跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/21 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余承諺
研究生(外文):YU,CHENG-YAN
論文名稱:臺灣四周海域有機膠體垂直分布特性及對海洋生物幫浦碳通量之影響
論文名稱(外文):Vertical distribution characteristics of organic gels and its impacts on carbon fluxes of the biological pump in marginal seas of Taiwan
指導教授:許瑞峯
指導教授(外文):SHIU,RUEI-FENG
口試委員:李宗霖黃大駿龔國慶廖文軒
口試委員(外文):LEE,CHON-LINHUANG,DA-JIGONG,GWO-CHINGLIAO,WEN-HSUAN
口試日期:2023-10-25
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋環境與生態研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:中文
論文頁數:54
中文關鍵詞:透明外聚合物顆粒考馬斯染色顆粒生物碳幫浦海洋雪花捕捉器
外文關鍵詞:Transparent exopolymer particlesCoomassie stainable particlesBiological carbon pumpMarine snow catcher
相關次數:
  • 被引用被引用:0
  • 點閱點閱:55
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
海洋有機膠體通常由植物性浮游生物或細菌所釋出的前驅物所聚合而成,又依其成分的不同,分為具多醣的透明胞外聚合物顆粒(transparent exopolymer particles,TEP)及富含蛋白質的考馬斯染色顆粒(coomassie stainable particles,CSP)。目前膠體顆粒已被證實可供應海洋生物的養分來源並增進有機碳的傳輸,為構成生物碳幫浦的重要角色。然而,現今研究多重於 TEP 在水體中的分布及傳輸,對於 CSP 及影響膠體分布之環境因子的研究仍然較為缺乏。有鑒於此,本研究於 2021 年 12 月搭乘 NOR1-CR0022 航次採集臺灣周遭不同區位(如陸棚、河口近岸、大洋與湧升流等區)之透光及無光帶之水樣,並分析膠體濃度、生地化參數及溶解態有機碳的再聚合潛力,以瞭解膠體在不同水層的分布概況及可能的影響因子。此外,本研究亦會使用海洋雪花捕捉器採集混合層下之懸浮及沉降有機顆粒並分析其膠體濃度,最後再透過膠體與海洋雪花碳通量進行連結,以釐清膠體沉降對生物碳幫浦之貢獻。研究結果指出臺灣周遭海域的 TEP 及 CSP 分別介於 6.21~79.66 µg Xeq.L-1 與 8.95~144.78 µg BSA eq.L-1 之間,而以高屏近岸(測站 KP4) 及桃園外海(測站 1)膠體濃度最高,其原因可能KP4 的受到植物性浮游生物的主導,而第 1 測站則受到了沉積物或底質再懸浮作用的影響,進而增加膠體被釋出的機會。進一步區分並比較兩種膠體於透光帶及無光帶與生地化參數的相關性,結果顯示 TEP 均與葉綠素 a、異營性細菌豐度、基礎生產力、顆粒態有機碳、溶解態有機碳及懸浮性物質參數呈現正相關的趨勢,反觀 CSP 則僅有與異營性細菌豐度和溶解態有機碳有正相關之趨勢,揭示兩種膠體可能來自不同的來源。最後從海洋雪花捕捉器觀察到有超過50%的膠體顆粒是屬於慢速沉降之特性,而當水體中同時具備較高的 TEP 與壓載礦物(蛋白石)則會增加該區域生物碳幫浦能力及碳通量,本研究已提供臺灣周遭海域有機膠體分布、濃度及可能影響之因子並與生物碳幫浦連結,研究結果將有助於後續評估海洋藍碳與生物碳幫浦之能力。

Marine gel-like particles such as the polysaccharide-containing transparent
exopolymer particles (TEP) and protein-containing Coomassie stainable particles (CSP) are thought to assemble from secretions of phytoplankton or bacterial cells. These gellike particles also serve as nutrient sources for marine life and play a pivotal role in the marine carbon pump. Current research predominantly focuses on the origin, formation mechanisms, and distribution of TEP, while information about CSP characteristics,behavior and controlling factors of CSP still receive less attention. In the cruise NOR1-CR0022 (December 2021), we collected water samples from various depth around Taiwan (including continental shelf, estuary coast, ocean upwelling areas), and analyzed gel-like particle abundance and environmental parameters to identify the possible correlation between gel-like particle and environmental factors.The data indicated TEP and CSP concentrations in waters around Taiwan ranged from 6.21 to
79.66 µg Xeq.L-1 and 8.95 to 144.78 µg BSA eq.L-1, respectively. Higher gel-like
particle levels were found at the station Gaoping Canyon (st.KP4) and Taoyuan offshore(st.1). The possible explanation of higher gel-like particle concentration at KP4 may be attributed to higher phytoplankton dominance, while st.1 was caused by sediment resuspension. The results from statistical analysis revealed positive correlations for TEP with chlorophyll a, heterotrophic bacteria, primary productivity, particulate and dissolved organic carbon, and suspended particulate matter, whether in the euphotic and aphotic zone. In contrast, CSP only showed positive correlations with heterotrophic bacteria and dissolved organic carbon, suggesting the different origins of the two gellike particles. Additionally, the data from the marine snow catcher exhibited over 50% of aggregates containing TEP and CSP in slow sinking proportions. Higher concentration of TEP and ballast minerals can enhance the biological carbon pump's capacity and carbon fluxes. Overall, this study offers important information about distribution of TEP and CSP, and possible influencing factors.
目錄
摘要 .............................................................Ⅱ
Abstract ........................................................Ⅲ
表目錄.......................................................... Ⅵ
圖目錄...........................................................Ⅶ
參數中英文對照表.................................................Ⅷ
第一章 緒論........................................................9
1.1 碳循環.........................................................9
1.2 海洋有機膠體...................................................10
1.3 海洋有機膠體對於海洋的重要性 ....................................11
1.4 全世界有機膠體分布概況...........................................13
1.5 研究目標........................................................14
第二章 研究區域與材料................................................15
2.1 研究區域與......................................................15
2.2 環境資料分......................................................17
2.2.1 無機營養鹽....................................................17
2.2.2 葉綠素 a .....................................................17
2.2.3 基礎生產力.....................................................17
2.2.4 異營性細菌豐度.................................................18
2.2.5 顆粒態有機碳...................................................18
2.2.6 溶解態有機碳...................................................18
2.2.7 懸浮性顆粒物...................................................18
2.2.8 蛋白石.........................................................18
2.2.9 海洋雪花 POC 濃度之推估.........................................19
2.3 海洋有機膠體分析..................................................19
2.3.1 透明外聚合物顆粒(TEP) ..........................................19
2.3.2 考馬斯染色顆粒(CSP) ............................................20
2.3.3 再聚合微膠(assembled microgels).................................20
第三章 結果與討論......................................................21
3.1 水文環境特徵.......................................................21
3.1.1 桃園外海 ........................................................21
3.1.2 高屏外海 ........................................................21
3.1.3 高屏近岸 ........................................................22
3.1.4 臺灣南部海域 ....................................................23
3.1.5 宜蘭外海 ........................................................23
3.1.6 東北部湧升流區....................................................24
3.2 臺灣周遭海域膠體分布概況.............................................27
3.2.1 各區位膠體垂直分布情形.............................................27
3.2.2 透光帶及無光帶膠體分布差異..........................................27
3.3 有機膠體分布之潛在控制因子............................................34
3.3.1 有機膠體在透光帶濃度與環境因子之關係.................................34
3.3.2 有機膠體之再聚合 ..................................................39
3.3.3 有機膠體對生物碳幫浦之影響..........................................41
第四章 結論.............................................................46
第五章 建議及未來方向....................................................47
第六章 參考文獻..........................................................48

Alldredge, A. L., U. Passow & Bruce E. Logan. 1993. The abundance and significance
of a class of large, transparent organic particles in the ocean. Deep Sea Research
Part I: Oceanographic Research Papers, 40, 1131-1140.
Alldredge, A. L. 1998. The carbon, nitrogen and mass content of marine snow as a
function of aggregate size. Deep Sea Research Part I: Oceanographic Research
Papers, 45(4-5):529-541.
Aller, J. Y., M. R. Kuznetsova, C. J. Jahns & P. F. Kemp. 2005. The sea surface
microlayer as a source of viral and bacterial enrichment in marine aerosols.
Journal of Aerosol Science, 36, 801-812.
Azetsu-Scott, K. & U. Passow. 2004. Ascending marine particles: significance of
transparent exopolymer particles (TEP) in the upper ocean. Limnology and
Oceanography, 49, 741-748.
Bach, L. T., U. Riebesell, S. Sett, S. Febiri, P. Rzepka & K. G. Schulz. 2012. An
approach for particle sinking velocity measurements in the 3–400 μm size range
and considerations on the effect of temperature on sinking rates. Marine Biology,
159, 1853-1864.
Bar-Zeev, E., I. Berman-Frank, O. Girshevitz & T. Berman. 2012. Revised paradigm of
aquatic biofilm formation facilitated by microgel transparent exopolymer
particles. Proceedings of the National Academy of Sciences, 109, 9119-9124.
Berman-Frank, I., G. Rosenberg, O. Levitan, L. Haramaty & X. Mari. 2007. Coupling
between autocatalytic cell death and transparent exopolymeric particle production
in the marine cyanobacterium trichodesmium. Environmental Microbiology, 9,
1415-1422.
Boden, T. A., G. Marland & R. J. J. C. d. i. a. c. Andres. 2009. Global, regional, and
national fossil-fuel CO2 emissions. Oak ridge national laboratory, US
department of energy Oak Ridge Tenn USA, 10.
Busch, K. , Endres, S. , Iversen, M. H. , Michels, J. , Nöthig, E. M. and Engel, A. 2017.
Bacterial colonization and vertical distribution of marine gel particles (TEP and
CSP) in the Arctic Fram Strait. Frontiers in Marine Science, 4 (166), pp. 1-14 .
Chin, W.-C., M. V. Orellana & P. Verdugo. 1998. Spontaneous assembly of marine
dissolved organic matter into polymer gels. Nature, 391, 568-572.
Cisternas‐Novoa, C.,C. Lee & A. Engel. 2014. A semi‐quantitative spectrophotometric,
dye‐binding assay for determination of coomassie blue stainable particles.
Limnology Oceanography: Methods, 12(8):604-616
Cisternas-Novoa, C., C. Lee & A. Engel. 2015. Transparent exopolymer particles (TEP)
and Coomassie stainable particles (CSP): differences between their origin and
49
vertical distributions in the ocean. Marine Chemistry, 175, 56-71.
Corzo, A., J. A. Morillo-Pérez & S. Rodriguez-Galvez. 2000. Production of transparent
exopolymer particles (TEP) in cultures of chaetoceros calcitrans under nitrogen
limitation. Aquatic Microbial Ecology, 23, 63-72.
Decho, A. W. & T. Gutierrez. 2017. Microbial extracellular polymeric substances (EPSs)
in ocean systems, Frontiers in Microbiology , 8, 922.
Engel, A. 2009. Determination of marine gel particles. In Practical guidelines for the
analysis of seawater, 137-154. CRC Press.
Engel, A., S. Endres, L. Galgani & M. Schartau. 2020. Marvelous marine microgels: on
the distribution and impact of gel-like particles in the oceanic water-column.
Frontiers in Marine Science, 7.10.3389
Engel, A. & L. Galgani. 2016. The organic sea-surface microlayer in the upwelling
region off the coast of peru and potential implications for air–sea exchange
processes. Biogeosciences, 13, 989-1007.
Gibbons, M. J., M. Barange & S. C. Pillar. 1991. Vertical migration and feeding of
euphausia lucens (Euphausiacea) in the southern benguela. Journal of Plankton
Research, 13, 473-486.
Gobler, C. J., D. A. Hutchins, N. S. Fisher, E. M. Cosper & S. A. Saňudo-Wilhelmy.
1997. Release and bioavailability of C, N, P Se, and Fe following viral lysis of a
marine chrysophyte. Limnology and Oceanography, 42, 1492-1504.
Gong, G-C. 1992. 'Chemical hydrography of the kuroshio front in the sea northeast of
taiwan', institute of oceanography, national taiwan university, taipei, taiwan: 204.
Gong, G.-C., F.-K. Shiah, K.-K. Liu, Y.-H. Wen & L. Ming-Hsin. 2000. Spatial and
temporal variation of chlorophyll a, primary productivity and chemical
hydrography in the southern east china sea. Continental Shelf Research, 20, 411-
436
Grossart, H.-P., M. Simon & B. E. Logan. 1997. Formation of macroscopic organic
aggregates (lake snow) in a large lake: the significance of transparent exopolymer
particles, plankton, and zooplankton. Limnology and Oceanography, 42, 1651-
1659.
Harlay, J., C. De Bodt, A. Engel, S. Jansen, Q. d’Hoop, J. Piontek, N. Van Oostende, S.
Groom, K. Sabbe & L. Chou. 2009. Abundance and size distribution of
transparent exopolymer particles (TEP) in a coccolithophorid bloom in the
northern bay of biscay. Deep Sea Research Part I: Oceanographic Research
Papers, 56, 1251-1265.
Hong, Y., W. Smith & A.-M. White. 2008. Studies on transparent exopolymer particles
(TEP) produced in the ross sea (Antarctica) by phaeocystis antarctica
(Prymnesiophyceae). Journal of Phycology, 33, 368-376.
50
Huang, T.-H., C.-T. A. Chen, J. Lee, C.-R. Wu, Y.-L. Wang, Y. Bai, X. He, S.-L. Wang,
S. Kandasamy, J.-Y. Lou, B.-J. Tsuang, H.-W. Chen, R.-S. Tseng & Y. J. Yang .
2019. East china sea increasingly gains limiting nutrient from south china sea.
Scientific Reports, 9, 5648.
Hu, J., W. Lan, B. Huang, K.-P. Chiang & H. Hong. 2015. Low nutrient and high
chlorophyll a coastal upwelling system – A case study in the southern taiwan strait.
Estuarine, Coastal and Shelf Science, 166, 170-177.
Hung, C. C., and G. C. Gong. 2007. 'Export flux of POC in the main stream of the
kuroshio', Geophysical Research Letters, 34.
Jacquet, S. H. M., D. Lefèvre, C. Tamburini, M. Garel, F. A. C. Le Moigne, N. Bhairy
& S. Guasco. 2021. On the barium–oxygen consumption relationship in the
mediterranean sea: implications for mesopelagic marine snow remineralization.
European Geosciences Union, 18, 2205-2212.
Jan, S., J. Wang, C.-S. Chern & S.-Y. Chao. 2002. Seasonal variation of the circulation
in the Taiwan Strait. Journal of Marine Systems, 35, 249-268.
Kroeker, K. J., R. L. Kordas, R. Crim, I. E. Hendriks, L. Ramajo, G. S. Singh, C. M.
Duarte & J.-P. Gattuso. 2013. Impacts of ocean acidification on marine organisms:
quantifying sensitivities and interaction with warming. Global Change Biology,
19, 1884-1896.
Lampitt, R. S., T. Noji & B. von Bodungen. 1990. What happens to zooplankton faecal
pellets? implications for material flux. Marine Biology, 104, 15-23.
Leblanc, K., C. E. Hare, Y. Feng, G. M. Berg, G. R. DiTullio, A. R. Neeley, I. Benner,
I. Benner, C. Sprengel, A. J. Beck, S. A. Sañudo-Wilhelmy, U. Passow, U. Passow,
K. Klinck, J. M. Rowe, S. W. Wilhelm, C. W. Brown & D. A. J. B. Hutchins. 2009.
Distribution of calcifying and silicifying phytoplankton in relation to
environmental and biogeochemical parameters during the late stages of the 2005
north east atlantic spring bloom. European Geoscience Union, 6, 2155-2179.
Le Quéré, C., M. R. Raupach, J. G. Canadell, G. Marland, L. Bopp, P. Ciais, T. J.
Conway, S. C. Doney, R. A. Feely, P. Foster, P. Friedlingstein, K. Gurney, R. A.
Houghton, J. I. House, C. Huntingford, P. E. Levy, M. R. Lomas, J. Majkut, N.
Metzl, J. P. Ometto, G. P. Peters, I. C. Prentice, J. T. Randerson, S. W. Running,
J. L. Sarmiento, U. Schuster, S. Sitch, T. Takahashi, N. Viovy, G. R. van der
Werf & F. I. Woodward. 2009. Trends in the sources and sinks of carbon
dioxide. Nature Geoscience, 2, 831-836.
Liu, H., J. Chang, C. M. Tseng, L. S. Wen & K. K. Liu. 2007. Seasonal variability of
picoplankton in the northern south china sea at the seats station. Deep Sea
Research Part II: Topical Studies in Oceanography, 54, 1602-1616.
Long, R. A. & rooq Azam. 1996. Abundant protein-containing particles in the sea.
Aquatic Microbial Ecology, 10, 213-221.
51
Mari, X., U. Passow, C. Migon, A. B. Burd & L. Legendre. 2017. Transparent
exopolymer particles: effects on carbon cycling in the ocean. Progress in
Oceanography, 151, 13-37.
Marie, D., P. D. Brussaard Corina, R. Thyrhaug, G. Bratbak & D. Vaulot. 1999.
Enumeration of marine viruses in culture and natural samples by flow cytometry.
Applied and Environmental Microbiology, 65, 45-52.
Mopper, K., J. zhou, K. Sri Ramana, U. passow, H. G. dam & D. T. Drapeau. 1995. The
role of surface-active carbohydrates in the flocculation of a diatom bloom in a
mesocosm. Deep Sea Research Part II: Topical Studies in Oceanography, 42, 47-
73.
Morelle, J., M. Schapira & P. Claquin. 2017. Dynamics of phytoplankton productivity
and exopolysaccharides (EPS and TEP) pools in the seine estuary (France,
Normandy) over tidal cycles and over two contrasting seasons. Marine
Environmental Research, 131, 162-176.
Møller, E. 2007. Production of dissolved organic carbon by sloppy feeding in the
copepods" acartia tonsa, centropages typicus," and" temora longicornis".
Limnology and Oceanography, 52.
Neuer, S., M. Iversen & G. Fischer. 2014. The ocean's biological carbon pump as part
of the global carbon cycle. Limnology and Oceanography e-Lectures, 4, 1-51.
Orellana, M. V. & P. Verdugo. 2003. Ultraviolet radiation blocks the organic carbon
exchange between the dissolved phase and the gel phase in the ocean. Limnology
and Oceanography, 48, 1618-1623.
Ortega-Retuerta, E., U. Passow, C. M. Duarte & I. Reche. 2009. Effects of ultraviolet
radiation on (not so) transparent exopolymer particles. Biogeosciences, 6, 3071-
3080.
Ortega‐Retuerta, E., I. P. Mazuecos, I. Reche, J. M. Gasol, X. A. Álvarez‐Salgado, M.
Álvarez, M. F. Montero & J. J. P. i. O. Arístegui. 2019. Transparent exopolymer
particle (TEP) distribution and in situ prokaryotic generation across the deep
mediterranean sea and nearby north east atlantic ocean. Progress in
Oceanography,180-191.
Parinos, C., A. Gogou, E. Krasakopoulou, A. Lagaria, A. Giannakourou, A. P.
Karageorgis & S. Psarra. 2017. Transparent exopolymer particles (TEP) in the ne
aegean sea frontal area: seasonal dynamics under the influence of black sea water.
Continental Shelf Research, 149, 112-123.
Passow, U. & A. L. Alldredge. 1995. A dye-binding assay for the spectrophotometric
measurement of transparent exopolymer particles (TEP). Limnology and
Oceanography, 40, 1326-1335.
Parsons, Timothy Richard, Yoshiaki Maita, and Carol M. Lalli. 1984. "A manual of
chemical and biological methods for seawater analysis. Pergamon Press, New
52
York, USA:173.
Prieto, L., J. Ruiz, F. Echevarrı́a, C. M. Garcı́a, A. Bartual, J. A. Gálvez, A. Corzo & D.
Macı́as. 2002. Scales and processes in the aggregation of diatom blooms: high
time resolution and wide size range records in a mesocosm study. Deep Sea
Research Part I: Oceanographic Research Papers, 49, 1233-1253.
Pai, SC, Yang Chung-Cheng, and JP Riley. 1990. 'Effects of acidity and molybdate
concentration on the kinetics of the formation of the
phosphoantimonylmolybdenum blue complex', Analytica chimica acta, 229: 115-
120.
Passow, U. 2002.Transparent exopolymer particles (TEP) in aquatic environments.
Progress in Oceanography, 55, 287-333.
Quigg, A., P. H. Santschi, A. Burd, W.-C. Chin, M. Kamalanathan, C. Xu & K.
Ziervogel. 2021. From nano-gels to marine snow: a synthesis of gel formation
processes and modeling efforts involved with particle flux in the ocean. Gels, 7,
114.
Riley, J. S., R. Sanders, C. Marsay, F. A. C. Le Moigne, E. P. Achterberg, and A. J.
Poulton. 2012. 'The relative contribution of fast and slow sinking particles to ocean
carbon export', Global Biogeochemical Cycles, 26.
Sabine, C. L., R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof,
C. S. Wong, D. W. R. Wallace, B. Tilbrook, F. J. Millero, T.-H. Peng, A. Kozyr, T.
Ono & A. F. Rios. 2004. The oceanic sink for anthropogenic co2. Science, 305,
367-371.
Sharp, J. H., R. Benner, L. Bennett, C. A. Carlson, S. E. Fitzwater, E. T. Peltzer & L.
M. Tupas. 1995. Analyses of dissolved organic carbon in seawater: the jgofs
eqpac methods comparison. Marine Chemistry, 48, 91-108.
Sha, Y., H. Zhang, M. Lee, C. Björnerås, M. Škerlep, R. Gollnisch, S. D. Herzog, G.
Ekelund Ugge, J. Vinterstare, N. Hu, V. Pärssinen, K. Hulthén, P. A. Nilsson, K.
Rengefors, C. Brönmark, R. B. Langerhans & L.-A. Hansson. 2021. Diel vertical
migration of copepods and its environmental drivers in subtropical bahamian blue
holes. Aquatic Ecology, 55, 1157-1169.
Steinberg, D. K., C. A. Carlson, N. R. Bates, S. A. Goldthwait, L. P. Madin & A. F.
Michaels. 2000. Zooplankton vertical migration and the active transport of
dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Research
Part I: Oceanographic Research Papers, 47, 137-158.
Shiu, R.-F., W.-C. Chin & C.-L. Lee. 2014. Carbonaceous particles reduce marine
microgel formation. Scientific Reports, 4, 5856.
Shiu, R. F. & C. L. Lee. 2017. Effects of anthropogenic surfactants on the conversion
of marine dissolved organic carbon and microgels. Mar Pollut Bull, 117, 156-160.
53
Shiu, R.-F., C.-L. Lee & W.-C. Chin. 2018. Reduction in the exchange of coastal
dissolved organic matter and microgels by inputs of extra riverine organic matter.
Water Research, 131, 161-166.
Shiu, R.-F., C. I. Vazquez, Y.-Y. Tsai, G. V. Torres, C.-S. Chen, P. H. Santschi, A. Quigg
& W.-C. Chin. 2020. Nano-plastics induce aquatic particulate organic matter
(microgels) formation. Science of The Total Environment, 706, 135681.
Shiu, R.-F., H.-J. Lee, H.-T. Hsu & G.-C. Gong. 2023. Suspended particulate matterbound per- and polyfluoroalkyl substances (PFASs) in a river-coastal system:
possible correlation with transparent exopolymer particles. Marine Pollution
Bulletin, 191, 114975.
Shukla, J. B., M. Verma & A. K. Misra. 2017. Effect of global warming on sea level
rise: A modeling study. Ecological Complexity, 32, 99-110.
Sun, C. C., Y. S. Wang, Q. P. Li, W. Z. Yue, Y. T. Wang, F. L. Sun & Y. L. Peng. 2012.
Distribution characteristics of transparent exopolymer particles in the pearl river
estuary, china. Journal of Geophysical Research: Biogeosciences, 117.
Taub, D. R., B. Miller & H. Allen. 2008. Effects of elevated CO2 on the protein
concentration of food crops: a meta-analysis. Global Change Biology, 14, 565-
575.
Thomas, H., L. S. Schiettecatte, K. Suykens, Y. J. M. Koné, E. H. Shadwick, A. E. F.
Prowe, Y. Bozec, H. J. W. de Baar & A. V. Borges. 2009. Enhanced ocean carbon
storage from anaerobic alkalinity generation in coastal sediments. Biogeosciences,
6, 267-274.
Thornton, D. C. O. 2018. Coomassie Stainable Particles (CSP): Protein containing
exopolymer particles in the ocean. Frontiers in Marine Science, 5:206.
Totti, C., G. Civitarese, F. Acri, D. Barletta, G. Candelari, E. Paschini & A. Solazzi .
2000. Seasonal variability of phytoplankton populations in the middle adriatic
sub-basin. Journal of Plankton Research, 22, 1735-1756.
van Pinxteren, M., T. B. Robinson, S. Zeppenfeld, X. Gong, E. Bahlmann, K. W. Fomba,
N. Triesch, F. Stratmann, O. Wurl, A. Engel, H. Wex & H. Herrmann. 2022. High
number concentrations of transparent exopolymer particles in ambient aerosol
particles and cloud water – a case study at the tropical atlantic ocean. Atmospheric
Chemistry and Physics, 22, 5725-5742.
Viličič, D., Z. Vučak, A. Škrivanić & Z. Grzetić. 1989. Phytoplankton blooms in the
oligotrophic open south adriatic waters. Marine Chemistry, 28, 89-107.
Wen, L., X. Li, J. Song & J. Ma. 2022. Transparent exopolymer particle (TEP) and its
impact on marine carbon transport along the east china sea coast. Ecological
Indicators, 137, 108791.
Widdicombe, S., S. Dashfield, C. McNeill, H. Needham, A. Beesley, A. McEvoy, S.
54
Øxnevad, K. Clarke & J. Berge. 2009. effects of co2 induced seawater acidification on
infaunal diversity and sediment nutrient fluxes. Marine Ecologyprogress Series,
379, 59-75.
Wilson, J. D., O. Andrews, A. Katavouta, F. de Melo Viríssimo, R. M. Death, M. Adloff,
C. A. Baker, B. Blackledge, F. W. Goldsworth, A. T. Kennedy-Asser, Q. Liu, K.
R. Sieradzan, E. Vosper & R. Ying. 2022. The biological carbon pump in cmip6
models: 21st century trends and uncertainties. Proceedings of the National
Academy of Sciences, 119, e2204369119.
Wurl, O. 2009. Practical guidelines for the analysis of seawater. CRC press, Florida,
USA:416
Xu, C., W.-C. Chin, P. Lin, H. Chen, M.-H. Chiu, D. C. Waggoner, W. Xing, L. Sun, K.
A. Schwehr, P. G. Hatcher, A. Quigg & P. H. Santschi. 2019. Comparison of
microgels, extracellular polymeric substances (EPS) and transparent
exopolymeric particles (TEP) determined in seawater with and without oil.
Marine Chemistry, 215, 103667.
Yamada, Y., T. Yokokawa, M. Uchimiya, S. Nishino, H. Fukuda, H. Ogawa & T. Nagata.
2017. Transparent exopolymer particles (TEP) in the deep ocean: full-depth
distribution patterns and contribution to the organic carbon pool. Marine Ecology
Progress Series, 583, 81-93.
Zamanillo, M., E. Ortega-Retuerta, C. Cisternas-Novoa, C. Marrasé, C. Pelejero, J.
Pascual, J. M. Gasol, A. Engel & R. Simó. 2021. Uncoupled seasonal variability
of transparent exopolymer and coomassie stainable particles in coastal
mediterranean waters: Insights into sources and driving mechanisms. Elementa:
Science of the Anthropocene, 9, 00165.
黃俊傑,2001。從高屏峽谷水文之時空變化來探討懸浮物質傳輸的機制,國立
中山大學碩士論文,共 109 頁。
沈宥君,2008。台灣海峽南部TEP分布之探討,國立中山大學碩士論文,共148
頁。
余泓睿,2023。臺灣海域海洋雪花豐度與組成,國立臺灣海洋大學碩士論文,
共 66 頁。
電子全文 電子全文(網際網路公開日期:20261206)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top