林壹鴻. (2008). 灰化牡蠣殼粉應用於截切蔬菜對其品質影響之研究 中國文化大學]. 台北市. https://hdl.handle.net/11296/pm828h
社團法人台灣濕地學會. (2014). 連江縣特有水產技術復育及轉移計畫. (社團法人台灣濕地學會).
威勝生物科技有限公司. (2022). 111年馬祖漁業經營及管理計畫之發展水產品標勵推廣與輔導. (威勝生物科技有限公司).
施威任. (2007). 奈米級氫氧基磷灰石之合成及燒結. 國立臺灣成功大學材料科學與工程學系博士論文.紀典佑. (2006). 牡蠣殼開發利用之研究 中國文化大學. 台北市. https://hdl.handle.net/11296/cfst5w
森勝義. (1998). 強力殺菌用之燒成牡蠣殼、天然Zeolite混成Ceramics 之開發. In: 食品工業.
黃培安、吳純衡 (2010) 淺談煅燒殼粉與金屬氧化物之抑菌作用。水試專訊,31:52-54。
黃培安、高淑雲和吳純衡,2009。煅燒牡蠣殼粉抗菌能力之多元利用研究。行政院農業委員會水產試驗所水試專訊。第 26 期。
廖健維 (2010) 貝殼煅燒粉末對臨床與環境並原菌之殺菌作用以及蔬菜清洗之應用,國立海洋科技大學水產食品科學系研究所,碩士論文,高雄。趙文其, & 高孝偉. (1983). 馬祖紫貽貝 (Mytilus edulis) 人工繁殖初步研究. https://shell.sinica.edu.tw/chinese/documentquery_c.php?No=200042
歐慶賢, & 鄭學淵. (2014). 馬祖海上漁場資源調查及漁民漁業權輔助劃定計畫. In.
鄭品逸 (2009)貝殼煅燒粉末之殺菌作用及其在水產品保鮮之應用,國立海洋科技大學水產食品科學系研究所,碩士論文,高雄。龔瑞林. (2021). 110年連江縣研發原生生物(淡菜)冷鏈保鮮技術計畫. (國立臺灣海洋大學).
Abu-Shkara, F., Neeman, I., Sheinman, R., & Armon, R. (1998). The effect of fatty acid alteration in coliform bacteria on disinfection resistance and/or adaptation. WaterScienceandTechnology,38(12),133-139.
Almada-Villela, P. C. (1984). The effects of reduced salinity on the shell growth of small Mytilus edulis. Journal of the Marine Biological Association of the United Kingdom, 64(1), 171-182.
Brown, A.R., Gordon, R.A., Hyland, S.N., Siegrist, M.S., Grimes, C.L., 2020. Chemical biology tools for examining the bacterial cell wall. Cell Chem. Biol. 27 (8), 1052–1062.
Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P., & Trongyong, S. (2013a). Calcium oxide derived from waste shells of mussel, cockle, and scallop as the heterogeneous catalyst for biodiesel production. The Scientific World Journal, 2013.
Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P., & Trongyong, S. (2013b). Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production. The Scientific World Journal, 2013, 460923. https://doi.org/10.1155/2013/460923
Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P., & Trongyong, S. (2013). Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production [Article]. ScientificWorldJournal,7, Article 460923. https://doi.org/10.1155/2013/460923
Cai, Q., Gao, Y., Gao, T., Lan, S., Simalou, O., Zhou, X., Zhang, Y., Harnoode, C., Gao, G.,&Dong,A.(2016). Insight into Biological Effects of Zinc Oxide Nanoflowers on Bacteria: Why Morphology Matters. ACS Applied Materials & Interfaces, 8(16), 10109-10120. https://doi.org/10.1021/acsami.5b11573
Chen, B., Peng, X., Wang, J. G., & Wu, X. (2004). Laminated microstructure of Bivalva shell and research of biomimetic ceramic/polymer composite. Ceramics International,30(7),2011-2014. https://doi.org/https://doi.org/10.1016/j.ceramint.2003.12.169
Cho, Y. B., & Seo, G. (2010). High activity of acid-treated quail eggshell catalysts in the transesterification of palm oil with methanol. Bioresource Technology, 101(22), 8515-8519.
Chae, J., S. Knak, A. Knak, H. Koo and V. Ravi (2006) Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis. Plasma Sci. Technol., 8(6): 712-715.
Cimanga, K., Kambu, K., Tona, L., Apers, S., De Bruyne, T., Hermans, N., Totte, J., Pieters, L., & Vlietinck, A. J. (2002). Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo [Article]. Journal of Ethnopharmacology,79(2),213-220.
https://doi.org/10.1016/s0378-8741(01)00384-1
Dalrymple, O. K., Stefanakos, E., Trotz, M. A., & Goswami, D. Y. (2010). A review of the mechanisms and modeling of photocatalytic disinfection. Applied Catalysis B:Environmental,98(1),27-38. https://doi.org/https://doi.org/10.1016/j.apcatb.2010.05.001
Davies, M. J. (2003). Singlet oxygen-mediated damage to proteins and its consequences. Biochemical and Biophysical Research Communications, 305(3), 761-770. https://doi.org/https://doi.org/10.1016/S0006-291X(03)00817-9
Eziefula, U. G., Ezeh, J. C., & Eziefula, B. I. (2018). Properties of seashell aggregate concrete: A review. Construction and Building Materials, 192, 287-300.
Faleiro, M. L., Miguel, M. G., Ladeiro, F., Venancio, F., Tavares, R., Brito, J. C., Figueiredo, A. C., Barroso, J. G., & Pedro, L. G. (2003). Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus [Article]. Letters in Applied Microbiology, 36(1), 35-40. https://doi.org/10.1046/j.1472-765X.2003.01259.x
Freites, L., Fernandez-Reiriz, M. J., & Labarta, U. (2002). Fatty acid profiles of Mytilus galloprovincialis (Lmk) mussel of subtidal and rocky shore origin [Article]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology,132(2),453-461,ArticlePiis1096-4959(02)00057-x. https://doi.org/10.1016/s1096-4959(02)00057-x
Gosling, E. (1992). The Mussel, Mytilus: Ecology, Physiology, Genetics and Culture. The Netherlands: Elsevier Science; ISBN 0-444-88752-0.
Hamester, M. R. R., Balzer, P. S., & Becker, D. (2012). Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Materials Research, 15.
Hart, A. (2020). Mini-review of waste shell-derived materials' applications [Review]. Waste Management & Research, 38(5), 514-527, Article 0734242x19897812. https://doi.org/10.1177/0734242x19897812
Hewitt, C. J., Bellara, S. R., Andreani, A., Nebe-von-Caron, G., & McFarlane, C. M. (2001). An evaluation of the anti-bacterial action of ceramic powder slurries using multi-parameter flow cytometry [Article]. Biotechnology Letters, 23(9), 667-675. https://doi.org/10.1023/a:1010379714673
Hsu, I. L., Yeh, F. H., Chin, Y.-C., Cheung, C. I., Chia, Z. C., Yang, L.-X., Chen, Y.-J., Cheng, T.-Y., Wu, S.-P., Tsai, P.-J., Lee, N.-Y., Liao, M.-Y., & Huang, C.-C. (2021). Multiplex antibacterial processes and risk in resistant phenotype by high oxidation-state nanoparticles: New killing process and mechanism investigations.ChemicalEngineeringJournal,409,128266. https://doi.org/https://doi.org/10.1016/j.cej.2020.128266
Laskar, I. B., Rajkumari, K., Gupta, R., Chatterjee, S., Paul, B., & Rokhum, S. L. (2018). Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC advances, 8(36), 20131-20142.
Lee, B. P., Messersmith, P. B., Israelachvili, J. N., & Waite, J. H. (2011). Mussel-Inspired Adhesives and Coatings. Annu Rev Mater Res, 41, 99-132. https://doi.org/10.1146/annurev-matsci-062910-100429
Liang, X. K., Dai, R., Chang, S. C., Wei, Y. Q., & Zhang, B. (2022). Antibacterial mechanism of biogenic calcium oxide and antibacterial activity of calcium oxide/polypropylene composites [Article]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 650, 13, Article 129446. https://doi.org/10.1016/j.colsurfa.2022.129446
Marin, F., & Luquet, G. (2004). Molluscan shell proteins. Comptes Rendus Palevol, 3(6), 469-492. https://doi.org/https://doi.org/10.1016/j.crpv.2004.07.009
Medina Uzcátegui, L. U., Vergara, K., & Martínez Bordes, G. (2022). Sustainable alternatives for by-products derived from industrial mussel processing: A criticalreview.WasteManagRes,40(2),23-138. https://doi.org/10.1177/0734242x21996808
Mo, K. H., Alengaram, U. J., Jumaat, M. Z., Lee, S. C., Goh, W. I., & Yuen, C. W. (2018). Recycling of seashell waste in concrete: A review [Review]. ConstructionandBuildingMaterials,162,751-764. https://doi.org/10.1016/j.conbuildmat.2017.12.009
Moazzami, M., Fernström, L.-L., & Hansson, I. (2021). Reducing Campylobacter jejuni, Enterobacteriaceae and total aerobic bacteria on transport crates for chickens by irradiation with 265-nm ultraviolet light (UV–C LED). Food Control, 119, 107424. https://doi.org/https://doi.org/10.1016/j.foodcont.2020.107424
Morris, J. P., Backeljau, T., & Chapelle, G. (2019). Shells from aquaculture: a valuable biomaterial, not a nuisance waste product. Reviews in Aquaculture, 11(1), 42-57. https://doi.org/https://doi.org/10.1111/raq.12225
Nakamura Filho, A., Almeida, A. C. d., Riera, H. E., Araújo, J. L. F. d., Gouveia, V. J. P., Carvalho, M. D. d., & Cardoso, A. V. (2014). Polymorphism of CaCO3 and microstructure of the shell of a Brazilian invasive mollusc (Limnoperna fortunei).Materials Research, 17(suppl1),15-22. https://doi.org/10.1590/s1516-14392014005000044
Noor, R. (2015). Mechanism to control the cell lysis and the cell survival strategy in stationaryphaseunderheatstress.Springerplus,4,599.https://doi.org/10.1186/s40064-015-1415-7
Padan, E., Bibi, E., Ito, M., & Krulwich, T. A. (2005). Alkaline pH homeostasis in bacteria: New insights. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1717(2), 67-88. https://doi.org/https://doi.org/10.1016/j.bbamem.2005.09.010
Sawai, J., Kawada, E., Kanou, F., Igarashi, H., Hashimoto, A., Kokugan, T., & Shimizu, M. (1996). Detection of active oxygen generated from ceramic powders having antibacterial activity [Article]. Journal of Chemical Engineering of Japan, 29(4), 627-633. https://doi.org/10.1252/jcej.29.627
Sawai, J., Kojima, H., Igarashi, H., Hashimoto, A., Shoji, S., Sawaki, T., Hakoda, A., Kawada, E., Kokugan, T., & Shimizu, M. (2000). Antibacterial characteristics of magnesium oxide powder [Article]. World Journal of Microbiology & Biotechnology, 16(2), 187-194. https://doi.org/10.1023/a:1008916209784
Sawai, J., Satoh, M., Horikawa, M., Shiga, H., & Kojima, H. (2001). Heated scallop-shell powder slurry treatment of shredded cabbage [Article]. Journal of Food Protection, 64(10), 1579-1583. https://doi.org/10.4315/0362-028x-64.10.1579
Sawai, J., Shiga, H., & Kojima, H. (2001). Kinetic analysis of the bactericidal action of heated scallop-shell powder. International Journal of Food Microbiology, 71(2), 211-218. https://doi.org/https://doi.org/10.1016/S0168-1605(01)00619-5
Siqueira, J. F., & Lopes, H. P. (1999). Mechanisms of antimicrobial activity of calcium hydroxide: a critical review [Review]. International Endodontic Journal, 32(5), 361-369. https://doi.org/10.1046/j.1365-2591.1999.00275.x
Srichanachaichok, W., & Pissuwan, D. (2023). Micro/Nano Structural Investigation and Characterization of Mussel Shell Waste in Thailand as a Feasible Bioresource of CaO. Materials (Basel), 16(2). https://doi.org/10.3390/ma16020805
Suryawanshi, N., Jujjavarapu, S. E., & Ayothiraman, S. (2019). Marine shell industrial wastes–an abundant source of chitin and its derivatives: constituents, pretreatment, fermentation, and pleiotropic applications-a revisit. International Journal of Environmental Science and Technology, 16(7), 3877-3898. https://doi.org/10.1007/s13762-018-02204-3
Tan, J., Liu, Z. X., Wang, D. H., Zhang, X. M., Qian, S., & Liu, X. Y. (2020). A facile and universal strategy to endow implant materials with antibacterial ability via alkalinity disturbing bacterial respiration [Article]. Biomaterials Science, 8(7), 1815-1829. https://doi.org/10.1039/c9bm01793c
Topić Popović, N., Lorencin, V., Strunjak-Perović, I., & Čož-Rakovac, R. (2023). Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability. Applied Sciences, 13(1).
Yamamoto, O., Sawai, J., Kojima, H., & Sasamoto, T. (2002). Effect of mixing ratio on bactericidal action of MgO-CaO powders. J Mater Sci Mater Med, 13(8), 789-792. https://doi.org/10.1023/a:1016179225955
Yan, N., & Chen, X. (2015). Sustainability: Don't waste seafood waste. Nature, 524(7564), 155-157. https://doi.org/10.1038/524155a
Yao, Z., Xia, M., Ge, L., Chen, T., Li, H., Ye, Y., & Zheng, H. (2014). Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell waste derived bio-fillers. Fibers and Polymers, 15(6), 1278-1287. https://doi.org/10.1007/s12221-014-1278-5
Yen, L.-T., Weng, C.-H., Than, N. A. T., Tzeng, J.-H., Jacobson, A. R., Iamsaard, K., Dang, V. D., & Lin, Y.-T. (2022). Mode of inactivation of Staphylococcus aureus and Escherichia coli by heated oyster-shell powder. Chemical Engineering Journal, 432. https://doi.org/10.1016/j.cej.2021.134386
Zhan, J., Lu, J., & Wang, D. (2022). Review of shell waste reutilization to promote sustainable shellfish aquaculture. Reviews in Aquaculture, 14(1), 477-488. https://doi.org/https://doi.org/10.1111/raq.12610
Zhang, C., & Zhang, R. (2006). Matrix Proteins in the Outer Shells of Molluscs. Marine Biotechnology, 8(6), 572-586. https://doi.org/10.1007/s10126-005-6029-6