015.
[49]W.L. Xu, T.M. Yue, H.C. Man, C.P. Chan, Laser surface melting of aluminium alloy 6013 for improving pitting corrosion fatigue resistance, Surface and Coatings Technology, vol. 200, pp. 5077-5086, 2006.
[50]Z.Q. CUI, H.X. SHI, W.X. WANG, B.S. XU, Laser surface melting AZ31B magnesium alloy with liquid nitrogen-assisted cooling, Transactions of Nonferrous Metals Society of China, vol.25, pp. 1446-1453, 2015.
[51]A. Aydogdu, Y. Aydogdu, O. Adiguzel, The influence of ageing on martensite ordering and stabilization in shape memory Cu-Al-Ni alloys, Materials Research Bulletin, vol. 32, pp. 507-513, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top