|
1.Tshikantwa, T. S.; Ullah, M. W.; He, F.; Yang, G. Current Trends and Potential Applications of Microbial Interactions for Human Welfare. Front. Microbiol. 2018, 9, 1156. 2.Wang, H.; Wei, C. X.; Min, L.; Zhu, L. Y. Good or Bad: Gut Bacteria in Human Health and Diseases. Biotechnol. Biotechnol. Equip. 2018, 32, 1075–1080. 3.Valdes, A. M.; Walter, J.; Segal, E.; Spector, T. D. Role of the Gut Microbiota in Nutrition and Health. Br. Med. J. 2018, 361, k2179. 4.Ribet, D.; Cossart, P. How Bacterial Pathogens Colonize Their Hosts and Invade Deeper Tissues. Microbes Infect. 2015, 17, 173–183. 5.Khatoon, Z.; McTiernan, C. D.; Suuronen, E. J.; Mah, T. F.; Alarcon, E. I. Bacterial Biofilm Formation on Implantable Devices and Approaches to Its Treatment and Prevention. Heliyon 2018, 4, e01067. 6.European Centre for Disease Prevention and Control. ECDC Surveillance Report Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals 2011–2012. https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Publications/healthcare-associated-infections-antimicrobial-use-PPS.pdf (accessed December 15, 2020). 7.European Centre for Disease Prevention and Control. Press Release, July 4th, 2013. http://www.ecdc.europa.eu/en/press/Press%20Releases/press-release-healthcare-associated-infectionsantimicrobial-use-.pdf (accessed December 15, 2020). 8.Marschang, S.; Bernardo, G. Prevention and Control of Healthcare-Associated Infection in Europe: A Review of Patients' Perspectives and Existing Differences. J. Hosp. Infect. 2015, 89, 357–362. 9.Murphy, F.; Tchetchik, A.; Furxhi, I. Reduction of Healthcare-Associated Infections (HAIs) with Antimicrobial Inorganic Nanoparticles Incorporated in Medical Textiles: An Economic Assessment. Nanomaterials 2020, 10, 999. 10.Haque, M.; Sartelli, M.; McKimm, J.; Bakar, M. A. Healthcare-Associated Infections—An Overview. J. Glob. Antimicrob. Resist. 2018, 11, 2321–2333. 11.Antonioli, P.; Bolognesi, N.; Valpiani, G.; Morotti, C.; Bernardini, D.; Bravi, F.; et al. A 2-Year Point-Prevalence Surveillance of Healthcare-Associated Infections and Antimicrobial Use in Ferrara University Hospital, Italy. BMC Infect. Dis. 2020, 20, 75. 12.Provenzani, A.; Hospodar, A. R.; Meyer, A. L.; Leonardi Vinci, D.; Hwang, E. Y.; Butrus, C. M.; et al. Multidrug-Resistant Gram-Negative Organisms: A Review of Recently Approved Antibiotics and Novel Pipeline Agents. Int. J. Clin. Pharm. 2020, 42, 1016–1025. 13.Araújo Lima, A. V.; da Silva, S. M.; do Nascimento Júnior, J. A. A.; Correia, M. S.; Luz, A. C.; Leal-Balbino, T. C.; et al. Occurrence and Diversity of Intra- and Interhospital Drug-Resistant and Biofilm-Forming Acinetobacter baumannii and Pseudomonas aeruginosa. Microb. Drug Resist. 2020, 26, 802–814. 14.Nain, Z.; Islam, M.; Minnatul Karim, M. Antibiotic Resistance Profiling and Molecular Phylogeny of Biofilm-Forming Bacteria from Clinical and Non-Clinical Environment in Southern Part of Bangladesh. Int. J. Enteric Pathog. 2019, 7, 37–43. 15.Srivastava, S.; Bhargava, A. Biofilms and Human Health. Biotechnol. Lett. 2016, 38, 1–22. 16.Jamal, M.; Tasneem, U.; Hussain, T.; Andleeb, S. Bacterial Biofilm: Its Composition, Formation and Role in Human Infections. Res. Rev. J. Microbiol. Biotechnol. 2015, 4, 1–15. 17.Zhao, X.; Zhao, F.; Wang, J.; Zhong, N. Biofilm Formation and Control Strategies of Foodborne Pathogens: Food Safety Perspectives. RSC Adv. 2017, 7, 36670–36683. 18.Banerjee, P.; Singh, M.; Sharma, V. Biofilm Formation: A Comprehensive Review. Int. J. Pharm. Res. Health Sci. 2015, 3, 556–560. 19.Römling, U.; Galperin, M. Y.; Gomelsky, M. Cyclic di-GMP: The First 25 Years of a Universal Bacterial Second Messenger. Microbiol. Mol. Biol. Rev. 2013, 77, 1–52. 20.Armbruster, C. R.; Parsek, M. R. New Insight into the Early Stages of Biofilm Formation. Proc. Natl. Acad. Sci. USA 2018, 115, 4317–4319. 21.Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H. Biofilm Formation Mechanisms and Targets for Developing Antibiofilm Agents. Future Med. Chem. 2015, 7, 493–512. 22.Toyofuku, M.; Inaba, T.; Kiyokawa, T.; Obana, N.; Yawata, Y.; Nomura, N. Environmental Factors That Shape Biofilm Formation. Biosci. Biotechnol. Biochem. 2016, 80, 7–12. 23.Costerton, J. W.; Stewart, P. S.; Greenberg, E. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322. 24.McDougald, D.; Rice, S. A.; Barraud, N.; Steinberg, P. D.; Kjelleberg, S. Should We Stay or Should We Go: Mechanisms and Ecological Consequences for Biofilm Dispersal. Nat. Rev. Microbiol. 2012, 10, 39. 25.Dethlefsen, L.; Huse, S.; Sogin, M. L.; Relman, D. A. The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biol. 2008, 6, e280. 26.Dethlefsen, L.; Relman, D. A. Incomplete Recovery and Individualized Responses of the Human Distal Gut Microbiota to Repeated Antibiotic Perturbation. Proc. Natl. Acad. Sci. USA 2010, 108 Suppl 1, 4554–4561. 27.Ubeda, C.; Taur, Y.; Jenq, R. R.; Equinda, M. J.; Son, T.; Samstein, M.; Viale, A.; Socci, N. D.; van den Brink, M. R.; Kamboj, M., et al. Vancomycin-Resistant Enterococcus Domination of Intestinal Microbiota Is Enabled by Antibiotic Treatment in Mice and Precedes Bloodstream Invasion in Humans. J. Clin. Invest. 2010, 120, 4332–4341. 28.Secinti, K. D.; Ozalp, H.; Attar, A.; Sargon, M. F. Nanoparticle Silver Ion Coatings Inhibit Biofilm Formation on Titanium Implants. J. Clin. Neurosci. 2011, 18, 391–395. 29.Fey, P. D. Modality of Bacterial Growth Presents Unique Targets: How Do We Treat Biofilm-Mediated Infections? Curr. Opin. Microbiol. 2010, 13, 610–615. 30.Hall, C. W.; Mah, T. F. Molecular Mechanisms of Biofilm-Based Antibiotic Resistance and Tolerance in Pathogenic Bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301. 31.Ju, X.; Li, J.; Zhu, M.; Lu, Z.; Lv, F.; Zhu, X., et al. Effect of the luxS Gene on Biofilm Formation and Antibiotic Resistance by Salmonella Serovar Dublin. Food Res. Int. 2018, 107, 385–393. 32.Sahal, G.; Woerdenbag, H. J.; Hinrichs, W. L. J.; Visser, A.; Tepper, P. G.; Quax, W. J., et al. Antifungal and Biofilm Inhibitory Effect of Cymbopogon citratus (Lemongrass) Essential Oil on Biofilm Forming by Candida tropicalis Isolates; An in Vitro Study. J. Ethnopharmacol. 2020, 246, 112188. 33.Shahid, A.; Rasool, M.; Akhtar, N.; Aslam, B.; Hassan, A.; Sana, S., et al. Innovative Strategies for the Control of Biofilm Formation in Clinical Settings. In: Dincer, S.; Özdenefe, M. S.; Arkut, A., Eds. Bacterial Biofilms; IntechOpen: London, UK, 2019. 34.Satpute, S. K.; Mone, N. S.; Das, P.; Banat, I. M.; Banpurkar, A. G. Inhibition of Pathogenic Bacterial Biofilms on PDMS Based Implants by L. acidophilus Derived Biosurfactant. BMC Microbiol. 2019, 19, 1–15. 35.Rather, M. A.; Gupta, K.; Mandal, M. Inhibition of Biofilm and Quorum Sensing-Regulated Virulence Factors in Pseudomonas aeruginosa by Cuphea carthagenensis (Jacq.) J.F. Macbr. Leaf Extract: An in Vitro Study. J. Ethnopharmacol. 2020, 269, 113699. 36.Gupta, K.; Singh, S. P.; Manhar, A. K.; Saikia, D.; Namsa, N. D.; Konwar, B. K., et al. Inhibition of Staphylococcus aureus and Pseudomonas aeruginosa Biofilm and Virulence by Active Fraction of Syzygium cumini (L.) Skeels Leaf Extract: In Vitro and in Silico Studies. Indian J. Microbiol. 2019, 59, 13–21. 37.Gupta, K.; Barua, S.; Hazarika, S. N.; Manhar, A. K.; Nath, D.; Karak, N., et al. Green Silver Nanoparticles: Enhanced Antimicrobial and Antibiofilm Activity with Effects on DNA Replication and Cell Cytotoxicity. RSC Adv. 2014, 4, 52845–52855. 38.Gupta, K.; Hazarika, S. N.; Saikia, D.; Namsa, N. D.; Mandal, M. One Step Green Synthesis and Anti-Microbial and Anti-Biofilm Properties of Psidium guajava L. Leaf Extract-Mediated Silver Nanoparticles. Mater. Lett. 2014, 125, 67–70. 39.Karlapudi, A. P.; Venkateswarulu, T. C.; Srirama, K.; Kota, R. K.; Mikkili, I.; Kodali, V. P. Evaluation of Anti-Cancer, Anti-Microbial and Anti-Biofilm Potential of Biosurfactant Extracted from an Acinetobacter M6 Strain. J. King Saud Univ. Sci. 2020, 32, 223–227. 40.Grigore-Gurgu, L.; Bucur, F. I.; Borda, D.; Alexa, E. A.; Neagu, C.; Nicolau, A. I. Biofilms Formed by Pathogens in Food and Food Processing Environments. In: Dincer, S.; Özdenefe, M. S.; Arkut, A., Eds. Bacterial Biofilms; IntechOpen, 2019. https://www.intechopen.com/online-first/biofilms-formed-by-pathogens-in-food-and-food-processing-environments (accessed Dec 15, 2020). 41.Swar, S.; Máková, V.; Stibor, I. The Covalent Tethering of Poly(ethylene glycol) to Nylon 6 Surface via N,N′-Disuccinimidyl Carbonate Conjugation: A New Approach in the Fight Against Pathogenic Bacteria. Polymers 2020, 12, 2181. 42.Andrade del Olmo, J.; Ruiz Rubio, L.; Saez Martinez, L.; Perez-Alvarez, V.; Vilas, Vilela, J. L. Antibacterial Coatings for Improving the Performance of Biomaterials. Coatings 2020, 10, 139. 43.Ferriol-González, C.; Domingo-Calap, P. Phages for Biofilm Removal. Antibiotics 2020, 9, 268. 44.Kumar, S.; Pandey, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. 45.Hanasaki, Y.; Ogawa, S.; Fukui, S. The Correlation between Active Oxygens Scavenging and Antioxidative Effects of Flavonoids. Free Radic. Biol. Med. 1994, 16, 845850. 46.ÇİMEN, M. B. Y. Flavonoids and their Antioxidant Properties. TURK. J. MED. SCI. 1999, 19, 296. 47.De Souza, V. T.; De Franco, É. P. D.; De Araújo, M. E. M. B.; Messias, M. C. F.; Priviero, F. B. M.; Frankland Sawaya, A. C.; de Oliveira Carvalho, P. Characterization of the Antioxidant Activity of Aglycone and Glycosylated Derivatives of Hesperetin: an in Vitro and in Vivo Study. J. Mol. Recognit. 2016, 29, 8087. 48.Hu, L.; Wang, H.; Pei, J.; Liu, Y. Research Progress of Antitumor Effects of Resveratrol and Its Mechanism. Shandong Yiyao 2010, 50, 111112. 49.Hattori, M.; KUSUMOTO, I. T.; NAMBA, T.; ISHIGAMI, T.; HARA, Y. Effect of Tea Polyphenols on Glucan Synthesis by Glucosyltransferase from Streptococcus Mutans. Chem. Pharm. Bull. 1990, 38, 717720. 50.Mishra, A. K.; Mishra, A.; Kehri, H.; Sharma, B.; Pandey, A. K. Inhibitory Activity of Indian Spice Plant Cinnamomum zeylanicum Extracts against Alternaria solani and Curvularia lunata, the Pathogenic Dematiaceous Moulds. Ann. Clin. Microbiol. Antimicrob. 2009, 8, 9. 51.Nakahara, K.; Kawabata, S.; Ono, H.; Ogura, K.; Tanaka, T.; Ooshima, T.; Hamada, S., Inhibitory Effect of Oolong Tea Polyphenols on Glycosyltransferases of Mutans Streptococci. Appl. Environ. Microbiol. 1993, 59, 968973. 52.Gupta, S. C.; Patchva, S.; Aggarwal, B. B. Therapeutic Roles of Curcumin: Lessons Learned from Clinical Trials. AAPS J. 2013, 15, 195–218. 53.Basnet, P.; Skalko-Basnet, N. Curcumin: An Anti-Inflammatory Molecule from a Curry Spice on the Path to Cancer Treatment. Molecules 2011, 16, 4567–4598. 54.Lao, C. D.; Ruffin, M. T.; Normolle, D.; Heath, D. D.; Murray, S. I.; Bailey, J. M.; Boggs, M. E.; Crowell, J.; Rock, C. L.; Brenner, D. E. Dose Escalation of a Curcuminoid Formulation. BMC Complement. Altern. Med. 2006, 6, 10. 55.Prasad, S.; Gupta, S. C.; Tyagi, A. K.; Aggarwal, B. B. Curcumin, a Component of Golden Spice: From Bedside to Bench and Back. Biotechnol. Adv. 2014, 32, 1053–1064. 56.Kocaadam, B.; Sanlier, N. Curcumin, an Active Component of Turmeric (Curcuma longa), and Its Effects on Health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2889–2895. (accessed on 3 February 2022). 57.Dai, C.; Xiao, X.; Zhang, Y.; Xiang, B.; Hoyer, D.; Shen, J.; Velkov, T.; Tang, S. Curcumin Attenuates Colistin-Induced Peripheral Neurotoxicity in Mice. ACS Infect. Dis. 2020, 6, 715–724. 58.Liu, M.; Lu, Y.; Gao, P.; Xie, X.; Li, D.; Yu, D.; Yu, M. Effect of Curcumin on Laying Performance, Egg Quality, Endocrine Hormones, and Immune Activity in Heat-Stressed Hens. Poult. Sci. 2020, 99, 2196–2202. 59.Yasbolaghi Sharahi, J.; Aliakbar Ahovan, Z.; Taghizadeh Maleki, D.; Riahi Rad, Z.; Riahi Rad, Z.; Goudarzi, M.; Shariati, A.; Bostanghadiri, N.; Abbasi, E.; Hashemi, A. In Vitro Antibacterial Activity of Curcumin-Meropenem Combination Against Extensively Drug-Resistant (XDR) Bacteria Isolated from Burn Wound Infections. Avicenna J. Phytomed. 2020, 10, 3–10. 60.Taghavifar, S.; Afroughi, F.; Saadati Keyvan, M. Curcumin Nanoparticles Improved Diabetic Wounds Infected with Methicillin-Resistant Staphylococcus aureus Sensitized with HAMLET. Int. J. Low. Extrem. Wounds 2020. 61.Morão, L. G.; Polaquini, C. R.; Kopacz, M.; Torrezan, G. S.; Ayusso, G. M.; Dilarri, G.; Cavalca, L. B.; Zielińska, A.; Scheffers, D. J.; Regasini, L. O.; et al. A Simplified Curcumin Targets the Membrane of Bacillus subtilis. Microbiologyopen 2019, 8, e00683. 62.Kaur, A.; Sharma, P.; Capalash, N. Curcumin Alleviates Persistence of Acinetobacter baumannii Against Colistin. Sci. Rep. 2018, 8, 11029. 63.Sundaramoorthy, N. S.; Sivasubramanian, A.; Nagarajan, S. Simultaneous Inhibition of MarR by Salicylate and Efflux Pumps by Curcumin Sensitizes Colistin Resistant Clinical Isolates of Enterobacteriaceae. Microb. Pathog. 2020, 148, 104445. 64.Batista de Andrade Neto, J.; Pessoa de Farias Cabral, V.; Brito Nogueira, L. F.; Rocha da Silva, C.; Gurgel do Amaral Valente Sá, L.; Ramos da Silva, A.; Barbosa da Silva, W. M.; Silva, J.; Marinho, E. S.; Cavalcanti, B. C.; et al. Anti-MRSA Activity of Curcumin in Planktonic Cells and Biofilms and Determination of Possible Action Mechanisms. Microb. Pathog. 2021, 155, 104892. 65.Bonifácio, D.; Martins, C.; David, B.; Lemos, C.; Neves, M.; Almeida, A.; Pinto, D.; Faustino, M. A. F.; Cunha, Â. Photodynamic Inactivation of Listeria innocua Biofilms with Food-Grade Photosensitizers: A Curcumin-Rich Extract of Curcuma longa vs Commercial Curcumin. J. Appl. Microbiol. 2018, 125, 282–294. 66.Darmani, H.; Smadi, E. A. M.; Bataineh, S. B. M. Blue Light Emitting Diodes Enhance the Antivirulence Effects of Curcumin Against Helicobacter pylori. J. Med. Microbiol. 2020, 69, 617–624. 67.Zheng, D.; Huang, C.; Huang, H.; Zhao, Y.; Khan, M. R. U.; Zhao, H.; Huang, L. Antibacterial Mechanism of Curcumin: A Review. Chem. Biodivers. 2020, 17, e2000171. (accessed on 3 February 2022). 68.Ding, T.; Li, T.; Li, J. Impact of Curcumin Liposomes with Anti-Quorum Sensing Properties Against Foodborne Pathogens Aeromonas hydrophila and Serratia grimesii. Microb. Pathog. 2018, 122, 137–143. 69.Rocha, M. P.; Santos, M. S.; Rodrigues, P. L. F.; Araújo, T. S. D.; de Oliveira, J. M.; Rosa, L. P.; Bagnato, V. S.; da Silva, F. C. Photodynamic Therapy with Curcumin in the Reduction of Enterococcus faecalis Biofilm in Bone Cavity: Microbiological and Spectral Fluorescence Analysis. Photodiagn. Photodyn. Ther. 2021, 33, 102084. 70.Santos, C. A.; Lima, E. M. F.; Franco, B.; Pinto, M. U. Exploring Phenolic Compounds as Quorum Sensing Inhibitors in Foodborne Bacteria. Front. Microbiol. 2021, 12, 735931. 71.Berbezier, I.; De Crescenzi, M. Self-Assembly of Nanostructures and Nanomaterials. Beilstein J. Nanotechnol. 2015, 6, 1397–1398. 72.Liang, H.; Friedman, J. M.; Nacharaju, P. Fabrication of Biodegradable PEG–PLA Nano-Spheres for Solubility, Stabilization, and Delivery of Curcumin. Artif. Cells Nanomed. Biotechnol. 2017, 45, 297–304. 73.Branquinho, R. T.; Roy, J.; Farah, C.; Garcia, G. M.; Aimond, F.; Le Guennec, J.-Y.; et al. Biodegradable Polymeric Nanocapsules Prevent Cardiotoxicity of Anti-Trypanosomal Lychnopholide. Sci. Rep. 2017, 7, 44998. 74.Tahara, Y.; Akiyoshi, K. Current Advances in Self-Assembled Nanogel Delivery Systems for Immunotherapy. Adv. Drug Deliv. Rev. 2015, 95, 65–76. 75.Zhang, Y.; Ren, T.; Gou, J.; Zhang, L.; Tao, X.; Tian, B.; et al. Strategies for Improving the Payload of Small Molecular Drugs in Polymeric Micelles. J. Control. Release 2017, 261, 352–366. 76.Ahmed, F.; Discher, D. E. Self-Porating Polymersomes of PEG–PLA and PEG–PCL: Hydrolysis-Triggered Controlled Release Vesicles. J. Control. Release 2004, 96, 37–53. 77.Spillmann, C. M.; Naciri, J.; Algar, W. R.; Medintz, I. L.; Delehanty, J. B. Multifunctional Liquid Crystal Nanoparticles for Intracellular Fluorescent Imaging and Drug Delivery. ACS Nano 2014, 8, 6986–6997. 78.Lim, J.; Simanek, E. E. Triazine Dendrimers as Drug Delivery Systems: From Synthesis to Therapy. Adv. Drug Deliv. Rev. 2012, 64, 826–835. 79.Puri, A.; Loomis, K.; Smith, B.; Lee, J.-H.; Yavlovich, A.; Heldman, E.; et al. Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic. Crit. Rev. Ther. Drug Carrier Syst. 2009, 26, 523–580. 80.Weber, S.; Zimmer, A.; Pardeike, J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for Pulmonary Application: A Review of the State of the Art. Eur. J. Pharm. Biopharm. 2014, 86, 7–22. 81.Hirsjärvi, S.; Dufort, S.; Gravier, J.; Texier, I.; Yan, Q.; Bibette, J.; et al. Influence of Size, Surface Coating, and Fine Chemical Composition on the In Vitro Reactivity and In Vivo Biodistribution of Lipid Nanocapsules versus Lipid Nanoemulsions in Cancer Models. Nanomedicine 2013, 9, 375–387. 82.Liu, C.-H.; Chang, F.-Y. Development and Characterization of Eucalyptol Microemulsions for Topical Delivery of Curcumin. Chem. Pharm. Bull. 2011, 59, 172–178. 83.Lee, Y. S. Self-Assembly and Nanotechnology, a Force Balance Approach; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. 84.Lombardo, D.; Kiselev, M. A.; Magazu, S.; Calandra, P. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Adv. Cond. Matter Phys. 2015, 2015, 151683. 85.Lombardo, D.; Calandra, P.; Pasqua, L.; Magazù, S. Self-Assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. Materials 2020, 13, 1048. 86.Carmona-Ribeiro, A. M.; Barbassa, L.; de Melo, L. D. Antimicrobial Biomimetics. In Biomimetic Based Applications; George, A., Ed.; Volume 1, Rijeka, Croatia, 2011; pp 227–284. Chapter 10. 87.Carmona-Ribeiro, A. M. Interactions between Bilayer Vesicles, Biomolecules, and Interfaces. In Handbook of Surfaces and Interfaces of Materials; Nalwa, H. S., Ed.; Academic Press: Burlington, NJ, USA, 2001; pp 129–165. Chapter 4. 88.Carmona-Ribeiro, A. M. Biomimetic Systems in Nanomedicine. In Handbook of Nanobiomedical Research: Fundamentals, Applications and Recent Developments; Torchilin, W., Ed.; Volume 3, Singapore, 2014; pp 401–456. Chapter B5. 89.Bassegoda, A.; Ivanova, K.; Ramon, E.; Tzanov, T. Strategies to Prevent the Occurrence of Resistance Against Antibiotics by Using Advanced Materials. Appl. Microbiol. Biotechnol. 2018, 102, 2075–2089. 90.Carrasco, L. D. M.; Santos, H. C. A. S.; Sampaio, J. L. M.; Carmona-Ribeiro, A. M. Self-Assembled Antibiotic Nanoparticles Against Intracellular Bacteria. Drug Deliv. Lett. 2017, 7, 39–47. 91.Vieira, D. B.; Carmona-Ribeiro, A. M. Cationic Nanoparticles for Delivery of Amphotericin B: Preparation, Characterization and Activity In Vitro. J. Nanobiotechnol. 2008, 6, 6. 92.Carmona-Ribeiro, A. M.; de Melo Carrasco, L. D. Novel Formulations for Antimicrobial Peptides. Int. J. Mol. Sci. 2014, 15, 18040–18083. 93.Carmona-Ribeiro, A. M. Lipid Bilayer Fragments and Disks in Drug Delivery. Curr. Med. Chem. 2006, 13, 1359–1370. 94.Melo, L. D.; Palombo, R. R.; Petri, D. F. S.; Bruns, M.; Pereira, E. M. A.; Carmona-Ribeiro, A. M. Structure–Activity Relationship for Quaternary Ammonium Compounds Hybridized with Poly(Methyl Methacrylate). ACS Appl. Mater. Interfaces 2011, 3, 1933–1939. 95.Pereira, E. M. A.; Kosaka, P. M.; Rosa, H.; Vieira, D. B.; Kawano, Y.; Petri, D. F. S.; Carmona-Ribeiro, A. M. Hybrid Materials from Intermolecular Associations Between Cationic Lipid and Polymers. J. Phys. Chem. B 2008, 112, 9301–9310. 96.Ahonen, M.; Kahru, A.; Ivask, A.; Kasemets, K.; Kõljalg, S.; Mantecca, P.; Vinković-Vrček, I.; Keinänen-Toivola, M. M.; Crijns, F. Proactive Approach for Safe Use of Antimicrobial Coatings in Healthcare Settings: Opinion of the COST Action Network AMiCI. Int. J. Environ. Res. Public Health 2017, 14, 366. 97.Gao, A.; Hang, R.; Chu, P. K. Recent Advances in Anti-Infection Surfaces Fabricated on Biomedical Implants by Plasma-Based Technology. Surf. Coat. Technol. 2017, 312, 2–6. 98.González-Henríquez, C. M.; Sarabia-Vallejos, M. A.; Rodriguez-Hernandez, J. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications. Materials 2017, 10, 232. 99.Jiang, L.; Xu, D.; Sellati, T. J.; Dong, H. Self-Assembly of Cationic Multidomain Peptide Hydrogels: Supramolecular Nanostructure and Rheological Properties Dictate Antimicrobial Activity. Nanoscale 2015, 7, 19160–19169. 100.Carmona-Ribeiro, A. M.; Vieira, D. B.; Lincopan, N. Cationic Surfactants and Lipids as Anti-Infective Agents. Anti-Infect. Agents Med. Chem. 2006, 5, 33–51. 101.Carmona-Ribeiro, A. M.; de Melo Carrasco, L. D. Cationic Antimicrobial Polymers and Their Assemblies. Int. J. Mol. Sci. 2013, 14, 9906–9946. 102.Brandelli, A. Nanostructures as Promising Tools for Delivery of Antimicrobial Peptides. Mini-Rev. Med. Chem. 2012, 12, 1000–1007. 103.Graves, J. L.; Thomas, M.; Ewunkem, J. A. Antimicrobial Nanomaterials: Why Evolution Matters. Nanomaterials 2017, 7, 283. 104.Krepker, M.; Shemesh, R.; Danin Poleg, Y.; Kashi, Y.; Vaxman, A.; Segal, E. Active Food Packaging Films with Synergistic Antimicrobial Activity. Food Control 2017, 76, 117–126. 105.Zia, Q.; Khan, A. A.; Swaleha, Z.; Owais, M. Self-Assembled Amphotericin B-Loaded Polyglutamic Acid Nanoparticles: Preparation, Characterization and In Vitro Potential Against Candida albicans. Int. J. Nanomed. 2015, 10, 1769–1790. 106.Carmona-Ribeiro, A. M. The Versatile Dioctadecyldimethylammonium Bromide. In Application and Characterization of Surfactants; Najjar, R., Ed.; Volume 1, Rijeka, Croatia, 2017; pp 157–181. Chapter 5. 107.Liu, Y.; Guo, P.; He, X.; Li, L.; Wang, A.; Li, H. Developing Transparent Copper-Doped Diamond-Like Carbon Films for Marine Antifouling Applications. Diam. Relat. Mater. 2016, 69, 144–151. 108.Love, C. A.; Cook, R. B.; Harvey, T. J.; Dearnley, P. A.; Wood, R. J. K. Diamond Like Carbon Coatings for Potential Application in Biological Implants—A Review. Tribol. Int. 2013, 63, 141–150. 109.Lan, W.-C.; Ou, S.-F.; Lin, M.-H.; Ou, K.-L.; Tsai, M.-Y. Development of Silver-Containing Diamond-Like Carbon for Biomedical Applications. Part I: Microstructure Characteristics, Mechanical Properties and Antibacterial Mechanisms. Ceram. Int. 2013, 39, 4099–4104. 110.Dearnaley, G.; Arps, J. H. Biomedical Applications of Diamond-Like Carbon (DLC) Coatings: A Review. Surf. Coat. Technol. 2005, 200, 2518–2524. 111.Zhang, R.; Zhao, J.; Yang, Y. A Novel Diamond-Like Carbon Film. Surf. Interfaces 2017, 7, 1–5. 112.Swiatek, L.; Olejnik, A.; Grabarczyk, J.; Jedrzejczak, A.; Sobczyk-Guzenda, A.; Kaminska, M.; Jakubowski, W.; Szymanski, W.; Bociaga, D. Multi-Doped Diamond Like-Carbon Coatings (DLC-Si/Ag) for Biomedical Applications Fabricated Using the Modified Chemical Vapour Deposition Method. Diam. Relat. Mater. 2016, 67, 54–62. 113.Zhang, L. L.; Yang, Q.; Tang, Y.; Yang, L.; Zhang, C.; Hu, Y.; Cui, X. Synthesis and Characterization of Boron Incorporated Diamond-Like Carbon Thin Films. Thin Solid Films 2015, 589, 457–464. 114.Blois, M. S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199. 115.N. Javed, D. M. O'Carroll. Investigating the Role of Nanoparticles in Environmental Remediation. Part. Part. Syst. Charact. 2021, 38, 2000271. 116.Van Everbroeck, T.; Papavasiliou, A.; Ciocarlan, R. G.; Poulakis, E.; Philippopoulos, C. J.; Jardim, E. O.; Katsaros, F. K. Towards Highly Loaded and Finely Dispersed CuO Catalysts via ADP: Effect of the Alumina Support. Catalysts 2022, 12, 628. 117.Dubale, A. A.; Pan, C. J.; Tamirat, A. G.; Chen, H. M.; Su, W. N.; Chen, C. H.; Hwang, B. J. Heterostructured Cu2O/CuO Decorated with Nickel as a Highly Efficient Photocathode for Photoelectrochemical Water Reduction. J. Mater. Chem. A 2015, 3, 12482–12499. 118.Tsai, Y. H.; Chanda, K.; Chu, Y. T.; Chiu, C. Y.; Huang, M. H. Direct Formation of Small Cu2O Nanocubes, Octahedra, and Octapods for Efficient Synthesis of Triazoles. Nanoscale 2014, 6, 8704–8709. 119.Jerome, P.; Kausalya, G.; Thangadurai, T. D.; Karvembu, R. Green Synthesis of CuO Nanoflakes from Copper Pincer Complex for Effective N-Arylation of Benzimidazole. Catal. Commun. 2016, 75, 50–54. 120.Sanphui, P.; Goud, N. R.; Khandavilli, U. R.; Bhanoth, S.; Nangia, A. New polymorphs of curcumin. Chem. Commun. 2011, 47 (14), 5013–5015. 121.Lin, C. J.; Hwang, T. L.; Wang, R. Y.; Nain, A.; Shih, R. H.; Chang, L.; Huang, C. C. Augmenting Neutrophil Extracellular Traps with Carbonized Polymer Dots: A Potential Treatment for Bacterial Sepsis. Small 2024, 2307210. 122.Elango, M.; Deepa, M.; Subramanian, R.; Mohamed Musthafa, A. Synthesis, Characterization, and Antibacterial Activity of Polyindole/Ag–CuO Nanocomposites by Reflux Condensation Method. Polym.-Plast. Technol. Eng. 2018, 57, 1440–1451. 123.Shukla, A. K.; Morya, V.; Datta, B. Bacteria-Derived Topologies of Cu2O Nanozymes Exert a Variable Antibacterial Effect. RSC Adv. 2023, 13, 28767–28772. 124.Asmat-Campos, D.; de Oca-Vásquez, G. M.; Rojas-Jaimes, J.; Delfín-Narciso, D.; Juárez-Cortijo, L.; Nazario-Naveda, R.; de la Cruz, M. S. Cu2O Nanoparticles Synthesized by Green and Chemical Routes, and Evaluation of Their Antibacterial and Antifungal Effect on Functionalized Textiles. Biotechnol. Rep. 2023, 37, e00785. 125.Applerot, G.; Lellouche, J.; Lipovsky, A.; Nitzan, Y.; Lubart, R.; Gedanken, A.; Banin, E. Understanding the Antibacterial Mechanism of CuO Nanoparticles: Revealing the Route of Induced Oxidative Stress. Small 2012, 8, 3326–3337. 126.Meghana, S.; Kabra, P.; Chakraborty, S.; Padmavathy, N. Understanding the Pathway of Antibacterial Activity of Copper Oxide Nanoparticles. RSC Adv. 2015, 5, 12293–12299. 127.Shkodenko, L.; Kassirov, I.; Koshel, E. Metal Oxide Nanoparticles against Bacterial Biofilms: Perspectives and Limitations. Microorganisms 2020, 8, 1545. 128.Shariati, A.; Noei, M.; Askarinia, M.; Khoshbayan, A.; Farahani, A.; Chegini, Z. Inhibitory Effect of Natural Compounds on Quorum Sensing System in Pseudomonas aeruginosa: A Helpful Promise for Managing Biofilm Community. Front. Pharmacol. 2024, 15, 1350391. 129.Rutherford, S. T.; Bassler, B. L. Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control. Cold Spring Harb. Perspect. Med. 2012, 2, a012427. 130.Abdelaziz, A. A.; Kamer, A. M. A.; Al-Monofy, K. B.; Al-Madboly, L. A. Pseudomonas aeruginosa’s Greenish-Blue Pigment Pyocyanin: Its Production and Biological Activities. Microbial Cell Factories 2023, 22, 110. 131.Gonçalves, T.; Vasconcelos, U. Colour Me Blue: The History and the Biotechnological Potential of Pyocyanin. Molecules 2021, 26, 927.
|