跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 16:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林榮祥
研究生(外文):LIN, JUNG-HSIANG
論文名稱:發展以暫態有限元素法進行軌道系統環境振動預估力密度評估模式
論文名稱(外文):Develop a force density assessment model for predicting environmental vibrations caused by railway systems using the transient finite element method
指導教授:許維倫許維倫引用關係
指導教授(外文):HSU, WEI-LUN
口試委員:洪振發許榮均林智強許維倫
口試委員(外文):HUNG, CHEN-FARSHYU, RONG-JUINLIN,CHIH-CHIANGHSU, WEI-LUN
口試日期:2024-07-24
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:系統工程暨造船學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:58
中文關鍵詞:軌道系統列車力密度大地振動傳遞動性振動預測美國聯邦交通運輸局
外文關鍵詞:railway systemforce density levelthe ground vibration transmission mobilityvibration predictionFTA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:3
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來振動陳情事件頻傳,而振動產生後往往難以解決,因此在公共建設評估階段,會先對周遭環境進行振動預估,所以準確的振動預估方法是一門重要的課題。其中軌道系統因列車軸距固定及軸重較公路車輛大等因素,相對產生出較大的振動,因此在規劃階段針對軌道系統產生的振動反應進行預估尤為重要。臺灣現今預估方法多半依據美國聯邦交通運輸局(Federal Transit Administration, FTA)所建議的模式來預測軌道系統對於環境造成的振動,該模式預估的振動由列車力密度(Force Density Level, FDL)及大地線源振動傳遞動性(Line Source Mobility, LSM)兩者推估而得[1],其中FDL代表列車給予軌道的作用力,而LSM則是用大地點源振動傳遞動性(Point Source Mobility, PSM)所推導出來的,其中PSM是大地受到衝擊力時所引起地面振動的關係,而FTA建議的模式預估結果與完工後真實列車所產生的振動反應在相關文獻上仍較少被驗證及探討。因此本研究針對傳統鐵路系統進行實際列車通過振動反應(VReal)量測,並依據前述FTA所建議之模式進行振動(VPre)預估,最終比較實際振動與預估結果之差異,以探討該方法之可靠度。
首先本研究利用現地量測取得列車通過引致之實際振動及預估振動所需之參數。本研究以臺鐵宜蘭四城站周圍空地,進行了列車通過時所引致的地面振動以及軌枕LSMFDL的量測,來算出FDL,之後在相同的地點,近似的氣候條件以及不同的時間點,取得大地LSMgnd與前述的FDL來進行振動預估,並與當天的實際列車振動做比較,進而發現兩者在部分頻帶上存在著明顯的差異量。因此本研究將進一步探討振動預估中,FDL及LSMgnd所造成之影響。最終發現FDL存在較大之標準差,所以進一步將FDL分開來檢視,其中有列車振動與軌枕的LSMFDL,最後發現列車振動差異量較小,而不同軌枕的LSMFDL差異較大,因此可以推論出造成FDL差異很大的原因來自於不同軌枕的LSMFDL,導致FTA所建議之軌道系統環境振動預估結果與實際振動存在著明顯的誤差值。
最終藉由本研究在FDL的推估模式中發現量測LSMFDL的變數很多,其原因可能是因為土壤含水量、道碴軌道狀況或是落槌的力道大小等等所致,因此在了解其造成誤差的主要原因後,便使用暫態有限元素法來計算FDL,希望取得較可靠之FDL。不過FTA有提到,因為落槌試驗的接觸時間較短,所以頻率6Hz~400Hz的資料較可信,在上述的頻率範圍內,最後將數值分析的結果與實際量測的結果相比,模擬的與實際的結果在多數的中心頻率差異量都在5dB以內。本研究從軌道支承勁度與列車速度等參數去做改變,並模擬這些參數對於列車力密度的影響,軌道支承勁度越強,列車力密度則會越小,至於列車速度的快慢對於列車力密度沒有明顯的影響,不過列車速度越快列車力密度的峰值頻率越高。最後也有從軌道支承勁度與列車速度找出最接近實際FDL的參數,方便未來進行數值分析的計算,而後續工作希望能夠更詳細的去了解影響FDL的原因,期待未來能夠發展出更準確地計算出FDL的數值分析方法。

Vibration complaints have occurred frequently in recent years, and it is often difficult to solve vibrations after they occur. Therefore, during the public construction assessment stage, vibration predictions of the surrounding environment are first carried out. Therefore, accurate vibration prediction methods are an important topic. Among them, the railway system produces relatively large vibrations due to factors such as the fixed wheelbase of trains and the larger axle load than road vehicles. Therefore, it is particularly important to predict the vibration response of the railway system during the planning stage. Most of Taiwan's current prediction methods are based on the model recommended by the U.S. Federal Transit Administration (FTA) to predict the vibration of the railway system to the environment. The vibration estimated by this model is estimated based on the force density level (FDL) and ground line source mobility (LSM)[1], where FDL represents the force exerted by the train on the track. The LSM is derived using Point Source Mobility (PSM), where PSM is the relationship between the ground vibration caused by the impact force on the ground. However, the model prediction results suggested by FTA and the vibration response generated by the real train after completion are still rarely verified and discussed in the relevant literature. Therefore, this study measures the actual train vibration response (VReal ) of a conventional railway system and predicts the vibration (VPre) based on the model suggested by the FTA mentioned above. Finally, the difference between the actual vibration and the predicted results is compared, and the reliability of this method is explored.
First, on-site measurements are used to obtain the actual vibration caused by the passing train and the parameters required to estimate the vibration. In the area around Yilan Sicheng Station, the ground vibration caused by the train passing and the sleeper LSMFDL were measured to calculate the FDL. Then, at the same location, similar climatic conditions and different time points, obtain the ground's LSMgnd and the aforementioned FDL for vibration prediction and compare it with the actual train vibration of the day, and then find that there are obvious differences between the two in certain frequency bands. Therefore, the impact of FDL and LSMgnd in vibration prediction will be further explored. It was found that FDL had a large standard deviation, so the FDL was further examined separately, including train vibration and LSMFDL of sleepers. Finally, it was found that the difference in train vibration was small, while the difference in LSMFDL of different sleepers was large, so it can be inferred that the FDL was caused by The reason for the big difference comes from the LSMFDL of different sleepers, which leads to obvious errors between the environmental vibration prediction results of the track system recommended by FTA and the actual vibration.
In the FDL estimation model, it is found that there are many variables in measuring LSMFDL. The reasons may be due to soil moisture content, ballast track condition, or the force of the hammer falling, etc. Therefore, after understanding the main reasons for the error, the transient finite element method was used to calculate FDL, hoping to obtain a more reliable FDL. However, the FTA mentioned that because the contact time of the hammer drop test is short, the data at frequencies 6Hz ~ 400Hz are more reliable. Within the above frequency range, the results of the numerical analysis were finally compared with the actual measurement results. The difference from the actual results is within 5 dB at most center frequencies. Make changes to parameters such as track support stiffness and train speed, and simulate the impact of these parameters on FDL. The stronger the track support stiffness, the smaller the FDL will be. As for the speed of the train, it has no effect on FDL. There is an obvious effect, but the faster the train speed, the higher the peak frequency of the FDL. Finally, the parameters closest to the actual FDL can be found from the track support stiffness and train speed to facilitate future numerical analysis calculations. Follow-up work hopes to understand the causes affecting FDL in more detail and develop numerical analysis methods to more accurately calculate FDL in the future.

摘要
Abstract
圖目錄
表目錄
第一章 緒論
1.1研究動機與研究目的
1.2文獻回顧
1.3研究方法
1.4論文架構
第二章 振動預估模式
2.1振動的基本介紹
2.2 FTA預估模式
2.2.1落槌試驗方法
2.2.2傳遞動性
2.2.3點源傳遞動性轉換成線源傳遞動性
2.2.4列車力密度量測方式及計算
第三章 現場量測說明及結果
3.1驗證FTA預測振動方法流程規劃
3.2量測工作背景介紹
3.2.1列車振動
3.2.2軌枕線源傳遞動性與列車力密度
3.2.3列車振動預估頻譜
3.3預測振動與實際振動比較
3.4預估振動與實際振動差異原因探討
第四章 暫態模擬與驗證
4.1模型介紹
4.1.1數值分析方法介紹
4.2方法一模擬方法
4.2.1方法一模擬結果
4.3方法二模擬方法
4.3.1方法二模擬結果
4.4模擬振動與實際振動比較
4.5影響列車力密度的變數
4.5.1軌道支承勁度
4.5.2列車速度
4.5.3數值分析選擇
第五章 結論與未來展望
5.1結論
5.2未來展望
參考文獻

[1]Noise, F. T., & Assessment, V. I. (2006), US Department of Transportation, Federal Transit Administration. FTA-VA-90-1003-06, May.
[2]Connolly, D. P., Costa, P. A., Kouroussis, G., Galvin, P., Woodward, P. K., & Laghrouche, O. (2015), Large scale international testing of railway ground vibrations across Europe. Soil Dynamics and Earthquake Engineering, 71, 1-12.
[3]Connolly, D. P., Marecki, G. P., Kouroussis, G., Thalassinakis, I., & Woodward, P. K. (2016), The growth of railway ground vibration problems—A review. Science of the Total Environment, 568, 1276-1282.
[4]崔廣義, (1998), 「振動量測與工廠振動公害」,化工技術,第 6 卷,第 1 期, 第 164-170 頁。
[5]Lei, X., & Rose, J. G. (2008), Track vibration analysis for railways with mixed passenger and freight traffic. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of rail and rapid transit, 222(4), 413-421.
[6]Knothe, K., & Wu, Y. (1998), Receptance behaviour of railway track and subgrade. Archive of applied mechanics, 68, 457-470.
[7]Cao, Z. G., Cai, Y. Q., Sun, H. L., & Xu, C. J. (2011), Dynamic responses of a poroelastic half‐space from moving trains caused by vertical track irregularities. International Journal for Numerical and Analytical Methods in Geomechanics, 35(7), 761-786.
[8]Sheng, X. Z., Jones, C. J. C., & Petyt, M. (1999), Ground vibration generated by a load moving along a railway track. Journal of sound and vibration, 228(1), 129-156.
[9]Nelson, J. T., & Saurenman, H. J. (1987), A prediction procedure for rail transportation groundborne noise and vibration. Transportation Research Record, 1143, 26-35.
[10]Zhai, W., Wang, K., & Cai, C. (2009), Fundamentals of vehicle–track coupled dynamics. Vehicle System Dynamics, 47(11), 1349-1376.
[11]Yang, Y. B., Hung, H. H., & Chang, D. W. (2003), Train-induced wave propagation in layered soils using finite/infinite element simulation. Soil Dynamics and Earthquake Engineering, 23(4), 263-278.
[12]Verbraken, H., Lombaert, G., & Degrande, G. (2011), Verification of an empirical prediction method for railway induced vibrations by means of numerical simulations. Journal of Sound and Vibration, 330(8), 1692-1703.
[13]Liu, W., Wu, Z., Li, C., & Xu, L. (2022), Prediction of ground-borne vibration induced by a moving underground train based on excitation experiments. Journal of Sound and Vibration, 523, 116728.
[14]日本騒音制御工学会. (2001). 地域の環境振動, 技報堂出版。
[15]立松俊彦, (1977), 新幹線騒音・振動の防止. 騒音制御, 1(4), 17-23。
[16]Liu, W., Liang, R., Zhang, H., Wu, Z., & Jiang, B. (2023), Deep learning based identification and uncertainty analysis of metro train induced ground-borne vibration. Mechanical Systems and Signal Processing, 189, 110062.
[17]Sadeghi, J., Esmaeili, M. H., & Akbari, M. (2019), Reliability of FTA general vibration assessment model in prediction of subway induced ground borne vibrations. Soil dynamics and earthquake engineering, 117, 300-311.
[18]Kouroussis, G., Connolly, D. P., & Verlinden, O. (2014), Railway-induced ground vibrations–a review of vehicle effects. International Journal of Rail Transportation, 2(2), 69-110.
[19]Connolly, D. P., Kouroussis, G., Laghrouche, O., Ho, C. L., & Forde, M. C. (2015), Benchmarking railway vibrations–Track, vehicle, ground and building effects. Construction and Building Materials, 92, 64-81.
[20]Nelson, J., Watry, D., Faner, P., Lamb, I., Reed, T., & Wright, A. (2014), Force density measurements at sound transit. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 249(2), Institute of Noise Control Engineering.
[21]Tao, Z. Y., Wang, Y. M., He, W., & Luo, Y. K. (2023), Identification of line-source transfer mobility and force density by ground acceleration measurements. Environmental Science and Pollution Research, 30(19), 54498-54510.
[22]Rajaram, S., & Saurenman, H. (2015), Evaluation of force density levels of light rail vehicles. Transportation Research Record, 2502(1), 21-29.
[23]Saurenman, H. J. (2008), Vibration measurements and predictions for Central Corridor LRT project. Technical Report.
[24]Nelson, J. T. (1998), Tri-Met track vibration isolation tests. Technical report, Prepared for Tri-Met, 30 October.
[25]Resnick, J. R., Lerche, I., & Shuey, R. T. (1986), Reflection, transmission, and the generalized primary wave. Geophysical Journal International, 87(2), 349-377.
[26]Takeuchi, H., & Saito, M. (1972), Seismic surface waves. Methods in computational physics, 11, 217-295.
[27]Richart, F. E., Hall, J. R., & Woods, R. D. (1970), Vibrations of soils and foundations.
[28]Abd Rashid, M. F., Alias, N., Ahmad, K., Ramli, M. Z., & Ibrahim, Z. (2019), Vibration impact towards deformable laterite soil with different moisture content. In IOP Conference Series: Earth and Environmental Science, 220(1), IOP Publishing.
[29]Thompson, D. (2008), Railway noise and vibration: mechanisms, modelling and means of control, Elsevier.
[30]臺鐵EMU3000型電聯車. (2016). Train Collection. https://emu300ct.web.fc2.com/index/traemu/EMU3000.htm
[31]MANUAL, K. U. S. (2007), LS-DYNA keyword User’s manual. LSTC Co., Livermore, CA.
[32]曹艷梅, 馬蒙, (2020), 轨道交通环境振动土动力学, 科學出版社。
[33]Viktorov, I. A. (1967), Rayleigh and Lamb waves. Rayleigh and Lamb Waves, 33.
[34]Achenbach, J. (2012), Wave propagation in elastic solids, Elsevier.
[35]Lombaert, G., & Degrande, G. (2009), Ground-borne vibration due to static and dynamic axle loads of InterCity and high-speed trains. Journal of Sound and vibration, 319(3-5), 1036-1066.
[36]Rajaram, S., & Saurenman, H. (2010), Variation in measured force density levels of rail transit vehicles. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2010(2), Institute of Noise Control Engineering.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top