|
[1]莊智清、黃國興,電子導航,全華科技圖書股份有限公司,2001年 [2]莊智清,衛星導航,全華科技圖書股份有限公司,2012年 [3]秦永元、張洪鉞、汪淑華,卡爾曼濾波與組合導航,西北工業大學出版社,2015年 [4]陳霸東、朱煜、胡金春、喬斯.C.普倫斯派,系統參數辨識的信息準則及算法,清華大學出版社,2014年 [5]R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering. New York, NY, USA: John Wiley and Sons, 1997. [6]J. C. Principe, Information Theoretic Learning, Renyi's Entropy and Kernel Perspectives. New York, NY, USA: Springer, 2010. [7]D. J. Jwo, S. H. Wang, “Adaptive Fuzzy Strong Tracking Extended Kalman Filtering for GPS Navigation,” IEEE Sensors Journal, vol. 7, no. 5, pp. 778-789, 2007. [8]D. J. Jwo, C. M. Huang, “An Adaptive Fuzzy Strong Tracking Kalman Filter for GPS/INS Navigation,” IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society, 2007. [9]D. J. Jwo, S. J. Chang, “Outlier Resistance Estimator for GPS Positioning,” 2006 IEEE International Conference on Systems, Man and Cybernetics, 2006. [10]B. Chen, L. Dang, Y. Gu, N. Zheng and J. C. Principe, “Minimum error entropy Kalman filter,” IEEE Transactions on Systems, Man, and Cybernetics: Systems (Early Access), pp.1–11, 2019. [11]G. Gang, B. Chen, X. Yang, B. Peng, Z. Feng, “Numerically stable minimum error entropy Kalman filter,” ScienceDirect Signal Processing, vol. 181, 2021. [12]Z. Feng, G. Wang, B. Peng, J. He, K. Zhang, “Novel robust minimum error entropy wasserstein distribution kalman filter under model uncertainty and non-gaussian noise,” ScienceDirect Signal Processing, vol. 203, 2023 [13]M. Zhang, X. Song, “A novel robust minimum error entropy Kalman filter in the presence of measurement packet dropping,” ScienceDirect Signal Processing, vol. 206, 2023. [14]B. Chen, X. Liu, H. Zhao and J. C. Principe, “Maximum correntropy Kalman filter,” Automatica, vol. 76, pp. 70–77, 2017. [15]R. Izanloo, S. A. Fakoorian, H. S. Yazdi, D. Simon, “Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise,” 2016 Annual Conference on Information Science and Systems (CISS), 2016. [16]X. Liu, H. Qu, H. Zhao and B. Chen, “Extended Kalman filter under maximum correntropy criterion,” in Proc. IEEE International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, pp. 1733–1737, 2016. [17]X. Liu, Z. Ren, H. Lyu, Z. Jiang, P. Ren and B. Chen, “Linear and nonlinear regression-based maximum correntropy extended Kalman filtering,” IEEE transactions on systems, man, and cybernetics: Systems, vol. 51, no. 5, pp. 3093-3102, 2021. [18]L. Cheng, M. F. Ren, G. Xie, “Multipath Estimation Based on Centered Error Entropy Criterion for non-Gaussian Noise,” IEEE Access, vol. 4, pp. 9978-9986, 2016. [19]B. Yang, L. Cao, D. Ran, B. Xiao, “Centered error entropy Kalman filter with application to satellite attitude determination,” Transactions of the Institute of Measurement and Control, vol. 43, 2021. [20]B. Yang, L. Cao, L. Li, C. Jiang, D. Ran, B. Xiao, “A New Robust Centered Error Entropy Cubature Kalman Filter,” IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE), 2021. [21]L. Dang, B. Chen, “Cubature Kalman Filter Under Minimum Error Entropy With Fiducial Points for INS/GPS Integration,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 3, 2022. [22]L. Dang, B. Chen, “Dual Extended Kalman Filter Under Minimum Error Entropy With Fiducial Points,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 12, pp. 7588-7599, 2022. [23]B. Chen, Y. Xie, X, Wang, Z. Yuan, P. Ren, J. Qin, “Multikernel Correntropy for Robust Learning,” IEEE Transactions on Cybernetics, vol. 52, no. 12, 2022.
|