跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/20 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林翠雯
研究生(外文):LIN, TSUI-WEN
論文名稱:煅燒淡菜殼抗菌性評估
論文名稱(外文):The Antimicrobial Evaluation of Calcined Mytilus edulis Shell Powders
指導教授:張祐維張祐維引用關係
指導教授(外文):CHANG, YU-WEI
口試委員:張祐維蔡宗佑徐慶琳邱致穎
口試委員(外文):CHANG, YU-WEITSAI, TSUNG-YUHSU, CHIN-LINCIOU, JHIH-YING
口試日期:2024-07-05
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:57
中文關鍵詞:氧化鈣煅燒殺菌作用
外文關鍵詞:calcium oxidecalcinebactericidal effects
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
食用完丟棄的貝殼,經由微生物分解而散發出強烈的氣味,造成環境污染。有研究指出高溫灰化後殼粉使碳酸鈣成分轉為氧化鈣成分, 因具有高pH值且有很強的抗菌活性。本研究探討淡菜殼粉以 4 種形式製備:天然淡菜殼粉及經不同煅燒溫度 ( 600℃-900℃ ) 下煅燒 2 小時的變化,通過掃描式電子顯微鏡( scanning electron microscopy;SEM ) 對煅燒產物的形貌進行探討。淡菜未煅燒殼粉呈塊狀結構,有數條裂紋、表面粗糙、棱角分明,而煅燒產物呈現小球體、表面光滑、結構和形狀發生變化並發生團聚。淡菜殼粉在煅燒前後均呈鹼性( pH>7 ),鹼度隨著煅燒溫度和濃度百分比增加而增加,另添加不同濃度殼粉 ( 0.79 mg/mL - 200 mg/mL ) 對食品病原菌 (Escherichia coli, Staphylococcus aureus) 之抑制效果,由最低殺菌濃度結果顯示殼粉經高溫處理 900℃ 煅燒 2小時在濃度 12.5 mg/mL 及 800℃ 煅燒 2 小時在濃度 50 mg/mL 對於食品病原菌Escherichia coli有抑菌效果。由紙錠擴散法結果顯示煅燒溫度 900℃ 濃度 12.5 mg/mL其對Escherichia coli及Staphylococcus aureus同時有抑菌作用抑菌圈為 10.5 及 9.6 mm。由抗菌活性測試900℃ 濃度 12.5 mg/mL 下可100%抑制大腸桿菌和金黃色葡萄球菌,由實驗結果可知煅燒溫度 900℃ 濃度 12.5 mg/ mL之殼粉可同時抑制抑制大腸桿菌和金黃色葡萄球菌。故利用煅燒廢棄殼粉末生產「天然抑菌劑」可替代合成化學品,期望可以減少環境汙染問題,為產業帶來新商機的同時,達到資源永續、啟動循環經濟之目的。
After consumption, discarded shells decompose through microbial action, emitting strong odors that cause environmental pollution. Studies have shown that high-temperature calcination transforms the calcium carbonate in shell powder into calcium oxide, which has a high pH value and strong antibacterial activity. This study investigates mussel shell powder prepared in four forms: natural mussel shell powder and calcined at different temperatures (600°C-900°C) for 2 hours. The morphology of the calcined products was examined using scanning electron microscopy (SEM). The uncalcined mussel shell powder exhibited a blocky structure with several cracks, a rough surface, and sharp edges. In contrast, the calcined products showed small spherical particles with smooth surfaces, structural and shape changes, and agglomeration. The mussel shell powder remained alkaline (pH > 7) before and after calcination, with alkalinity increasing with higher calcination temperatures and concentration percentages. Additionally, the antibacterial effects against foodborne pathogens (Escherichia coli, Staphylococcus aureus) were tested by adding shell powder in different concentrations (0.79 mg/mL - 200 mg/mL). The minimum bactericidal concentration results showed that shell powder calcined at 900°C for 2 hours at a concentration of 12.5 mg/mL and at 800°C for 2 hours at a concentration of 50 mg/mL inhibited Escherichia coli. The disc diffusion method results showed that calcined at 900°C and a concentration of 12.5 mg/mL inhibited both Escherichia coli and Staphylococcus aureus with inhibition zones of 10.5 and 9.6 mm, respectively. Antibacterial activity tests demonstrated that at 900°C and a concentration of 12.5 mg/mL, 100% inhibition of Escherichia coli and Staphylococcus aureus was achieved. The experimental results indicate that shell powder calcined at 900°C and a concentration of 12.5 mg/mL can simultaneously inhibit Escherichia coli and Staphylococcus aureus. Thus, producing a "natural antibacterial agent" from calcined waste shell powder can replace synthetic chemicals, aiming to reduce environmental pollution, create new business opportunities for the industry, achieve resource sustainability, and initiate a circular economy.
壹、前言 1
貳、文獻回顧 2
一、馬祖海域介紹 2
二、淡菜簡介 3
(一)分布與產值 3
(二)馬祖淡菜品種 4
三、廢棄貝殼之現況 5
四、貝殼主要成份及特性 5
五、廢棄貝殼應用 12
六、煅燒殼粉殺菌機制 14
七、煅燒殼粉之物理特性及粒徑大小對抑菌效果探討 17
八、常見之食品相關病原菌與腐敗菌 20
(一)大腸桿菌 Escherichia coli 20
(二)金黃色葡萄球菌 Staphylococcus aureus 20
(三)沙門氏桿菌 Salminella 21
(四)單核球增多李斯特菌Listeria monocytogenes 21
參、實驗架構 22
肆、實驗材料與方法 23
一、實驗材料 23
(一)樣品來源 23
(二)試驗菌株 23
(三)試藥 23
(四)儀器設備 23
二、微生物實驗 23
(一)實驗樣品製備 24
(二)菌株之保存 24
(三)抑菌試驗 24
三、分析實驗 26
(一)水活性 26
(二)水份含量測定 26
(三)色澤測定(L*a*b*) 26
(四)酸鹼度 26
(五)灰分 27
(六)傅利葉式轉換紅外線光譜儀分析 (Fourier transmission infrared spectrometer, FT-IR) 27
(七)掃描式電子顯微鏡 (scanning electron microscopy, SEM) 與能量散佈光譜儀(energy dispersive X-ray spectrometers, EDS) 分析 27
(八)感應耦合電漿原子發射光譜儀分析 ( Inductively coupled plasma-mass spectrometer, ICP-MS ) 28
(九)氧化還原電位 (Oxidation reduction potential, ORP) 28
四、統計分析 28
伍、結果與討論 29
陸、結論 33
柒、圖表 34
捌、參考文獻 52

林壹鴻. (2008). 灰化牡蠣殼粉應用於截切蔬菜對其品質影響之研究 中國文化大學]. 台北市. https://hdl.handle.net/11296/pm828h
社團法人台灣濕地學會. (2014). 連江縣特有水產技術復育及轉移計畫. (社團法人台灣濕地學會).
威勝生物科技有限公司. (2022). 111年馬祖漁業經營及管理計畫之發展水產品標勵推廣與輔導. (威勝生物科技有限公司).
施威任. (2007). 奈米級氫氧基磷灰石之合成及燒結. 國立臺灣成功大學材料科學與工程學系博士論文.
紀典佑. (2006). 牡蠣殼開發利用之研究 中國文化大學. 台北市. https://hdl.handle.net/11296/cfst5w
森勝義. (1998). 強力殺菌用之燒成牡蠣殼、天然Zeolite混成Ceramics 之開發. In: 食品工業.
黃培安、吳純衡 (2010) 淺談煅燒殼粉與金屬氧化物之抑菌作用。水試專訊,31:52-54。
黃培安、高淑雲和吳純衡,2009。煅燒牡蠣殼粉抗菌能力之多元利用研究。行政院農業委員會水產試驗所水試專訊。第 26 期。
廖健維 (2010) 貝殼煅燒粉末對臨床與環境並原菌之殺菌作用以及蔬菜清洗之應用,國立海洋科技大學水產食品科學系研究所,碩士論文,高雄。
趙文其, & 高孝偉. (1983). 馬祖紫貽貝 (Mytilus edulis) 人工繁殖初步研究. https://shell.sinica.edu.tw/chinese/documentquery_c.php?No=200042
歐慶賢, & 鄭學淵. (2014). 馬祖海上漁場資源調查及漁民漁業權輔助劃定計畫. In.
鄭品逸 (2009)貝殼煅燒粉末之殺菌作用及其在水產品保鮮之應用,國立海洋科技大學水產食品科學系研究所,碩士論文,高雄。
龔瑞林. (2021). 110年連江縣研發原生生物(淡菜)冷鏈保鮮技術計畫. (國立臺灣海洋大學).

Abu-Shkara, F., Neeman, I., Sheinman, R., & Armon, R. (1998). The effect of fatty acid alteration in coliform bacteria on disinfection resistance and/or adaptation. WaterScienceandTechnology,38(12),133-139.
Almada-Villela, P. C. (1984). The effects of reduced salinity on the shell growth of small Mytilus edulis. Journal of the Marine Biological Association of the United Kingdom, 64(1), 171-182.
Brown, A.R., Gordon, R.A., Hyland, S.N., Siegrist, M.S., Grimes, C.L., 2020. Chemical biology tools for examining the bacterial cell wall. Cell Chem. Biol. 27 (8), 1052–1062.
Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P., & Trongyong, S. (2013a). Calcium oxide derived from waste shells of mussel, cockle, and scallop as the heterogeneous catalyst for biodiesel production. The Scientific World Journal, 2013.
Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P., & Trongyong, S. (2013b). Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production. The Scientific World Journal, 2013, 460923. https://doi.org/10.1155/2013/460923
Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P., & Trongyong, S. (2013). Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production [Article]. ScientificWorldJournal,7, Article 460923. https://doi.org/10.1155/2013/460923
Cai, Q., Gao, Y., Gao, T., Lan, S., Simalou, O., Zhou, X., Zhang, Y., Harnoode, C., Gao, G.,&Dong,A.(2016). Insight into Biological Effects of Zinc Oxide Nanoflowers on Bacteria: Why Morphology Matters. ACS Applied Materials & Interfaces, 8(16), 10109-10120. https://doi.org/10.1021/acsami.5b11573
Chen, B., Peng, X., Wang, J. G., & Wu, X. (2004). Laminated microstructure of Bivalva shell and research of biomimetic ceramic/polymer composite. Ceramics International,30(7),2011-2014. https://doi.org/https://doi.org/10.1016/j.ceramint.2003.12.169
Cho, Y. B., & Seo, G. (2010). High activity of acid-treated quail eggshell catalysts in the transesterification of palm oil with methanol. Bioresource Technology, 101(22), 8515-8519.
Chae, J., S. Knak, A. Knak, H. Koo and V. Ravi (2006) Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis. Plasma Sci. Technol., 8(6): 712-715.
Cimanga, K., Kambu, K., Tona, L., Apers, S., De Bruyne, T., Hermans, N., Totte, J., Pieters, L., & Vlietinck, A. J. (2002). Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo [Article]. Journal of Ethnopharmacology,79(2),213-220.
https://doi.org/10.1016/s0378-8741(01)00384-1
Dalrymple, O. K., Stefanakos, E., Trotz, M. A., & Goswami, D. Y. (2010). A review of the mechanisms and modeling of photocatalytic disinfection. Applied Catalysis B:Environmental,98(1),27-38. https://doi.org/https://doi.org/10.1016/j.apcatb.2010.05.001
Davies, M. J. (2003). Singlet oxygen-mediated damage to proteins and its consequences. Biochemical and Biophysical Research Communications, 305(3), 761-770. https://doi.org/https://doi.org/10.1016/S0006-291X(03)00817-9
Eziefula, U. G., Ezeh, J. C., & Eziefula, B. I. (2018). Properties of seashell aggregate concrete: A review. Construction and Building Materials, 192, 287-300.
Faleiro, M. L., Miguel, M. G., Ladeiro, F., Venancio, F., Tavares, R., Brito, J. C., Figueiredo, A. C., Barroso, J. G., & Pedro, L. G. (2003). Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus [Article]. Letters in Applied Microbiology, 36(1), 35-40. https://doi.org/10.1046/j.1472-765X.2003.01259.x
Freites, L., Fernandez-Reiriz, M. J., & Labarta, U. (2002). Fatty acid profiles of Mytilus galloprovincialis (Lmk) mussel of subtidal and rocky shore origin [Article]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology,132(2),453-461,ArticlePiis1096-4959(02)00057-x. https://doi.org/10.1016/s1096-4959(02)00057-x
Gosling, E. (1992). The Mussel, Mytilus: Ecology, Physiology, Genetics and Culture. The Netherlands: Elsevier Science; ISBN 0-444-88752-0.
Hamester, M. R. R., Balzer, P. S., & Becker, D. (2012). Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Materials Research, 15.
Hart, A. (2020). Mini-review of waste shell-derived materials' applications [Review]. Waste Management & Research, 38(5), 514-527, Article 0734242x19897812. https://doi.org/10.1177/0734242x19897812
Hewitt, C. J., Bellara, S. R., Andreani, A., Nebe-von-Caron, G., & McFarlane, C. M. (2001). An evaluation of the anti-bacterial action of ceramic powder slurries using multi-parameter flow cytometry [Article]. Biotechnology Letters, 23(9), 667-675. https://doi.org/10.1023/a:1010379714673
Hsu, I. L., Yeh, F. H., Chin, Y.-C., Cheung, C. I., Chia, Z. C., Yang, L.-X., Chen, Y.-J., Cheng, T.-Y., Wu, S.-P., Tsai, P.-J., Lee, N.-Y., Liao, M.-Y., & Huang, C.-C. (2021). Multiplex antibacterial processes and risk in resistant phenotype by high oxidation-state nanoparticles: New killing process and mechanism investigations.ChemicalEngineeringJournal,409,128266. https://doi.org/https://doi.org/10.1016/j.cej.2020.128266
Laskar, I. B., Rajkumari, K., Gupta, R., Chatterjee, S., Paul, B., & Rokhum, S. L. (2018). Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC advances, 8(36), 20131-20142.
Lee, B. P., Messersmith, P. B., Israelachvili, J. N., & Waite, J. H. (2011). Mussel-Inspired Adhesives and Coatings. Annu Rev Mater Res, 41, 99-132. https://doi.org/10.1146/annurev-matsci-062910-100429
Liang, X. K., Dai, R., Chang, S. C., Wei, Y. Q., & Zhang, B. (2022). Antibacterial mechanism of biogenic calcium oxide and antibacterial activity of calcium oxide/polypropylene composites [Article]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 650, 13, Article 129446. https://doi.org/10.1016/j.colsurfa.2022.129446
Marin, F., & Luquet, G. (2004). Molluscan shell proteins. Comptes Rendus Palevol, 3(6), 469-492. https://doi.org/https://doi.org/10.1016/j.crpv.2004.07.009
Medina Uzcátegui, L. U., Vergara, K., & Martínez Bordes, G. (2022). Sustainable alternatives for by-products derived from industrial mussel processing: A criticalreview.WasteManagRes,40(2),23-138. https://doi.org/10.1177/0734242x21996808
Mo, K. H., Alengaram, U. J., Jumaat, M. Z., Lee, S. C., Goh, W. I., & Yuen, C. W. (2018). Recycling of seashell waste in concrete: A review [Review]. ConstructionandBuildingMaterials,162,751-764. https://doi.org/10.1016/j.conbuildmat.2017.12.009
Moazzami, M., Fernström, L.-L., & Hansson, I. (2021). Reducing Campylobacter jejuni, Enterobacteriaceae and total aerobic bacteria on transport crates for chickens by irradiation with 265-nm ultraviolet light (UV–C LED). Food Control, 119, 107424. https://doi.org/https://doi.org/10.1016/j.foodcont.2020.107424
Morris, J. P., Backeljau, T., & Chapelle, G. (2019). Shells from aquaculture: a valuable biomaterial, not a nuisance waste product. Reviews in Aquaculture, 11(1), 42-57. https://doi.org/https://doi.org/10.1111/raq.12225
Nakamura Filho, A., Almeida, A. C. d., Riera, H. E., Araújo, J. L. F. d., Gouveia, V. J. P., Carvalho, M. D. d., & Cardoso, A. V. (2014). Polymorphism of CaCO3 and microstructure of the shell of a Brazilian invasive mollusc (Limnoperna fortunei).Materials Research, 17(suppl1),15-22. https://doi.org/10.1590/s1516-14392014005000044
Noor, R. (2015). Mechanism to control the cell lysis and the cell survival strategy in stationaryphaseunderheatstress.Springerplus,4,599.https://doi.org/10.1186/s40064-015-1415-7
Padan, E., Bibi, E., Ito, M., & Krulwich, T. A. (2005). Alkaline pH homeostasis in bacteria: New insights. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1717(2), 67-88. https://doi.org/https://doi.org/10.1016/j.bbamem.2005.09.010
Sawai, J., Kawada, E., Kanou, F., Igarashi, H., Hashimoto, A., Kokugan, T., & Shimizu, M. (1996). Detection of active oxygen generated from ceramic powders having antibacterial activity [Article]. Journal of Chemical Engineering of Japan, 29(4), 627-633. https://doi.org/10.1252/jcej.29.627
Sawai, J., Kojima, H., Igarashi, H., Hashimoto, A., Shoji, S., Sawaki, T., Hakoda, A., Kawada, E., Kokugan, T., & Shimizu, M. (2000). Antibacterial characteristics of magnesium oxide powder [Article]. World Journal of Microbiology & Biotechnology, 16(2), 187-194. https://doi.org/10.1023/a:1008916209784
Sawai, J., Satoh, M., Horikawa, M., Shiga, H., & Kojima, H. (2001). Heated scallop-shell powder slurry treatment of shredded cabbage [Article]. Journal of Food Protection, 64(10), 1579-1583. https://doi.org/10.4315/0362-028x-64.10.1579
Sawai, J., Shiga, H., & Kojima, H. (2001). Kinetic analysis of the bactericidal action of heated scallop-shell powder. International Journal of Food Microbiology, 71(2), 211-218. https://doi.org/https://doi.org/10.1016/S0168-1605(01)00619-5
Siqueira, J. F., & Lopes, H. P. (1999). Mechanisms of antimicrobial activity of calcium hydroxide: a critical review [Review]. International Endodontic Journal, 32(5), 361-369. https://doi.org/10.1046/j.1365-2591.1999.00275.x
Srichanachaichok, W., & Pissuwan, D. (2023). Micro/Nano Structural Investigation and Characterization of Mussel Shell Waste in Thailand as a Feasible Bioresource of CaO. Materials (Basel), 16(2). https://doi.org/10.3390/ma16020805
Suryawanshi, N., Jujjavarapu, S. E., & Ayothiraman, S. (2019). Marine shell industrial wastes–an abundant source of chitin and its derivatives: constituents, pretreatment, fermentation, and pleiotropic applications-a revisit. International Journal of Environmental Science and Technology, 16(7), 3877-3898. https://doi.org/10.1007/s13762-018-02204-3
Tan, J., Liu, Z. X., Wang, D. H., Zhang, X. M., Qian, S., & Liu, X. Y. (2020). A facile and universal strategy to endow implant materials with antibacterial ability via alkalinity disturbing bacterial respiration [Article]. Biomaterials Science, 8(7), 1815-1829. https://doi.org/10.1039/c9bm01793c
Topić Popović, N., Lorencin, V., Strunjak-Perović, I., & Čož-Rakovac, R. (2023). Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability. Applied Sciences, 13(1).
Yamamoto, O., Sawai, J., Kojima, H., & Sasamoto, T. (2002). Effect of mixing ratio on bactericidal action of MgO-CaO powders. J Mater Sci Mater Med, 13(8), 789-792. https://doi.org/10.1023/a:1016179225955
Yan, N., & Chen, X. (2015). Sustainability: Don't waste seafood waste. Nature, 524(7564), 155-157. https://doi.org/10.1038/524155a
Yao, Z., Xia, M., Ge, L., Chen, T., Li, H., Ye, Y., & Zheng, H. (2014). Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell waste derived bio-fillers. Fibers and Polymers, 15(6), 1278-1287. https://doi.org/10.1007/s12221-014-1278-5
Yen, L.-T., Weng, C.-H., Than, N. A. T., Tzeng, J.-H., Jacobson, A. R., Iamsaard, K., Dang, V. D., & Lin, Y.-T. (2022). Mode of inactivation of Staphylococcus aureus and Escherichia coli by heated oyster-shell powder. Chemical Engineering Journal, 432. https://doi.org/10.1016/j.cej.2021.134386
Zhan, J., Lu, J., & Wang, D. (2022). Review of shell waste reutilization to promote sustainable shellfish aquaculture. Reviews in Aquaculture, 14(1), 477-488. https://doi.org/https://doi.org/10.1111/raq.12610
Zhang, C., & Zhang, R. (2006). Matrix Proteins in the Outer Shells of Molluscs. Marine Biotechnology, 8(6), 572-586. https://doi.org/10.1007/s10126-005-6029-6

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊