|
一、中文部分 1.榮泰生. (2023). Expert Choice在分析層級程序法 (AHP)之應用. 五南圖書出版股份有限公司。
二、英文部分 1.Abraham, E. J., Linke, P., Rousseau, J., Burton, G., & Al-Mohannadi, D. M. (2024). Large-scale shipping of low-carbon fuels and carbon dioxide towards decarbonized energy systems: Perspectives and challenges. International Journal of Hydrogen Energy, 63, 217-230. 2.Akao, Y. (1997, October). QFD: Past, present, and future. In International symposium on QFD (Vol. 97, No. 2, pp. 1-12). Linköping, Sweden: International council of QFD. 3.Akao, Y., & Ohfuji, T. (1989). Recent aspects of quality function deployment in service industries in Japan. In Proceedings of the international conference on quality control (Vol. 3). 4.Ampah, J. D., Yusuf, A. A., Afrane, S., Jin, C., & Liu, H. (2021). Reviewing two decades of cleaner alternative marine fuels: Towards IMO's decarbonization of the maritime transport sector. Journal of Cleaner Production, 320, 128871. 5.Bergman, B., Bengt, K.: Quality From Customer Needs to Customers’ Satisfaction. McGraw-Hill, London (1994). 6.Chen, R. (2023). Analysis for Decarbonization Pathways for Shipping. In E3S Web of Conferences (Vol. 424, p. 03007). EDP Sciences. 7.Chiaramonti, D., Talluri, G., Scarlat, N., & Prussi, M. (2021). The challenge of forecasting the role of biofuel in EU transport decarbonisation at 2050: A meta-analysis review of published scenarios. Renewable and Sustainable Energy Reviews, 139, 110715. 8.Chua, Y. J., Soudagar, I., Ng, S. H., & Meng, Q. (2023). Impact analysis of environmental policies on shipping fleet planning under demand uncertainty. Transportation Research Part D: Transport and Environment, 120, 103744. 9.Clora, F., & Yu, W. (2022). International maritime shipping decarbonization under alternative technological scenarios: effects on agrifood markets. 10.Corruble, P., Tliche, Y., & Radhoui, H. (2024). Financing decarbonization through wind-powered vessels. Marine Policy, 165, 106163. 11.Cullinane, K., & Yang, J. (2022). Evaluating the Costs of Decarbonizing the Shipping Industry: A Review of the Literature. Journal of Marine Science and Engineering, 10(7), 946. 12.Curran, S., Onorati, A., Payri, R., Agarwal, A. K., Arcoumanis, C., Bae, C., ... & Wermuth, N. (2024). The future of ship engines: Renewable fuels and enabling technologies for decarbonization. International Journal of Engine Research, 25(1), 85-110. 13.Daniel, H., Trovão, J. P. F., & Williams, D. (2021). Shore power as a first step toward shipping decarbonization and related policy impact on a dry bulk cargo carrier. eTransportation, 100150. 14.Dirzka, C., & Acciaro, M. (2021). Principal-agent problems in decarbonizing container shipping: A panel data analysis. Transportation Research Part D: Transport and Environment, 98, 102948. 15.Doelle, M., & Chircop, A. (2019). Decarbonizing international shipping: An appraisal of the IMO's Initial Strategy. Review of European, Comparative & International Environmental Law, 28(3), 268-277. 16.Duru, O., Huang, S. T., Bulut, E., & Yoshida, S. (2013). Multi-layer quality function deployment (QFD) approach for improving the compromised quality satisfaction under the agency problem: A 3D QFD design for the asset selection problem in the shipping industry. Quality & Quantity, 47(4), 2259-2280. 17.Ghoneim, N., Colak, A. T., & Amer, A. (2023). Exploring the Regulatory Framework of Maritime Decarbonization to Achieve IMO GHG Emission Targets. Port-Said Engineering Research Journal, 27(1), 8-14. 18.Godet, A., Nurup, J. N., Saber, J. T., Panagakos, G., & Barfod, M. B. (2023). Operational cycles for maritime transportation: A benchmarking tool for ship energy efficiency. Transportation Research Part D: Transport and Environment, 121, 103840. 19.Gray, N., McDonagh, S., O'Shea, R., Smyth, B., & Murphy, J. D. (2021). Decarbonising ships, planes and trucks: An analysis of suitable low-carbon fuels for the maritime, aviation and haulage sectors. Advances in Applied Energy, 1, 100008. 20.Grzelakowski, A. S., Herdzik, J., & Skiba, S. (2022). Maritime Shipping Decarbonization: Roadmap to Meet Zero-Emission Target in Shipping as a Link in the Global Supply Chains. Energies, 15(17), 6150. 21.Halim, R. A., Kirstein, L., Merk, O., & Martinez, L. M. (2018). Decarbonization pathways for international maritime transport: A model-based policy impact assessment. Sustainability, 10(7), 2243. 22.Herdzik, J. (2021). Decarbonization of marine fuels—The future of shipping. Energies, 14(14), 4311. 23.International Energy Agency. (2023). CO₂ emissions in 2023. International Energy Agency. 24.International Maritime Organization. (2014). The third IMO GHG study 2014. International Maritime Organization. 25.International Maritime Organization. (2020). Fourth greenhouse gas study 2020. International Maritime Organization. 26.International Maritime Organization. (2021). Revised MARPOL Annex VI. International Maritime Organization. 27.International Maritime Organization. (2023). Strategy on reduction of GHG emissions from ships. International Maritime Organization. 28.Jeong, B., Kim, M., & Park, C. (2022). Decarbonization Trend in International Shipping Sector. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 6(4), 236-243. 29.Kaack, L. H., Vaishnav, P., Morgan, M. G., Azevedo, I. L., & Rai, S. (2018). Decarbonizing intraregional freight systems with a focus on modal shift. Environmental Research Letters, 13(8), 083001. 30.Lagouvardou, S., Psaraftis, H. N., & Zis, T. (2020). A literature survey on market-based measures for the decarbonization of shipping. Sustainability, 12(10), 3953. 31.Lagouvardou, S., Psaraftis, H. N., & Zis, T. (2022). Impacts of a bunker levy on decarbonizing shipping: A tanker case study. Transportation Research Part D: Transport and Environment, 106, 103257. 32.Li, D. C., & Merkert, R. (2023). “Door-to-door” carbon emission calculation for airlines–Its decarbonization potential and impact. Transportation Research Part D: Transport and Environment, 121, 103849. 33.Lindstad, E., Ask, T. Ø., Cariou, P., Eskeland, G. S., & Rialland, A. (2023). Wise use of renewable energy in transport. Transportation Research Part D: Transport and Environment, 119, 103713. 34.Li, Y. (2020). Moving towards zero-emission by 2030-a key step towards decarbonizing shipping. What progress is evident at this stage? Identify the various challenges at hand. 35.Lovričić, L., Skender, H. P., & Zaninović, P. A. Going Green: The Effects of Decarbonization on Container-Shipping Companies' Competitiveness. In Sustainable Logistics (pp. 265-284). Productivity Press. 36.Maier, R., Posch, A., Proß, C., Plakolb, S., & Steininger, K. W. (2023). Cutting social costs by decarbonizing passenger transport. Transportation Research Part D: Transport and Environment, 122, 103878. 37.Mallouppas, G., & Yfantis, E. A. (2021). Decarbonization in shipping industry: A review of research, technology development, and innovation proposals. Journal of Marine Science and Engineering, 9(4), 415. 38.Masodzadeh, P. G., Ölçer, A. I., Ballini, F., & Christodoulou, A. (2022). A review on barriers to and solutions for shipping decarbonization: What could be the best policy approach for shipping decarbonization? Marine Pollution Bulletin, 184, 114008. 39.Moshiul, A. M., Mohammad, R., & Hira, F. A. (2023). Alternative fuel selection framework toward decarbonizing maritime deep-sea shipping. Sustainability, 15(6), 5571. 40.MSC. (2022). Sustainability Report. 41.Mueller, N., Westerby, M., & Nieuwenhuijsen, M. (2023). Health impact assessments of shipping and port-sourced air pollution on a global scale: A scoping literature review. Environmental Research, 216, 114460. 42.OECD. (2022). Work in support of a sustainable ocean. 43.Psaraftis, H. N. (2019). Decarbonization of maritime transport: to be or not to be?. Maritime Economics & Logistics, 21(3), 353-371. 44.Psaraftis, H. N., Zis, T., & Lagouvardou, S. (2021). A comparative evaluation of market based measures for shipping decarbonization. Maritime Transport Research, 2, 100019. 45.Russo, M., Carvalho, D., Jalkanen, J. P., & Monteiro, A. (2023). The Future Impact of Shipping Emissions on Air Quality in Europe under Climate Change. Atmosphere, 14(7), 1126. 46.Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26. 47.Şaşmaz, A. (2022). A new fund model for maritime decarbonization in the EU: the Blue Premium Fund. 48.Sater, M. K. Y. H. (2022). Roadmap for port preparation of alternative fuel bunkering in support of shipping decarbonization. 49.Schroer, M., Panagakos, G., & Barfod, M. B. (2022). An evidence-based assessment of IMO's short-term measures for decarbonizing container shipping. Journal of Cleaner Production, 132441. 50.Seddiek, I. S., & Ammar, N. R. (2023). Technical and eco-environmental analysis of blue/green ammonia-fueled RO/RO ships. Transportation Research Part D: Transport and Environment, 114, 103547. 51.Serra, P., & Fancello, G. (2020). Towards the IMO’s GHG goals: A critical overview of the perspectives and challenges of the main options for decarbonizing international shipping. Sustainability, 12(8), 3220. 52.Shi, J., Zhu, Y., Feng, Y., Yang, J., & Xia, C. (2023). A Prompt Decarbonization Pathway for Shipping: Green Hydrogen, Ammonia, and Methanol Production and Utilization in Marine Engines. Atmosphere, 14(3), 584. 53.Song, D. (2021). A literature review, container shipping supply chain: Planning problems and research opportunities. Logistics, 5(2), 41. 54.Song, Z. Y., Chhetri, P., Ye, G., & Lee, P. T. W. (2023). Green maritime logistics coalition by green shipping corridors: a new paradigm for the decarbonisation of the maritime industry. International Journal of Logistics Research and Applications, 1-17. 55.Sullivan, L.P.: Quality function deployment—a system to assure that customer needs drive the product design and production process. Qual. Prog. 39–50 (1986). 56.Svendsen, J. B., Petit, E., Selwyn, M., & Bjerregaard, A. K. (2023). Establishing Green Shipping Corridors to Accelerate the Use of Alternative Fuels. In Maritime Decarbonization: Practical Tools, Case Studies and Decarbonization Enablers (pp. 433-449). Cham: Springer Nature Switzerland. 57.Traut, M., Larkin, A., Anderson, K., McGlade, C., Sharmina, M., & Smith, T. (2018). CO2 abatement goals for international shipping. Climate Policy, 18(8), 1066-1075. 58.United Nations Conference on Trade and Development. (2023). Handbook of statistics. United Nations Conference on Trade and Development. 59.United Nations Conference on Trade and Development. (2022). Review of maritime transport. United Nations Conference on Trade and Development. 60.United Nations Conference on Trade and Development. (2022). The least developed countries report. United Nations Conference on Trade and Development. 61.Wan, Z., El Makhloufi, A., Chen, Y., & Tang, J. (2018). Decarbonizing the international shipping industry: Solutions and policy recommendations. Marine pollution bulletin, 126, 428-435. 62.Wu, Y., Huang, Y., Wang, H., Zhen, L., & Shao, W. (2023). Green Technology Adoption and Fleet Deployment for New and Aged Ships Considering Maritime Decarbonization. Journal of Marine Science and Engineering, 11(1), 36. 63.Xiao, Z., Lam, J. S. L., Thepsithar, P., & Milla, K. (2022, July). Biofuel Adoption Pathways for Cargo Vessels under Carbon Tax. In Journal of Physics: Conference Series (Vol. 2311, No. 1, p. 012035). IOP Publishing. 64.Zhao, Y., Ge, R., Zhou, J., & Notteboom, T. (2024). Decarbonization pathways for bulk vessels: Integrating power systems, fuels, and control measures. Ocean Engineering, 300, 117488. 65.Zis, T. P., Psaraftis, H. N., Tillig, F., & Ringsberg, J. W. (2020). Decarbonizing maritime transport: A Ro-Pax case study. Research in Transportation Business & Management, 37, 100565.
|