|
1.P.M. Kazaj, M. Koosheshi, A. Shahedi, A.V. Sadr, “U-Net-based models for skin lesion segmentation: more attention and augmentation,” arXiv:2210.16399, 2022. 2.A. AL Qurri, M. Alemekkawy, “Improved UNet with attention for medical image segmentation,” Sensors, vol. 23, no. 20, pp. 8589, 2023. 3.S. Cui, Y. Zhang, H. Wen, Y. Tang, H. Wang, “ASPP-UNet: A new semantic segmentation algorithm for thyroid nodule ultrasonic image,” AIIIPC, Kunming, China, pp. 323-328, 2022. 4.H. He, D. Yang, S. Wang, S. Wang, Y. Li, “Road extraction by using atrous spatial pyramid pooling integrated encoder-decoder network and structural similarity loss,” Remote Sens., vol. 11, no. 9, pp. 1015, 2019. 5.J. Wang, L. Zhou, Z. Yuan, H. Wang, C. Shi, “MIC-Net: multi-scale integrated context network for automatic retinal vessel segmentation in fundus image,” Math. Biosci. Eng., vol. 20, no. 4, pp. 6912-6931, 2023. 6.H. Huang, L. Lin, R. Tong, H. Hu, Q. Zhang, Y. Iwamoto, X. Han, Y.W. Chen, J. Wu, “UNet 3+: A full-scale connected UNet for medical image segmentation,” arXiv:2004:08790, 2020. 7.G. Calabresi, F. Del Frate, J. Lichtenegger, A. Petrocchi, P. Trivero, “Neural networks for oil spill detection using ERS-SAR data,” In Proc. IGARSS’99, Hamburg, Germany, vol. 38, pp. 2282-2287, 1999. 8.C.A. Kontovas, H.N. Psaraftis, N.P. Ventikos, “An empirical analysis of IOPCF oil spill cost data,” Mar. Pollut. Bull. vol. 60, no. 9, pp. 1455-466, 2010. 9.J. Fan, F. Zhang, D. Zhao, J. Wang, “Oil spill monitoring based on SAR remote sensing imagery,” Aquat. Procedia., vol. 3, pp. 112-118, 2015. 10.D. Fustes, D. Cantorna, C. Dafonte, B. Arcay, A. Iglesias, M. Manteiga, “A cloud-integrated web platform for marine monitoring using GIS and remote sensing. Application on oil spill detection through SAR images,” Future Gener. Comput. Syst., vol. 34, pp. 155-160, 2014. 11.A. Solberg, G. Storvik, R. Solberg, E. Volden, “Automatic detection of oil spills in ERS SAR images,” IEEE Trans. Geosci. Remote Sens., vol. 37, no. 4, pp. 1916-1924, 1999. 12.K. Topouzelis, “Oil spill detection by SAR images: Dark formation detection, feature extraction and classification algorithms,” Sensors, vol. 8, no. 10, pp. 6642-6659, 2008. 13.M. Fingas, C. Brown, “Review of oil spill remote sensing," Mar. Pollut. Bull., vol. 83, no. 1, pp. 9-23, 2014. 14.A.H.S. Solberg, “Remote sensing of ocean oil-spill pollution,” in Proc. IEEE, vol. 100, no. 10, pp. 2931-2945, 2012. 15.H. Espedal, O. Johannessen, “Cover: Detection of oil spills near offshore installations using synthetic aperture radar (SAR),” Int. J. Remote Sens., vol. 21, no. 11, pp. 2141-2144, 2000. 16.L. Chang, J.C. Tang, “A region-based GLRT detection of oil spills in SAR images,” Pattern Recognit. Lett., vol. 29, no. 14, pp. 1915-1923, 2008. 17.V. Karathanassi, K. Topouzelis, P. Pavlakis, D. Rokos, “An object-oriented methodology to detect oil spills,” Int. J. Remote Sens., vol. 27, no. 23, pp. 5235-5251, 2006. 18.K. Topouzelis, A. Psyllos, “Oil spill feature selection and classification using decision tree forest on SAR image data,” ISPRS J. Photogramm. Remote Sens., vol. 68, pp. 135-143, 2012. 19.I. Keramitsoglou, C. Cartalis, C.T. Kiranoudis, “Automatic identification of oil spills on satellite images,” Environ. Model. Softw., vol. 21, no. 5, pp. 640-652, 2006. 20.K. Karantzalos, D. Argialas, “Automatic detection and tracking of oil spills in SAR imagery with level set segmentation,” Int. J. Remote Sens., vol. 29, no. 21, pp. 6281-6296, 2008. 21.B. Fiscella, A. Giancaspro, F. Nirchio, P. Pavese, P. Trivero, “Oil spill detection using marine SAR images,” Int. J. Remote Sens., vol. 21, no. 18, pp. 3561-3566, 2000. 22.H. Espedal, “Satellite SAR oil spill detection using wind history information,” Int. J. Remote Sens., vol. 20, no. 1, pp. 49-65, 1999. 23.X. X. Zhu, D. Tuia, L. Mou, G.S. Xia, L. Zhang, F. Xu, F. Fraundorfer, “Deep learning in remote sensing: A comprehensive review and list of resources,” IEEE Geosci. Remote Sens. Mag., vol. 5, no. 4, pp. 8-36, 2017. 24.J. Long, E. Shelhamer, T. Darrell, “Fully convolutional networks for semantic segmentation,” In Proc. IEEE CVPR, Boston, MA, USA, pp. 3431-3440, 2015. 25.H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, “Pyramid scene parsing network,” In Proc. 2017 IEEE CVPR, Honolulu, HI, USA, pp. 6230-6239, 2017. 26.O. Ronneberger, P. Fischer, T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” MICCAI, Springer: New York, NY, USA, pp. 234-241, 2015. 27.L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, “DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834-848, 2018. 28.L.C. Chen, Y. Zhu, G. Papandreou, F. Schroff, “Adam, H. Encoder-Decoder with atrous separable convolution for semantic image segmentation,” In Proc. ECCV, Munich, Germany, 8-14 September, 2018. 29.Basit, A.; Siddique, M.A.; Sarfraz, M.S. Deep learning based oil spill classification using Unet convolutional neural network. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, pp. 833-851, 2021. 30.Y. Fan, X. Rui, G. Zhang, T. Yu, X. Xu, S. Poslad, “Feature merged network for oil spill detection using SAR images,” Remote Sens., vol. 13, no. 16, pp. 3174, 2021. 31.R. Rousso, N. Katz, G. Sharon, Y. Glizerin, E. Kosman, A. Shuster, “Automatic recognition of oil spills using neural networks and classic image processing,” Water, vol. 14, no. 7, pp. 1127, 2022. 32.M. Shaban, R. Salim, H.A. Khalifeh, A. Khelifi, A. Shalaby, S. El-Mashad, A. Mahmoud, M. Ghazal, A. El-Baz, “A deep-learning framework for the detection of oil spills from SAR data,” Sensors, vol. 21, no. 7, pp. 2351, 2021. 33.A.S. Mahmoud, S.A. Mohamed, R.A. El-Khoriby, H.M. Abdelsalam, I.A. El-Khodary, “Oil spill identification based on dual attention UNet model using Synthetic Aperture Radar images,” J. Indian Soc. Remote Sens., vol. 51, pp. 121-133, 2023. 34.C. Li, M. Wang, X. Yang, D. Chu, “DS-UNet: Dual-stream U-Net for oil spill detection of SAR image,” IEEE Geosci. Remote Sens. Lett., vol. 20, pp. 1-5, 2023. 35.X. Ma, J. Xu, P. Wu, P. Kong, “Oil spill detection based on deep convolutional neural networks using polarimetric scattering information from Sentinel-1 SAR images,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-13, 2022. 36.J.S. Lee, “Refined filtering of image noise using local statistics,” Comput. Graph. Image Proc., vol. 15, no. 4, pp. 380-389, 1981. 37.C. Xiao, J. Sun, “Deep neural networks,” Int. J. Deep Learn. Healthc., pp. 41-61, 2021. 38.K. Banerjee, V. Prasad C, R. Raj Gupta, K. Vyas, A. H, B. Mishra, “Exploring alternatives to softmax function,” arXiv: 2011.11538, 2020. 39.Z. Yu, E.L. Tan, D. Ni, J. Qin, S. Chen, S. Li, B. Lei, T. Wang, “A deep convolutional neural network-based framework for automatic fetal facial standard plane recognition,” IEEE J. Biomed. Health Inform., vol. 22, no. 3, pp. 874-885, 2018. 40.N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014. 41.I. Salehin, D. Kang, “A review on dropout regularization approaches for deep neural networks within the scholarly domain,” Electronics, vol. 12, no. 14, pp. 3106, 2023. 42.S.H. Shabbeer Basha, S.R. Dubey, V. Pulabaigari, S. Mukherjee, “Impact of fully connected layers on performance of convolutional neural networks for image classification,” Neurocomputing, vol. 378, pp. 112-119, 2020. 43.K. Simonyan, A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv:1409.1556, 2014. 44.A. Krizhevsky, I. Sutskever, G. Hinton, “ImageNet classification with deep convolutional neural networks,” Adv. Neural Inf. Process. Syst., vol. 60, no. 6, pp. 84-90, 2017. 45.K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition,” arXiv:1512.03385, 2015. 46.G. Huang, Z. Liu, L.V. Der Maaten, K.Q. Weinberger, “Densely connected convolutional networks,” arXiv:1608.06993, 2016. 47.Q. Tan, Q.V. Le, “EfficientNet: rethinking model scaling for convolutional neural networks,” arXiv:1905.11946, 2019. 48.C. Szegedy, V. Vanhoucke, S. Loffe, J. Shlens, Z. Wojna, “Rethinking the inception architecture for computer vision,” arXiv:1512.00567, 2015. 49.A.D. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, “MobileNets: efficient convolutional neural networks for mobile vision applications,” arXiv:1704.04861, 2017. 50.M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.C. Chen, “MobileNetV2: inverted residuals and linear bottlenecks,” arXiv:1801.04381, 2018. 51.A. Chaurasia, E. Culurciello, “LinkNet: Exploiting encoder representations for efficient semantic segmentation,” arXiv:1707.03718, 2017. 52.J. Serra, “Image analysis and mathematical morphology,” Academic Press, New York, 1982. 53.J. Serra, “Introduction to mathematical morphology,” Comput. Vision, Graphics, Image Process, vol. 35, pp. 283-305, 1986. 54.G. Orfanidis, K. Ioannidis, K. Avgerinakis, S. Vrochidis, I. Kompatsiaris, “A deep neural network for oil spill semantic segmentation in SAR images,” In Proc. IEEE ICIP, Athens, Greece, pp. 3773-3777, 2018. 55.M. Krestenitis, G. Orfanidis, K. Ioannidis, K. Avgerinakis, S. Vrochidis, I. Kompatsiaris, “Oil spill identification from satellite images using deep neural networks,” Remote Sens., vol. 11, no .15, pp. 1762, 2019. 56.N. Kanopoulos, N. Vasanthavada, R.L. Baker, “Design of an image edge detection filter using the Sobel operator,” IEEE JSSC., vol. 23, no. 2, pp. 358-367, 1988. 57.A. Howard, M. Sandler, G. Chu, L.C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q.V. Le, H. Adam, “Searching for MobileNetV3,” Proc. IEEE ICCV, Seoul, Korea, pp. 1314-1324, 2019. 58.J. Hu, L. Shen, G. Sun, “Squeeze-and-Excitation networks,” In Proc. IEEE CVPR, Salt Lake City, UT, USA, pp. 7132-7141, 2018. 59.S. Woo, J.C. Park, J.Y. Lee, I.S. Kweon, “CBAM: Convolutional block attention module,” In Pro. ECCV, Munich, Germany, pp. 3-19, 2018. 60.R. Mondal, P. Purkait, S. Santra, B. Chanda, “Morphological networks for image de-raining,” arXiv:1901.02411, 2019. 61.R. Decelle, P. Ngo, I. Debled-Rennesson, F. Mothe, F. Longuetaud, “Light U-Net with a new morphological attention gate model application to analyse wood sections,” In Proc. ICPRAM, Lisbon, Portugal, vol. 1, pp. 759-766, 2023. 62.Y. Shen, X. Zhong, F. Shih, “Deep morphological neural networks,” arXiv:1909.01532, 2019. 63.Zhixuhao. Zhixuhao/unet. 2017. Available online: https://github.com/zhixuhao/unet (accessed on 15 July 2021). 64.D.P. Kingma, J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980, 2015. 65.A. Basit, M.A. Siddique, M.K. Bhatti, M.S. Sarfraz, “Comparison of CNNs and vision transformers-based hybrid models using gradient profile loss for classification of oil spills in SAR images,” Remote Sens., vol. 14, no. 9, pp. 2085, 2022. 66.B. Zhang, E.J. Matchinski, B. Chen, X. Ye, L. Jing, K. Lee, Chapter 21 – Marine oil spills – oil pollution, sources and effects. Sheppard, C. (Ed.), World Seas: an environmental evaluation (second ed.), Academic Press, pp. 391-406, 2019.
|