跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 03:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡欣媛
研究生(外文):TSAI, XIN-YUAN
論文名稱:應用多層次品質機能展開法結合定期(線)航商與政策制定者觀點-探討減碳策略之實證研究
論文名稱(外文):An Empirical Study of Applying Multi-layer QFD Method to Explore the Strategies of Decarbonization by Combining the Perspectives of Liner Shipping Companies and Policy Makers
指導教授:黃聖騰
指導教授(外文):HUANG, SHENG-TENG
口試委員:楊清喬翁祥凱盧華安余坤東黃聖騰
口試委員(外文):YANG, CHING-CHIAOWENG, HSIANG-KAILU, HUA-ANYE, KUNG-DONHUANG, SHENG-TENG
口試日期:2024-07-11
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:運輸科學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:98
中文關鍵詞:國際海事組織海運減碳策略定期航商層級分析法多層次品質機能展開法替代燃料
外文關鍵詞:International Maritime OrganizationMaritime Decarbonization StrategyLiner Shipping CompanyAnalytic Hierarchy ProcessMulti-layer Quality Function DeploymentAlternative Fuels
Facebook:https://www.facebook.com/profile.php?id=100005283792244
相關次數:
  • 被引用被引用:0
  • 點閱點閱:7
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,全球海上貿易持續增長,根據國際海事組織 (International Maritime Organization, IMO)於2020年發布的第四次溫室氣體研究報告 (Fourth Greenhouse Gas Study 2020),溫室氣體排放量從2012年的9.77億噸增長至2018年的10.76億噸,增長9.6%。為了加以管制,IMO制訂了「2023年國際海事組織船舶溫室氣體排放減量策略」 (2023 IMO Strategy on Reduction of GHG Emissions from Ships)。此策略規範航運業碳排放量相比2008年,2030年須降低20-30%,並使用(近)零排放技術、燃料或能源之比例達到5-10%;2040年須減少70-80%之碳排放量;2050年則須實現國際航運的淨零排放目標 (Net-Zero)。
本研究將探討定期(線)航商及政策制定者制定減碳策略之實證研究,以減碳相關之文獻作為研究基礎,並參考學術界與業界之專家意見,運用層級分析結合多層次品質機能展開法,以定期(線)航商與政策制定者提升策略效力的觀點分析,將兩者對於制定減碳策略的需求,轉換為改善現況之技術需求。
根據研究結果顯示,制定減碳策略之技術需求及優先執行順序的結果為「研發更高效且低碳的引擎及動力系統」、「實施替代燃料動力技術」、「實施再生能源動力技術」,期許能作為減碳策略提升效力的參考,企盼未來此策略能更加精進。
In recent years, global maritime trade has continued to grow. According to the International Maritime Organization's "Fourth IMO GHG Study 2020," greenhouse gas emissions increased from 9.77 billion tonnes in 2012 to 10.76 billion tonnes in 2018 (9.6% increase). To address this issue, the IMO has established the "The 2023 IMO GHG Strategy". Set targets for 2030 to reduce carbon emissions in the shipping industry by 20-30% compared to 2008 levels, with 5-10% of (almost)zero-emission technologies, fuels, or energy sources to be used; 70-80% reduction by 2040; and achieving net-zero emissions for international shipping by 2050.
This study aims to explore empirical research on the development of decarbonization strategies by liner shipping companies and policy makers. It is based on literature related to decarbonization and incorporates the opinions of experts from academia and industry. Using the Analytic Hierarchy Process (AHP) combined with the Multi-layer Quality Function Deployment (QFD), the study analyzes the perspectives of liner shipping companies and policy makers to enhance the effectiveness of their strategies. It converts their demands for developing decarbonization strategies into improvements in existing technological requirements.
The results indicate that the key technological requirements and priority execution sequence for decarbonization strategies are “Developing more efficient and low-carbon engines and propulsion systems”, “Implementing alternative fuel propulsion technologies”, and “Implementing renewable energy power technologies”. These findings are expected to serve as a reference for enhancing the effectiveness of decarbonization strategies, with the hope that future strategies will be further refined.
摘要 I
Abstract II
致謝 III
目次 IV
圖次 VI
表次 VII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究獨創性與貢獻 3
1.4 研究架構與流程 3
第二章 文獻回顧 5
2.1 全球運輸產業減碳政策現況統整 5
2.2 海洋運輸產業減碳政策現況 5
2.2.1 定期(線)航商 6
2.2.2 政策制定者 10
2.3 航運產業減碳方法 12
2.3.1 替代燃料 (Alternative Fuels) 12
2.3.2 再生能源 (Renewable Energy) 16
2.3.3 科技創新 (Technological Innovation) 17
2.3.4 綠色航運廊道 (Green Shipping Corridor, GSC) 18
2.3.5 技術方法 (Technical Methods) 19
2.3.6 市場營運方法 (Market- Based Measures, MBM) 21
2.3.7 能源效率與碳排放指標 (Energy Efficiency and Carbon Emission Indicators) 22
2.4 航空運輸產業 23
2.5 陸上運輸產業 23
2.6 文獻回顧小結 24
第三章 研究方法 25
3.1 層級分析法 (Analytic Hierarchy Process) 25
3.1.1 層級分析法 (AHP)之分析步驟 26
3.2 品質機能展開法 (Quality Function Deployment) 31
3.2.1 品質機能展開法 (QFD)之起源 31
3.2.2 品質機能展開法 (QFD)之概念與架構 31
3.2.3 品質機能展開法 (QFD)之分析步驟 33
3.3 多層次品質機能展開法 (Multi-layer Quality Function Deployment) 33
3.3.1 交叉合成矩陣分析 34
3.3.2 技術需求 36
第四章 結果分析 38
4.1 問卷架構與設計 38
4.2 AHP層級分析法之問卷分析 40
4.2.1 問卷對象 40
4.2.2 AHP層級分析法之問卷分析 43
4.2.3 定期(線)航商AHP問卷分析結果 44
4.2.4 政策制定者AHP問卷分析結果 45
4.3 多層次品質機能展開法 (Multi-layer QFD)之問卷分析 46
4.3.1 關係矩陣 46
4.3.2 技術方法之優先排序 51
第五章 結論與建議 52
5.1 結論 52
5.2 研究限制與未來研究方向 53
5.3 具體政策建議 53
參考文獻 55
附錄一 前測問卷 61
附錄二 定期(線)航商AHP問卷 67
附錄三 政策制定者AHP問卷 74
附錄四 Multi-layer QFD專家問卷 81

一、中文部分
1.榮泰生. (2023). Expert Choice在分析層級程序法 (AHP)之應用. 五南圖書出版股份有限公司。

二、英文部分
1.Abraham, E. J., Linke, P., Rousseau, J., Burton, G., & Al-Mohannadi, D. M. (2024). Large-scale shipping of low-carbon fuels and carbon dioxide towards decarbonized energy systems: Perspectives and challenges. International Journal of Hydrogen Energy, 63, 217-230.
2.Akao, Y. (1997, October). QFD: Past, present, and future. In International symposium on QFD (Vol. 97, No. 2, pp. 1-12). Linköping, Sweden: International council of QFD.
3.Akao, Y., & Ohfuji, T. (1989). Recent aspects of quality function deployment in service industries in Japan. In Proceedings of the international conference on quality control (Vol. 3).
4.Ampah, J. D., Yusuf, A. A., Afrane, S., Jin, C., & Liu, H. (2021). Reviewing two decades of cleaner alternative marine fuels: Towards IMO's decarbonization of the maritime transport sector. Journal of Cleaner Production, 320, 128871.
5.Bergman, B., Bengt, K.: Quality From Customer Needs to Customers’ Satisfaction. McGraw-Hill, London (1994).
6.Chen, R. (2023). Analysis for Decarbonization Pathways for Shipping. In E3S Web of Conferences (Vol. 424, p. 03007). EDP Sciences.
7.Chiaramonti, D., Talluri, G., Scarlat, N., & Prussi, M. (2021). The challenge of forecasting the role of biofuel in EU transport decarbonisation at 2050: A meta-analysis review of published scenarios. Renewable and Sustainable Energy Reviews, 139, 110715.
8.Chua, Y. J., Soudagar, I., Ng, S. H., & Meng, Q. (2023). Impact analysis of environmental policies on shipping fleet planning under demand uncertainty. Transportation Research Part D: Transport and Environment, 120, 103744.
9.Clora, F., & Yu, W. (2022). International maritime shipping decarbonization under alternative technological scenarios: effects on agrifood markets.
10.Corruble, P., Tliche, Y., & Radhoui, H. (2024). Financing decarbonization through wind-powered vessels. Marine Policy, 165, 106163.
11.Cullinane, K., & Yang, J. (2022). Evaluating the Costs of Decarbonizing the Shipping Industry: A Review of the Literature. Journal of Marine Science and Engineering, 10(7), 946.
12.Curran, S., Onorati, A., Payri, R., Agarwal, A. K., Arcoumanis, C., Bae, C., ... & Wermuth, N. (2024). The future of ship engines: Renewable fuels and enabling technologies for decarbonization. International Journal of Engine Research, 25(1), 85-110.
13.Daniel, H., Trovão, J. P. F., & Williams, D. (2021). Shore power as a first step toward shipping decarbonization and related policy impact on a dry bulk cargo carrier. eTransportation, 100150.
14.Dirzka, C., & Acciaro, M. (2021). Principal-agent problems in decarbonizing container shipping: A panel data analysis. Transportation Research Part D: Transport and Environment, 98, 102948.
15.Doelle, M., & Chircop, A. (2019). Decarbonizing international shipping: An appraisal of the IMO's Initial Strategy. Review of European, Comparative & International Environmental Law, 28(3), 268-277.
16.Duru, O., Huang, S. T., Bulut, E., & Yoshida, S. (2013). Multi-layer quality function deployment (QFD) approach for improving the compromised quality satisfaction under the agency problem: A 3D QFD design for the asset selection problem in the shipping industry. Quality & Quantity, 47(4), 2259-2280.
17.Ghoneim, N., Colak, A. T., & Amer, A. (2023). Exploring the Regulatory Framework of Maritime Decarbonization to Achieve IMO GHG Emission Targets. Port-Said Engineering Research Journal, 27(1), 8-14.
18.Godet, A., Nurup, J. N., Saber, J. T., Panagakos, G., & Barfod, M. B. (2023). Operational cycles for maritime transportation: A benchmarking tool for ship energy efficiency. Transportation Research Part D: Transport and Environment, 121, 103840.
19.Gray, N., McDonagh, S., O'Shea, R., Smyth, B., & Murphy, J. D. (2021). Decarbonising ships, planes and trucks: An analysis of suitable low-carbon fuels for the maritime, aviation and haulage sectors. Advances in Applied Energy, 1, 100008.
20.Grzelakowski, A. S., Herdzik, J., & Skiba, S. (2022). Maritime Shipping Decarbonization: Roadmap to Meet Zero-Emission Target in Shipping as a Link in the Global Supply Chains. Energies, 15(17), 6150.
21.Halim, R. A., Kirstein, L., Merk, O., & Martinez, L. M. (2018). Decarbonization pathways for international maritime transport: A model-based policy impact assessment. Sustainability, 10(7), 2243.
22.Herdzik, J. (2021). Decarbonization of marine fuels—The future of shipping. Energies, 14(14), 4311.
23.International Energy Agency. (2023). CO₂ emissions in 2023. International Energy Agency.
24.International Maritime Organization. (2014). The third IMO GHG study 2014. International Maritime Organization.
25.International Maritime Organization. (2020). Fourth greenhouse gas study 2020. International Maritime Organization.
26.International Maritime Organization. (2021). Revised MARPOL Annex VI. International Maritime Organization.
27.International Maritime Organization. (2023). Strategy on reduction of GHG emissions from ships. International Maritime Organization.
28.Jeong, B., Kim, M., & Park, C. (2022). Decarbonization Trend in International Shipping Sector. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 6(4), 236-243.
29.Kaack, L. H., Vaishnav, P., Morgan, M. G., Azevedo, I. L., & Rai, S. (2018). Decarbonizing intraregional freight systems with a focus on modal shift. Environmental Research Letters, 13(8), 083001.
30.Lagouvardou, S., Psaraftis, H. N., & Zis, T. (2020). A literature survey on market-based measures for the decarbonization of shipping. Sustainability, 12(10), 3953.
31.Lagouvardou, S., Psaraftis, H. N., & Zis, T. (2022). Impacts of a bunker levy on decarbonizing shipping: A tanker case study. Transportation Research Part D: Transport and Environment, 106, 103257.
32.Li, D. C., & Merkert, R. (2023). “Door-to-door” carbon emission calculation for airlines–Its decarbonization potential and impact. Transportation Research Part D: Transport and Environment, 121, 103849.
33.Lindstad, E., Ask, T. Ø., Cariou, P., Eskeland, G. S., & Rialland, A. (2023). Wise use of renewable energy in transport. Transportation Research Part D: Transport and Environment, 119, 103713.
34.Li, Y. (2020). Moving towards zero-emission by 2030-a key step towards decarbonizing shipping. What progress is evident at this stage? Identify the various challenges at hand.
35.Lovričić, L., Skender, H. P., & Zaninović, P. A. Going Green: The Effects of Decarbonization on Container-Shipping Companies' Competitiveness. In Sustainable Logistics (pp. 265-284). Productivity Press.
36.Maier, R., Posch, A., Proß, C., Plakolb, S., & Steininger, K. W. (2023). Cutting social costs by decarbonizing passenger transport. Transportation Research Part D: Transport and Environment, 122, 103878.
37.Mallouppas, G., & Yfantis, E. A. (2021). Decarbonization in shipping industry: A review of research, technology development, and innovation proposals. Journal of Marine Science and Engineering, 9(4), 415.
38.Masodzadeh, P. G., Ölçer, A. I., Ballini, F., & Christodoulou, A. (2022). A review on barriers to and solutions for shipping decarbonization: What could be the best policy approach for shipping decarbonization? Marine Pollution Bulletin, 184, 114008.
39.Moshiul, A. M., Mohammad, R., & Hira, F. A. (2023). Alternative fuel selection framework toward decarbonizing maritime deep-sea shipping. Sustainability, 15(6), 5571.
40.MSC. (2022). Sustainability Report.
41.Mueller, N., Westerby, M., & Nieuwenhuijsen, M. (2023). Health impact assessments of shipping and port-sourced air pollution on a global scale: A scoping literature review. Environmental Research, 216, 114460.
42.OECD. (2022). Work in support of a sustainable ocean.
43.Psaraftis, H. N. (2019). Decarbonization of maritime transport: to be or not to be?. Maritime Economics & Logistics, 21(3), 353-371.
44.Psaraftis, H. N., Zis, T., & Lagouvardou, S. (2021). A comparative evaluation of market based measures for shipping decarbonization. Maritime Transport Research, 2, 100019.
45.Russo, M., Carvalho, D., Jalkanen, J. P., & Monteiro, A. (2023). The Future Impact of Shipping Emissions on Air Quality in Europe under Climate Change. Atmosphere, 14(7), 1126.
46.Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 9-26.
47.Şaşmaz, A. (2022). A new fund model for maritime decarbonization in the EU: the Blue Premium Fund.
48.Sater, M. K. Y. H. (2022). Roadmap for port preparation of alternative fuel bunkering in support of shipping decarbonization.
49.Schroer, M., Panagakos, G., & Barfod, M. B. (2022). An evidence-based assessment of IMO's short-term measures for decarbonizing container shipping. Journal of Cleaner Production, 132441.
50.Seddiek, I. S., & Ammar, N. R. (2023). Technical and eco-environmental analysis of blue/green ammonia-fueled RO/RO ships. Transportation Research Part D: Transport and Environment, 114, 103547.
51.Serra, P., & Fancello, G. (2020). Towards the IMO’s GHG goals: A critical overview of the perspectives and challenges of the main options for decarbonizing international shipping. Sustainability, 12(8), 3220.
52.Shi, J., Zhu, Y., Feng, Y., Yang, J., & Xia, C. (2023). A Prompt Decarbonization Pathway for Shipping: Green Hydrogen, Ammonia, and Methanol Production and Utilization in Marine Engines. Atmosphere, 14(3), 584.
53.Song, D. (2021). A literature review, container shipping supply chain: Planning problems and research opportunities. Logistics, 5(2), 41.
54.Song, Z. Y., Chhetri, P., Ye, G., & Lee, P. T. W. (2023). Green maritime logistics coalition by green shipping corridors: a new paradigm for the decarbonisation of the maritime industry. International Journal of Logistics Research and Applications, 1-17.
55.Sullivan, L.P.: Quality function deployment—a system to assure that customer needs drive the product design and production process. Qual. Prog. 39–50 (1986).
56.Svendsen, J. B., Petit, E., Selwyn, M., & Bjerregaard, A. K. (2023). Establishing Green Shipping Corridors to Accelerate the Use of Alternative Fuels. In Maritime Decarbonization: Practical Tools, Case Studies and Decarbonization Enablers (pp. 433-449). Cham: Springer Nature Switzerland.
57.Traut, M., Larkin, A., Anderson, K., McGlade, C., Sharmina, M., & Smith, T. (2018). CO2 abatement goals for international shipping. Climate Policy, 18(8), 1066-1075.
58.United Nations Conference on Trade and Development. (2023). Handbook of statistics. United Nations Conference on Trade and Development.
59.United Nations Conference on Trade and Development. (2022). Review of maritime transport. United Nations Conference on Trade and Development.
60.United Nations Conference on Trade and Development. (2022). The least developed countries report. United Nations Conference on Trade and Development.
61.Wan, Z., El Makhloufi, A., Chen, Y., & Tang, J. (2018). Decarbonizing the international shipping industry: Solutions and policy recommendations. Marine pollution bulletin, 126, 428-435.
62.Wu, Y., Huang, Y., Wang, H., Zhen, L., & Shao, W. (2023). Green Technology Adoption and Fleet Deployment for New and Aged Ships Considering Maritime Decarbonization. Journal of Marine Science and Engineering, 11(1), 36.
63.Xiao, Z., Lam, J. S. L., Thepsithar, P., & Milla, K. (2022, July). Biofuel Adoption Pathways for Cargo Vessels under Carbon Tax. In Journal of Physics: Conference Series (Vol. 2311, No. 1, p. 012035). IOP Publishing.
64.Zhao, Y., Ge, R., Zhou, J., & Notteboom, T. (2024). Decarbonization pathways for bulk vessels: Integrating power systems, fuels, and control measures. Ocean Engineering, 300, 117488.
65.Zis, T. P., Psaraftis, H. N., Tillig, F., & Ringsberg, J. W. (2020). Decarbonizing maritime transport: A Ro-Pax case study. Research in Transportation Business & Management, 37, 100565.
電子全文 電子全文(網際網路公開日期:20290805)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊