跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳泓錡
研究生(外文):WU,HUNG-CHI
論文名稱:智慧化水產養殖系統之低成本葉綠素感測器研發
論文名稱(外文):A Research of Low-cost and High-efficiency Chlorophyll Sensors for Intelligent Aquaculture Management System
指導教授:張忠誠張忠誠引用關係
指導教授(外文):Chung-Cheng Chang
口試委員:鄭國順施東河林偉成張忠誠
口試委員(外文):CHENG, KUO-SHENGSHIH, DONG-HERLIN, WEI-CHENGChung-Cheng Chang
口試日期:2024-07-17
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:113
中文關鍵詞:葉綠素螢光氧化鋅感光晶片物聯網智慧化養殖
外文關鍵詞:ChlorophyllFluorescentZinc Oxide Photosensitive WaferInternet of thingsIntelligent farming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
Chapter 1 緒論 1
1.1 前言 1
1.2 背景&動機 3
1.3 論文貢獻 4
1.4 論文大綱 4
Chapter 2 葉綠素a螢光量測原理&感測器&系統原理 5
2.1 文獻回顧 5
2.1.1 葉綠素a螢光量測整合方法比較 5
2.1.2 市售比較 10
2.2 葉綠素螢光 13
2.2.1 葉綠素a螢光測量 13
2.3 感測器之選擇 15
2.4 光電二極體原理 15
2.4.1 蕭特基光電二極體(Schottky BarrierDiodes) 16
2.4.2 金半金光電二極體(Metal Semiconductor-Metal Photodiodes) 19
2.5 MSM接面理論 21
2.5.1 蕭特基接觸(Schottky Contant) 21
2.5.2 金半金接面理論 24
2.5.3 光照響應度 27
2.5.4 量子效率 27
2.5.5 電極 28
2.6 光感測器架構 29
2.6.1 基板 29
2.6.2 絕緣層 30
2.6.3 吸收層 31
2.6.4 透明導電層 31
2.7 射頻磁控濺鍍(RF magnetron sputtering)系統與電漿原理 31
2.8 薄膜沉積原理 32
2.9 測量原理 32
2.9.1 散射法 32
2.9.2 葉綠素a螢光反應 33
2.10 海洋雲 34
2.10.1 MySQL海洋雲資料庫 35
2.10.2 402中央控制管理中心 37
2.11 商用感測器 38
Chapter3 實驗方法與步驟 40
3.1 整體感測系統規劃 40
3.2 晶片完整架構圖 40
3.3 晶片製作流程 41
3.3.1 矽基板清洗 41
3.3.2 絕緣層備製 42
3.3.3 吸收層備製 42
3.3.4 濺鍍沉積步驟 42
3.3.5 退火處理 42
3.3.6 感光晶片電極光罩圖形設計 43
3.3.7 製程&電極沉積 43
3.4 程式 44
3.5 感測電路 46
3.5.1 NMOS(2SK30A) 48
3.5.2 LM324 48
3.6 感測器系統整體架構、外殼設計 48
3.7 晶片薄膜量測 55
3.7.1 光學顯微鏡Optical Microscope(OM) 55
3.7.2 表面輪廓儀alpha step(α-step) 56
3.7.3 X射線繞射儀X-Ray Diffraction(XRD) 57
3.7.4 I-V曲線追蹤儀(IV Curve Tracer) 57
3.7.5 掃描電子顯微鏡Scanning Electron Microscope(SEM) 58
3.8 配合AIoT智慧化之養殖環境系統之場域葉綠素數值測量 58
3.8.1 海洋大學電機一館107海水魚缸場域 59
3.8.2 海洋大學之海洋生物之培育館 60
3.8.3 海大濱海校區旁小艇碼頭場域 61
3.8.4 海洋大學之水生生物研究暨保育中心 61
3.8.5 雲林縣水林鄉魚蝦養殖池場域 62
3.8.6 台南市學甲區魚塭場域 63
Chapter 4場域實測與葉綠素感測器實驗結果 65
4.1 感測器晶片薄膜特性測量結果 65
4.1.1 光學顯微鏡Optical Microscope(OM) 65
4.1.2 表面輪廓儀alpha step(α-step) 66
4.1.3 X射線繞射儀X-Ray Diffraction(XRD) 68
4.1.4 I-V曲線追蹤儀(IV Curve Tracer) 70
4.1.5 掃描電子顯微鏡Scanning Electron Microscope(SEM) 73
4.2 整體的改善 75
4.2.1 薄膜參數改良 75
4.2.2 電路設計&程式設計改良 78
4.2.3 電源設計改良 78
4.3 感光晶片(PD)成品 78
4.4 葉綠素感測器系統成品 79
4.5 葉綠素感測器測量結果 80
4.5.1 結合兩者感測器進行校正測量 80
4.5.2 結合兩者感測器進行隨機性測量 81
4.5.3 商用之感測器與自製之感測器清潔測量 84
4.5.4 商用之感測器與自製之感測器未清潔測量 84
4.6 各場域實測測量之結果 86
4.6.1 海洋大學電機一館107熱帶觀賞魚魚缸場域 87
4.6.2 海洋大學之海洋生物培育館 89
4.6.3 海大濱海校區旁小艇碼頭場域 92
4.6.4 海洋大學之水生生物保育中心 95
4.6.5 雲林縣水林鄉魚蝦養殖池場域 97
4.6.6 台南市學甲區魚塭場域 100
4.6.7 場域ANOVA分析 103
4.7 自製與文獻比較 104
4.8 自製感測器與各家商用感測器比較 104
Chapter 5結論與未來展望 106
5.1 結論 106
5.2 未來展望 107
參考文獻 108

[1] 行政院農業委員會漁業署. "漁業統計年報." https://www.fa.gov.tw/view.php?theme=FS_AR&subtheme=&id=22 (accessed.
[2] 張忠誠, "AI技術應用於智慧化養殖系統的建置,” 科技部補助專題研究計畫成果報告," 2022.
[3] 許博竣, "“應用於智慧化養殖之自製水質濁度感測器”," 國立臺灣海洋大學電機工程固態電子研究所碩士學位論文, 民國 111 年(2022).
[4] J. Vlaović, J. Balen, K. Grgić, D. Žagar, V. Galić, and D. Šimić, "An Overview of Chlorophyll Fluorescence Measurement Process, Meters and Methods," in 2020 International Conference on Smart Systems and Technologies (SST), 14-16 Oct. 2020 2020, pp. 245-250, doi: 10.1109/SST49455.2020.9264091.
[5] 朱. 莊. 許令煌、黃品翔、鍾昭國、李承修, "深思熟「綠」才會螢-葉綠素螢光的探討," 2007. [Online]. Available: https://twsf.ntsec.gov.tw/activity/race-1/47/senior/040204.pdf
[6] R. I. Chowdhury, K. A. Wahid, K. Nugent, and H. Baulch, "Design and Development of Low-Cost, Portable, and Smart Chlorophyll-A Sensor," IEEE Sensors Journal, vol. 20, no. 13, pp. 7362-7371, 2020, doi: 10.1109/JSEN.2020.2978758.
[7] 黃芯湄, "快速量測水體葉綠素a簡易儀器之設計與研究," 碩士, 水土保持系所, 國立屏東科技大學, 屏東縣, 2021. [Online]. Available: https://hdl.handle.net/11296/r24ryk
[8] F. Attivissimo, C. G. C. Carducci, A. M. L. Lanzolla, A. Massaro, and M. R. Vadrucci, "A Portable Optical Sensor for Sea Quality Monitoring," IEEE Sensors Journal, vol. 15, no. 1, pp. 146-153, 2015, doi: 10.1109/JSEN.2014.2340437.
[9] M. Jingjing, Y. Jinguo, Z. Sha, and Y. Zhang, "Vegetation chlorophyll content estimation based on model simulation and OLI image," in 2014 Third International Workshop on Earth Observation and Remote Sensing Applications (EORSA), 11-14 June 2014 2014, pp. 388-392, doi: 10.1109/EORSA.2014.6927919.
[10] M. Huang, X. Xing, W. Luo, and Z. Wang, "Recalibration Of Offshore Chlorophyll Content Based On Virtual Satellite Constellation," in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 28 July-2 Aug. 2019 2019, pp. 7976-7979, doi: 10.1109/IGARSS.2019.8897835.
[11] H. Andrianto, Suhardi, and A. Faizal, "Measurement of chlorophyll content to determine nutrition deficiency in plants: A systematic literature review," in 2017 International Conference on Information Technology Systems and Innovation (ICITSI), 23-24 Oct. 2017 2017, pp. 392-397, doi: 10.1109/ICITSI.2017.8267976.
[12] E. Fierini, L. Banelli, P. Pinelli, A. Romani, D. Remorini, and G. Agati, "In situ assessment of quality-related compounds in fruits by using fluorescence sensors," in 2015 International Conference on BioPhotonics (BioPhotonics), 20-22 May 2015 2015, pp. 1-4, doi: 10.1109/BioPhotonics.2015.7304050.
[13] M. A. Cho, A. Ramoelo, and A. Skidmore, "Exploring various spectral regions for estimating chlorophyll from ASD leaf reflectance using prospect radiative transfer model," in 2014 IEEE Geoscience and Remote Sensing Symposium, 13-18 July 2014 2014, pp. 4754-4757, doi: 10.1109/IGARSS.2014.6947556.
[14] J. Zhang, H. Zhang, S. Zhou, L. Zhang, W. Zhao, and H. Zhou, "Design of In-Situ Optical Fiber Sensor for Dissolved Oxygen and Chlorophyll-a in Ocean," in 2023 IEEE International Conference on Electrical, Automation and Computer Engineering (ICEACE), 29-31 Dec. 2023 2023, pp. 744-749, doi: 10.1109/ICEACE60673.2023.10442922.
[15] 環境部全國環境水質監測資訊網, "關於水的知識,水庫看起來綠油油,水質好嗎?."
[16] 廣柏實業股份有限公司. " SPAD-502 PLUS 葉綠素計." https://www.prochem.com.tw/spad-502-plus-chlorophyll-meter.html (accessed.
[17] 開創水資源科技股份有限公司, "SMR35葉綠素a分析儀." [Online]. Available: https://www.aquas.com.tw/zh-tw/product-496468/%E8%91%89%E7%B6%A0%E7%B4%A0a%E5%88%86%E6%9E%90%E5%84%80-SMR35%E7%B3%BB%E5%88%97.html.
[18] S. L. R. C et al., "Portable and Low-Cost Fluorometer for Phytoplankton Monitoring," in 2023 IEEE 7th Portuguese Meeting on Bioengineering (ENBENG), 22-23 June 2023 2023, pp. 96-99, doi: 10.1109/ENBENG58165.2023.10175351.
[19] H. Yong-ping and M. Jian-she, "Study on Lighting Technology of Plant Factory Based on Plant Light-harvesting Pigment," in 2020 17th China International Forum on Solid State Lighting & 2020 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), 23-25 Nov. 2020 2020, pp. 144-147, doi: 10.1109/SSLChinaIFWS51786.2020.9308759.
[20] S. Roy, K. Kulshrestha, and M. Prasad, "Switching Light With Light in Chlorophyll-A Molecules Based on Excited-State Absorption," IEEE Transactions on NanoBioscience, vol. 8, no. 1, pp. 83-91, 2009, doi: 10.1109/TNB.2009.2016471.
[21] M. Yoshida, T. Horiuchi, and Y. Nagasawa, "In situ multi-excitation chlorophyll fluorometer for phytoplankton measurements: Technologies and applications beyond conventional fluorometers," in OCEANS'11 MTS/IEEE KONA, 19-22 Sept. 2011 2011, pp. 1-4, doi: 10.23919/OCEANS.2011.6107049.
[22] P. Huang, G. Wen, Z. Shang, C. Zhang, Z. Lin, and J. Zhang, "Spectral correlation analysis of chlorophyll-a concentration for inland water," in 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 14-16 Oct. 2017 2017, pp. 1-5, doi: 10.1109/CISP-BMEI.2017.8302033.
[23] X. Lei, Z. Guo, Y. Qiao, and Y. Tian, "An application of three-band model for chlorophyll-a estimation in a turbid case-2 reservoir in Northern China," in 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 26-31 July 2015 2015, pp. 2508-2510, doi: 10.1109/IGARSS.2015.7326320.
[24] M. H. A. Baig et al., "Assessment of estimation methods for Chlorophyll-a through hyperspectral insitu data and multispectral landsat for Taihu lake," in 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 26-28 June 2013 2013, pp. 1-4, doi: 10.1109/WHISPERS.2013.8080657.
[25] M. Pereira-Sandoval et al., "Calibration and Validation of Algorithms for the Estimation of Chlorophyll-A in Inland Waters with Sentinel-2," in IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 22-27 July 2018 2018, pp. 9276-9279, doi: 10.1109/IGARSS.2018.8517371.
[26] Y. Hagiwara, "Simulation and Device Characterization of the P+PN+P Junction Type Pinned Photodiode and Schottky Barrier Photodiode," in 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 6-21 April 2020 2020, pp. 1-4, doi: 10.1109/EDTM47692.2020.9117803.
[27] H. Xu, Y. Yang, J. Tan, L. Chen, H. Zhu, and Q. Sun, "High-Performance Lateral Avalanche Photodiode Based on Silicon-on-Insulator Structure," IEEE Electron Device Letters, vol. 43, no. 7, pp. 1077-1080, 2022, doi: 10.1109/LED.2022.3173593.
[28] H. D. Jahromi and A. Lotfiani, "A Fast and Sensitive Schottky Photodiode With Surface Plasmon Enhanced Photocurrent and Extremely Low Dark Current for High-Frequency Applications in Near-Infrared," IEEE Sensors Journal, vol. 22, no. 21, pp. 20430-20437, 2022, doi: 10.1109/JSEN.2022.3208505.
[29] S. Kumar and T. Shanmuganantham, "Design and modeling of PIN photodiode using MEMS technology," in 2017 IEEE International Conference on Circuits and Systems (ICCS), 20-21 Dec. 2017 2017, pp. 330-333, doi: 10.1109/ICCS1.2017.8326015.
[30] S. L. Ghosh, K.-C.; Tsai, C.-H.; Kumar, H.; Chen, Q.; Zhang, L.; Son, B.; Tan, C.S.; Kim, M.;, "Metal-Semiconductor-Metal GeSn Photodetectors on Silicon for Short-Wave Infrared Applications," MDPI, 2020, doi: 10.3390/mi11090795.
[31] D. G. Parker and P. G. Say, " "Indium tin oxide/Gas photodiodes for millimetricwave application, "Eletron. Lett, vol.22," pp. pp. 1266-1267,1988.
[32] D. Somvanshi and S. Jit, "Effect of ZnO Seed Layer on the Electrical Characteristics of Pd/ZnO Thin-Film-Based Schottky Contacts Grown on n-Si Substrates," IEEE Transactions on Nanotechnology, vol. 13, no. 6, pp. 1138-1144, 2014, doi: 10.1109/TNANO.2014.2343965.
[33] W. Changhao, W. Dongxing, P. Chao, W. Xiaolin, Y. Jinghua, and z. Hong, "The fabrication and UV photosensitive characteristics of Al/ZnO/Ag Schottky barrier diode," in Proceedings of 2012 International Conference on Measurement, Information and Control, 18-20 May 2012 2012, vol. 2, pp. 659-662, doi: 10.1109/MIC.2012.6273379.
[34] Enlitech. "光電二極體(Photodiode)全面解析:從基礎到應用." https://enlitechnology.com/zh-hant/blog-zh-hant/pd-zh-hant/photodetector-01/ (accessed.
[35] D. J. C. S.M. Sze, JR. and A. Loya, , ""Current transport in metal semiconductor-metal (MSM) structures," " Solid-state Electron.,vol.14,, pp. pp. 1209-1218, Dec 1971. .
[36] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, "Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN," Journal of Applied Physics, vol. 83, no. 11, pp. 6148-6160, 1998, doi: 10.1063/1.367484.
[37] 盧德恩, "“表面氯化處理之氮化鎵/氮化鋁鎵金屬-半導體-金屬光檢測器低頻雜訊特性研究”," 國立成功大學微電子工程學系碩士學位論文, 民國98年(2009).
[38] J. W. Y. Q. Chen, et al.,, "Schottky barrier detectors on GaN for visible–blind ultraviolet detection,," Appl. Phys. Lett. 70(17), 2277 1997,Appril 28.
[39] 中原大學物理系院繼祖教授, "量子感測元件特性分析研究," 行政院原子能委員會研究計畫, 2021年12月20日.
[40] D. P. Norton et al., "ZnO: growth, doping & processing," Materials Today, vol. 7, no. 6, pp. 34-40, 2004/06/01/ 2004, doi: https://doi.org/10.1016/S1369-7021(04)00287-1.
[41] P. Pokora, D. Wojcieszak, P. Mazur, M. Kalisz, and M. Sikora, "Influence of Co-Content on the Optical and Structural Properties of TiOx Thin Films Prepared by Gas Impulse Magnetron Sputtering," Coatings, vol. 13, no. 5, p. 955, 2023. [Online]. Available: https://www.mdpi.com/2079-6412/13/5/955.
[42] D. K. Sarkar, D. Brassard, M. A. E. Khakani, and L. Ouellet, "Dielectric properties of sol–gel derived high-k titanium silicate thin films," Thin Solid Films, vol. 515, no. 11, pp. 4788-4793, 2007/04/09/ 2007, doi: https://doi.org/10.1016/j.tsf.2006.11.155.
[43] C. M. Firdaus, M. Rusop, S. R. M. S. Baki, and R. H. Salimin, "Optical and electrical properties of ZnO and ZnO: TiO2 thin films prepared by sol-gel spray-spin coating technique," in 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE), 19-21 Sept. 2012 2012, pp. 158-162, doi: 10.1109/SMElec.2012.6417114.
[44] l.-l. Jiao and c.-b. He, "Investigation on zinc oxide photosensitive resistance," in 2012 International Conference on Computer Science and Information Processing (CSIP), 24-26 Aug. 2012 2012, pp. 501-505, doi: 10.1109/CSIP.2012.6308901.
[45] 林煒智, "利用氧化鋅奈米結構於紫外光感測器之應用," 碩士, 製造科技研究所, 國立臺北科技大學, 台北市, 2014. [Online]. Available: https://hdl.handle.net/11296/uzvd5q
[46] 陳則甫, "氧化鋅奈米結構之感測器應用," 博士, 微電子工程研究所碩博士班, 國立成功大學, 台南市, 2013. [Online]. Available: https://hdl.handle.net/11296/f7sm7n
[47] M. H. Li et al., "Perovskite Capped ZnO Nanorods Ultraviolet/Visible Broadband Photodetectors," IEEE Transactions on Nanotechnology, vol. 21, pp. 499-504, 2022, doi: 10.1109/TNANO.2022.3200677.
[48] 謝澤, "氧化鋅薄膜電激發光元件結構變化對波長影響之研究," 碩士, 電機工程學系, 國立臺灣海洋大學, 基隆市, 2018. [Online]. Available: https://hdl.handle.net/11296/n2taak
[49] 周相如, "氧化鋅奈米柱結構變化影響氧化鋅薄膜電激發光元件特性之研究," 碩士, 電機工程學系, 國立臺灣海洋大學, 基隆市, 2017. [Online]. Available: https://hdl.handle.net/11296/a869f9
[50] Q. P. Wang, D. H. Zhang, Z. Y. Xue, and X. T. Hao, "Violet luminescence emitted from ZnO films deposited on Si substrate by rf magnetron sputtering," Applied Surface Science, vol. 201, no. 1, pp. 123-128, 2002/11/30/ 2002, doi: https://doi.org/10.1016/S0169-4332(02)00570-6.
[51] 百科知識. "基態與激發態." https://www.jendow.com.tw/wiki/%E5%9F%BA%E6%85%8B%E8%88%87%E6%BF%80%E7%99%BC%E6%85%8B (accessed.
[52] 林素霞, "氧化鋅薄膜的特性改良及應用之研究," 博士, 材料科學及工程學系碩博士班, 國立成功大學, 台南市, 2003. [Online]. Available: https://hdl.handle.net/11296/a7rfd8
[53] 梁家豪, "退火處理對氧化鋅薄膜光電性質與砷摻雜p型氧化鋅薄膜製備之影響," 博士, 材料科學與工程學系, 國立東華大學, 花蓮縣, 2013. [Online]. Available: https://hdl.handle.net/11296/tv6vf8
[54] R. X. J. Y. D. X. L. G. H. Z. L. Jingxiao, "Effect of Annealing on Microstructure and Properties of ZnO Thin Films
Deposited on Glass Surface ", 2013. [Online]. Available: https://www.ingentaconnect.com/content/ccs/jccs/2013/00000041/00000006/art00018?crawler=true


電子全文 電子全文(網際網路公開日期:20290730)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊