跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張智堯
研究生(外文):ZHANG, ZHI-YAO
論文名稱:基於生物啟發式演算法之鋰離子電池最 佳化 多 階段定電流充電波形之研究
論文名稱(外文):Research on Optimization of Multi-stage Constant Current Charge Profile for Lithium-ion Batteries based on Bio-inspired Algorithms
指導教授:王順忠陳俊隆陳俊隆引用關係
指導教授(外文):Shun-Chung WangChun-Lung Chen
口試委員:楊宗振陳冠炷陳俊隆王順忠
口試委員(外文):ZONG, ZHEN-YANGCHEN, GUAN-JHUChun-Lung ChenShun-Chung Wang
口試日期:2024-07-11
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:58
中文關鍵詞:電池等效電路模型生物啟發式演算法鋰離子電池多階段定電流充電最佳化充電電流樣式
外文關鍵詞:Battery Equivalent Circuit ModelBio-inspired Optimization AlgorithmLithium-ion BatteryMulti-Stage Constant-Current ChargingOptimal Charging Current Profile
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
相較於傳統的定電流定電壓(Constant-Current Constant-Voltage, CC-CV)充電方法,多階段定電流(Multi-Stage Constant-Current, MSCC)充電方法具有充電時間短和充電效率高等優點。然而,MSCC必須具備最佳的充電電流樣式(Optimal Charging Current Profile, OCCP)才能實現上述優勢。因此,本論文應用五種生物啟發式演算法(BIO-inspired optimization Algorithms BIOAs),包括粒子群演算法(Particle Swarm Optimization, PSO)、改良型PSO (modified PSO, MPSO)、灰狼演算法(Grey Wolf Optimization, GWO)、改良型GWO (Modified GWO, MGWO)和水母演算法(Jellyfish Search Algorithm, JSA),來解決MSCC的OCCP搜索問題。本研究充電策略目標為最短充電時間(Charging Time, CT)和最低充電損耗(Charging Loss, CL),並利用所建立的MATLAB模擬平台進行搜尋OCCP的模擬。無需進行耗時的實際充放電實驗,藉由所建立的電池等效電路模型(Equivalent Circuit Model, ECM),即可實現廣泛的搜索。
藉由模擬和實驗結果來驗證理論推導的正確性與性能提升,實驗結果顯示JSA具有最佳的適應值(Fitness Value, FV)。相較於傳統的CC-CV方法,所提出的五種BIOAs方法在充電時間、充電效率、充電能量、平均溫升和FV六個充電性能評估指標(Charging Performance Evaluation Indicators, CPEIs)的最大改善率(Improvement Rates, IRs)分別為21.10%、0.24%、2.85%、19.72%和 26.80%。此外,針對CPEIs的綜合評估,性能表現最佳的前三名分別為MPSO、MGWO和GWO方法。

Compared to the traditional constant-current constant-voltage (CC-CV) charging method, the multi-stage constant-current (MSCC) charging method has the advantages of short charging time and high charging efficiency. However, MSCC must have an optimal charging current profile (OCCP) to achieve the above advantages. Therefore, in this thesis, five bio-inspired optimization algorithms (BIOAs), including partiEe swarm optimization (PSO), modified PSO (MPSO), gray wolf optimization (GWO), modified GWO (MGWO) and jellyfish search algorithm (JSA), are applied to solve the OCCP search of MSCC. The objectives of the proposed charging strategy are the shortest charging time (CT) and the lowest charging loss (CL). A simulation platform based on MATLAB is established to simulate the search for OCCP. Without the need to conduct time-consuming charging-and-discharging experiments, extensive searches can be achieved through the built battery equivalent circuit model (ECM).
Simulation and experimental results demonstrate the correctness of the theoretical derivation and performance improvement. The experimental results show that JSA has the best fitness value (FV). Compared to the standard CC-CV method, the five proposed BIOAs methods have the greatest improvement rate in six charging performance evaluation indicators (CPEIs), including charging time, charging efficiency, charging energy, average temperature rise and FV, which are 21.10%, 0.24%, 2.85%, 19.72% and 26.80% respectively. In addition, for the comprehensive evaluation of CPEIs, the top three methods are MPSO, MGWO and GWO, respectively.

目錄
第一章 緒論
1.1 研究背景
1.2 研究動機與貢獻
1.3 文獻回顧
1.4 論文大綱
第二章 鋰離子電池充電技術介紹
2.1 鋰離子電池種類之介紹
2.2 鋰離子電池之常用專有名詞介紹
2.3 本文選用之鋰離子電池介紹
2.4 鋰離子電池充電技術介紹
2.4.1 定電壓充電方法
2.4.2 定電流充電方法
2.4.3 定電流-定電壓充電方法
2.4.4 衍生型定電壓-定電流充電方法
2.4.5 多階段定電流充電法
第三章 鋰離子電池等效電路模型介紹
3.1 鋰離子電池等效電路模型種類介紹
3.1.1 理想電池等效電路模型
3.1.2 線性電池等效電路模型
3.1.3 戴維寧電池等效電路模型
3.2 鋰離子電池之交流阻抗分析介紹
3.2.1 交流阻抗之分析流程介紹
3.2.2 交流阻抗之實驗規劃
3.2.3 交流阻抗之資料分析
第四章 生物啟發式演算法
4.1 粒子群演算法
4.2 灰狼演算法
4.3 水母演算法
第五章 最佳化多階段定電流充電之實現
5.1 多階段定電流充電法之推導
5.2 問題描述與目標函數推導
5.3 最佳化多階段定電流充電實現流程
第六章 模擬與實驗結果
6.1 模擬結果
6.2 實驗測試環境設置
6.3 最佳化多階段定電流充電方法實驗測試結果
6.4 各種充電方法充電性能評估指標分析
第七章 結論與未來展望
7.1 結論
7.2 未來展望
參考文獻


[1]S. Pohlmann, A. Mashayekh, M. Kuder, A. Neve, and T. Weyh, “Data augmentation and feature selection for the prediction of the state of charge of lithium-ion batteries using artificial neural networks,” Energies, vol. 16, p. 6750, 2023.
[2]D. Pelosi, M. Longo, D. Zaninelli, and L. Barelli, “Experimental investigation of fast-charging effect on aging of electric vehicle Li-ion batteries,” Energies, vol. 16, p. 6673, 2023.
[3]J. Bilansky, M. Lacko, M. Pastor, A. Marcinek, and F. Durovsky, “Improved digital twin of Li-Ion Battery Based on Generic MATLAB model,” Energies, vol. 16, p. 1194, 2023.
[4]R. Zhang, X. Li, C. Sun, S. Yang, Y. Tian, and J. Tian, “State of charge and temperature joint estimation based on ultrasonic reflection waves for lithium-ion battery applications,” Batteries, vol. 9, p. 335, 2023.
[5]J. Xu, C. Sun, Y. Ni, C. Lyu, C. Wu, H. Zhang, Q. Yang, and F. Feng, “Fast identification of micro-health parameters for retired batteries based on a simplified P2D model by using Padé approximation,” Batteries, vol. 9, p. 64, 2023.
[6]D. Song, S. Wang, L. Di, W. Zhang, Q. Wang, and J. V. Wang, “Lithium-Ion Battery Life Prediction Method under Thermal Gradient Conditions,” Energies, vol. 16, p. 767, 2023.
[7]F. Gemma, G. Tresca, A. Formentini, and P. Zanchetta, “Balanced charging algorithm for CHB in an EV powertrain,” Energies, vol. 16, p. 5565, 2023.
[8]B. Kwak, M. Kim, and J. Kim, “Add-on type pulse charger for quick charging Li-ion batteries,” Electronics, vol. 9, p. 227, 2020.
[9]K. M. Tsang and W. L. Chan, “Current sensorless quick charger for lithium-ion batteries,” Energy Conversion and Management, vol. 52, no. 3, pp. 1593–1595, 2011.
[10]P. H. L. Notten, J. H. G. Op het Veld, and J. R. G. van Beek, “Boostcharging Li-ion batteries: A challenging new charging concept,” Journal of Power Sources, vol. 145, pp. 89–94, 2005.
[11]L. R. Chen, R. C. Hsu, and C. S. Liu, “A design of a Grey-predicted Li-ion battery charge system,” IEEE Transactions on Industrial Electronics, vol. 55, no. 10, pp. 3692–3701, Oct. 2008.
[12]G. C. Hsieh, L. R. Chen, and K. S. Huang, “Fuzzy-controlled Li-ion battery charge system with active state-of-charge controller,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 585–593, Jun. 2001.
[13]L. R. Chen, J. J. Chen, N. Y. Chu, and G. Y. Han, “Current-pumped battery charger,” IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2482–2488, Jun. 2008.
[14]L. Patnaik, A. V. J. S. Praneeth, and S. S. Williamson, “A closed-loop constant-temperature constant-voltage charging technique to reduce charge time of lithium-ion batteries,” IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1059–1067, Feb. 2019.
[15]H. Fang, C. Depcik, and V. Lvovich, “Optimal pulse-modulated lithium-ion battery charging algorithms,” Journal of Energy Storage, vol. 15, pp. 359–367, 2018.
[16]S. -C. Wang, G. -J. Chen, and Y. -H. Liu, “Adaptive charging strategy with temperature rise mitigation and cycle life extension for li-ion batteries,” CPSS Transactions on Power Electronics and Applications, vol. 3, no. 3, pp. 202–212, Sep. 2018.
[17]Y. Gao, X. Zhang, B. Guo, C. Zhu, J. Wiedemann, L. Wang, and J. Cao, “Health-aware multiobjective optimal charging strategy with coupled electrochemical-thermal-aging model for lithium-ion battery,” IEEE Transactions on Industrial Informatics, vol. 16, no. 5, pp. 3417–3429, May 2020.
[18]A. Bohinsky, S. P. Rangarajan, Y. Barsukov, and P. P. Mukherjee, “Preventing lithium plating during fast charging of lithium ion cells,” ECS Conference, 2020.
[19]L. R. Chen, “A design of an optimal battery pulse charge system by frequency-varied technique,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 398–405, Feb. 2007.
[20]L. R. Chen, “Design of duty-varied voltage pulse charger for improving Li-ion battery-charging response,” IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 480–487, Feb. 2009.
[21]B. K. Purushothama, P. W. Morrison, Jr., and U. Landau, “Reducing mass-transport limitations by application of special pulsed current modes,” Journal of The Electrochemical Society, vol. 152, pp. 33–39, 2005.
[22]B. K. Purushothama and U. Landau, “Rapid rapid charging of lithium-ion batteries using pulsed currents,” Journal of The Electrochemical Society, vol. 153, pp. 533–542, 2006.
[23]S. M. I. Niroshana and S. Sirisukprasert, “Adaptive pulse charger for Li-ion batteries,” 2017 8th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), Chonburi, Thailand, 2017, pp. 1–6.
[24]Y. H. Liu, J. H. Teng, and Y. C. Lin, “Search for an optimal rapid charging pattern for lithium-ion batteries using ant colony system algorithm,” IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1328–1336, Oct. 2005.
[25]Y. H. Liu and Y. F. Luo, “Search for an Optimal Rapid-Charging Pattern for Li-Ion Batteries Using the Taguchi Approach,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 3963–3971, Dec. 2010.
[26]Y. H. Liu, C. H. Hsieh, and Y. F. Luo, “Search for an optimal five-step charging pattern for Li-ion batteries using consecutive orthogonal arrays,” IEEE Transactions on Energy Conversion, vol. 26, no. 2, pp. 654–661, Jun. 2011.
[27]L. R. Dung and J. H. Yen, “ILP-based algorithm for lithium-ion battery charging profile,” 2010 IEEE International Symposium on Industrial Electronics, Bari, Italy, 2010, pp. 2286–2291.
[28]P. M. Attia, A. Grover, N. Jin, et al., “Closed-loop optimization of fast-charging protocols for batteries with machine learning,” Nature, vol. 578, pp. 397–402, 2020.
[29]陳品行。「基於剩餘容量之最佳化五階段定電流充電法之研究」。碩士論文,國立臺灣科技大學電機工程系,2021
[30]T. T. Vo, X. Chen, W. Shen, and A. Kapoor, “New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation,” Journal of Power Sources, vol. 273, pp. 413–422, 2015.
[31]C. H. Lee, M. Y. Chen, S. H. Hsu, and J. A. Jiang, “Implementation of a SOC-based four-stage constant current charger for Li-ion batteries,” Journal of Energy Storage, vol. 18, pp. 528–537, 2018.
[32]C. H. Lee, T. W. Chang, S. H. Hsu, and J. A. Jiang, “Taguchi-based PSO for searching an optimal four-stage charge pattern of Li-ion batteries,” Journal of Energy Storage, vol. 21, pp. 301–309, 2019.
[33]L. Jiang, Y. -D. Huang, Y. Li, J. -Q. Yu, X. -B. Qiao, C. Huang, and Y. -J. Cao, “Optimization of variable-current charging strategy based on SOC segmentation for Li-ion battery,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 1, pp. 622–629, Jan. 2021.
[34]S. C. Wang and Y. H. Liu, “A PSO-based fuzzy-controlled searching for the optimal charge pattern of Li-Ion Batteries,” IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 2983–2993, May 2015.
[35]P. Makeen, H. A. Ghali, and S. Memon, “Experimental and theoretical analysis of the fast charging polymer lithium-ion battery based on cuckoo optimization algorithm (COA),” IEEE Access, vol. 8, pp. 140486–140496, 2020.
[36]G. J. Chen, Y. H. Liu, S. C. Wang, Y. F. Luo, and Z. Z. Yang, “Searching for the optimal current pattern based on grey wolf optimizer and equivalent circuit model of Li-ion batteries,” Journal of Energy Storage, vol. 33, p. 101933, 2021.
[37]A. B. Khan and W. Choi, “Optimal charge pattern for the high-performance multistage constant current charge method for the Li-ion batteries,” IEEE Transactions on Energy Conversion, vol. 33, no. 3, pp. 1132-1140, Sept. 2018.
[38]R. C. Eberhart and Y. H. Shi, “Particle swarm optimization: developments, applications and resources,” Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, Korea (South), pp. 81-86, vol. 1.
[39]傅文昱。「以再生能源為基礎之時間電價工業用戶儲能系統電能調度優化之研究」。碩士論文,國立臺灣海洋大學輪機工程系,2011。
[40]S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in Engineering Software, vol. 69, pp. 46-61, 2014.
[41]陳冠炷。「基於灰狼演算法之最佳化鋰離子電池充電電流樣式搜尋」。博士論文,國立臺灣科技大學電機工程系,2021
[42]林允森。「改良型灰狼演算法應用於雲端水溫監控系統之PID控制器研製」。碩士論文,國立臺灣海洋大學輪機工程學系,2022。
[43]J. S. Chou and D. N. Truong, “A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean,” Applied Mathematics and Computation, vol. 389, p. 125535, 2021.
[44]M. Brand, S. Gläser, J. Geder, S. Menacher, S. Obpacher, A. Jossen, and D. Quinger, “Electrical safety of commercial Li-ion cells based on NMC and NCA technology compared to LFP technology,” World Electric Vehicle Journal, vol. 6, no. 3, pp. 572-580, 2013.
[45]A. Eddahech, O. Briat, and J. M. Vinassa, “Determination of lithium-ion battery state-of-health based on constant-voltage charge phase,” Journal of Power Sources, vol. 258, pp. 218-227, 2014.
[46]X. Liu, K. Li, and X. Li, “The electrochemical performance and applications of several popular lithium-ion batteries for electric vehicles—a review,” Advances in Green Energy Systems and Smart Grid: First International Conference on Intelligent Manufacturing and Internet of Things and 5th International Conference on Computing for Sustainable Energy and Environment, IMIOT and ICSEE 2018, Chongqing, China, September 21-23, 2018, Proceedings, Part III 5, pp. 201-213.
[47]Panasonic Inc., “NCR18650GA data sheet,” Specification of product.
[48]B. Schweighofer, K. M. Raab and G. Brasseur, “Modeling of high power automotive batteries by the use of an automated test system,” IEEE Transactions on Instrumentation and Measurement, vol. 52, no. 4, pp. 1087-1091, Aug. 2003
[49]Z. M. Salameh, M. A. Casacca and W. A. Lynch, “A mathematical model for lead-acid batteries,” IEEE Transactions on Energy Conversion, vol. 7, no. 1, pp. 93-98, March 1992

電子全文 電子全文(網際網路公開日期:20290806)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊