跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃熙媛
研究生(外文):HUANG, SI-YUAN
論文名稱:合成自組裝薑黃素複合氧化亞銅奈米粒子抑制生物膜
論文名稱(外文):Synthesis of Self-assembled Cur-NPs/Cu2O for Biofilm Inhibition
指導教授:黃志清黃志清引用關係
指導教授(外文):HUANG, CHIH-CHING
口試委員:黃志清陳秀儀林家驊
口試委員(外文):HUANG, CHIH-CHINGCHEN, SHIOW-YILIN, CHIA-HUA
口試日期:2024-06-24
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生命科學暨生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:44
中文關鍵詞:薑黃素奈米粒子氧化亞銅生物膜群體感應
外文關鍵詞:curcuminnanoparticlescopper (I) oxidebiofilmquorum sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
薑黃素這種天然生物活性化合物因其抗菌、抗氧化特性而聞名,透過奈米化改改善其生物相容性差以及水溶性弱等缺點能夠增強其生物應用潛力。自組裝過程可確保其形成穩定、且生物相容性高的奈米顆粒,為薑黃素奈米劑型的一個理想平臺。此外,奈米銅粒子具有強大的抗菌特性,因而備受關注。它們能夠產生活性氧(ROS)並破壞微生物的細胞膜。基於以上,我們期望能合成出新穎且穩定奈米粒子用於破壞生物膜的形成,抑制生物膜相關病原體的生長。在此研究,我們開發出集抗菌、抗氧化和抗發炎功能於一體的多功能奈米粒子。其通過溫和的碳化和溶劑注入將薑黃素(Cur)自組裝成薑黃素奈米粒子(Cur-NPs),並具有出色的抗氧化性能。此外,我們更進一步在薑黃素奈米粒子中嵌入氧化銅(I),形成了薑黃素複合氧化亞銅奈米粒子,進一步提高了它們的生物活性。由於增強了抗菌效果,Cur-NPs/Cu2O對各種細菌的最小抑菌濃度顯著提高,比薑黃素或Cur-NPs單獨使用時低約125倍。這些奈米粒子還能有效減少微生物群體感應中的色素產生,證實其能抑制細菌生物膜的形成。總之,Cur-NPs/Cu2O的合成有望推動生物膜抑制應用的發展,並為對抗生物膜相關感染的策略增添了有價值的內容。
Curcumin, a natural bioactive compound, is well known for its antibacterial and antioxidant properties. Improving its biocompatibility and water solubility through nano-formulation can enhance its potential for biological applications. The self-assembly process ensures the formation of stable, highly biocompatible nanoparticles, an ideal platform for curcumin nanodosage forms. In addition, copper nanoparticles are of interest because of their powerful antimicrobial properties. They are capable of generating reactive oxygen species (ROS) and disrupting the cell membranes of microorganisms. Based on the above, we expect to synthesize novel and stable nanoparticles for disrupting biofilm formation and inhibiting the growth of biofilm-associated pathogens. In this study, we report the development of multifunctional nanoparticles, integrating antimicrobial, antioxidant, and anti-inflammatory capabilities. The nanoparticles were synthesized by self-assembled curcumin (Cur) into curcumin nanoparticles (Cur-NPs) through a mild carbonization and solvent injection process, imparting excellent antioxidative properties. Building upon this platform, we further enhanced their efficacy by embedding copper (I) oxide (Cu2O) nanoclusters within Cur-NPs, resulting in Cur-NPs/Cu2O. The Cur-NPs/Cu2O exhibited a remarkable minimum inhibitory concentration against various bacteria, approximately 125-fold lower than curcumin or Cur-NPs alone, owing to their enhanced antimicrobial effect. These nanoparticles could also effectively suppress the production of pigment of quorum sensing to inhibit the formation of bacterial biofilm. In summary, the synthesis of Cur-NPs/Cu2O holds great promise for advancing biofilm inhibitory applications and adds valuable content to strategies to combat biofilm-related infections.
摘要 I
Abstract II
Table of Contents III
1 Introduction 1
1-1 Biofilm 1
1-1-1 The Formation of Biofilm 1
1-1-2 The Treatment and Prevention of Biofilm 3
1-2 Polyphenols 3
1-2-1 Curcumin 4
1-2-2 Bioactivities of Curcumin 5
1-3 Self-assembled Nanomaterials 6
1-3-1 Synthesis Mechanisms of Self-assembled Nanomaterials 6
1-3-2 Antimicrobiol Activities of Self-assembled Nanomaterials 7
1-4 Carbon Nanomaterials and their Antimicrobial Activities 8
1-5 Research Motivation 9
2 Materials and Methods 10
2-1 Chemicals and Materials 10
2-2 Instruments and Equipments 10
2-3 Preparation of Self-assembled Nanomaterials 11
2-4 Charaterization of Cur-NPs/Cu2O 11
2-5 Antibacterial Assay 12
2-6 Biofilm Inhibition Assay 12
2-7 DPPH Radical Scavenging Assay 12
2-8 Folin-Ciocâlteu Assay 12
2-9 Oxidase-like Activity Assay 13
2-10 Peroxidase-like Activity Assay 13
2-11 Bacterial Pigment Assay 13
2-12 Statistical Analysis 13
3 Results and Discussion 14
3-1 Characterization of Cur-NPs/Cu2O 14
3-2 Superior Antimicrobial Activity of Cur-NPs/Cu2O 16
4 Conclusions 19
Charts in this Article 20
References 34


1.Tshikantwa, T. S.; Ullah, M. W.; He, F.; Yang, G. Current Trends and Potential Applications of Microbial Interactions for Human Welfare. Front. Microbiol. 2018, 9, 1156.
2.Wang, H.; Wei, C. X.; Min, L.; Zhu, L. Y. Good or Bad: Gut Bacteria in Human Health and Diseases. Biotechnol. Biotechnol. Equip. 2018, 32, 1075–1080.
3.Valdes, A. M.; Walter, J.; Segal, E.; Spector, T. D. Role of the Gut Microbiota in Nutrition and Health. Br. Med. J. 2018, 361, k2179.
4.Ribet, D.; Cossart, P. How Bacterial Pathogens Colonize Their Hosts and Invade Deeper Tissues. Microbes Infect. 2015, 17, 173–183.
5.Khatoon, Z.; McTiernan, C. D.; Suuronen, E. J.; Mah, T. F.; Alarcon, E. I. Bacterial Biofilm Formation on Implantable Devices and Approaches to Its Treatment and Prevention. Heliyon 2018, 4, e01067.
6.European Centre for Disease Prevention and Control. ECDC Surveillance Report Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals 2011–2012. https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Publications/healthcare-associated-infections-antimicrobial-use-PPS.pdf (accessed December 15, 2020).
7.European Centre for Disease Prevention and Control. Press Release, July 4th, 2013. http://www.ecdc.europa.eu/en/press/Press%20Releases/press-release-healthcare-associated-infectionsantimicrobial-use-.pdf (accessed December 15, 2020).
8.Marschang, S.; Bernardo, G. Prevention and Control of Healthcare-Associated Infection in Europe: A Review of Patients' Perspectives and Existing Differences. J. Hosp. Infect. 2015, 89, 357–362.
9.Murphy, F.; Tchetchik, A.; Furxhi, I. Reduction of Healthcare-Associated Infections (HAIs) with Antimicrobial Inorganic Nanoparticles Incorporated in Medical Textiles: An Economic Assessment. Nanomaterials 2020, 10, 999.
10.Haque, M.; Sartelli, M.; McKimm, J.; Bakar, M. A. Healthcare-Associated Infections—An Overview. J. Glob. Antimicrob. Resist. 2018, 11, 2321–2333.
11.Antonioli, P.; Bolognesi, N.; Valpiani, G.; Morotti, C.; Bernardini, D.; Bravi, F.; et al. A 2-Year Point-Prevalence Surveillance of Healthcare-Associated Infections and Antimicrobial Use in Ferrara University Hospital, Italy. BMC Infect. Dis. 2020, 20, 75.
12.Provenzani, A.; Hospodar, A. R.; Meyer, A. L.; Leonardi Vinci, D.; Hwang, E. Y.; Butrus, C. M.; et al. Multidrug-Resistant Gram-Negative Organisms: A Review of Recently Approved Antibiotics and Novel Pipeline Agents. Int. J. Clin. Pharm. 2020, 42, 1016–1025.
13.Araújo Lima, A. V.; da Silva, S. M.; do Nascimento Júnior, J. A. A.; Correia, M. S.; Luz, A. C.; Leal-Balbino, T. C.; et al. Occurrence and Diversity of Intra- and Interhospital Drug-Resistant and Biofilm-Forming Acinetobacter baumannii and Pseudomonas aeruginosa. Microb. Drug Resist. 2020, 26, 802–814.
14.Nain, Z.; Islam, M.; Minnatul Karim, M. Antibiotic Resistance Profiling and Molecular Phylogeny of Biofilm-Forming Bacteria from Clinical and Non-Clinical Environment in Southern Part of Bangladesh. Int. J. Enteric Pathog. 2019, 7, 37–43.
15.Srivastava, S.; Bhargava, A. Biofilms and Human Health. Biotechnol. Lett. 2016, 38, 1–22.
16.Jamal, M.; Tasneem, U.; Hussain, T.; Andleeb, S. Bacterial Biofilm: Its Composition, Formation and Role in Human Infections. Res. Rev. J. Microbiol. Biotechnol. 2015, 4, 1–15.
17.Zhao, X.; Zhao, F.; Wang, J.; Zhong, N. Biofilm Formation and Control Strategies of Foodborne Pathogens: Food Safety Perspectives. RSC Adv. 2017, 7, 36670–36683.
18.Banerjee, P.; Singh, M.; Sharma, V. Biofilm Formation: A Comprehensive Review. Int. J. Pharm. Res. Health Sci. 2015, 3, 556–560.
19.Römling, U.; Galperin, M. Y.; Gomelsky, M. Cyclic di-GMP: The First 25 Years of a Universal Bacterial Second Messenger. Microbiol. Mol. Biol. Rev. 2013, 77, 1–52.
20.Armbruster, C. R.; Parsek, M. R. New Insight into the Early Stages of Biofilm Formation. Proc. Natl. Acad. Sci. USA 2018, 115, 4317–4319.
21.Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H. Biofilm Formation Mechanisms and Targets for Developing Antibiofilm Agents. Future Med. Chem. 2015, 7, 493–512.
22.Toyofuku, M.; Inaba, T.; Kiyokawa, T.; Obana, N.; Yawata, Y.; Nomura, N. Environmental Factors That Shape Biofilm Formation. Biosci. Biotechnol. Biochem. 2016, 80, 7–12.
23.Costerton, J. W.; Stewart, P. S.; Greenberg, E. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322.
24.McDougald, D.; Rice, S. A.; Barraud, N.; Steinberg, P. D.; Kjelleberg, S. Should We Stay or Should We Go: Mechanisms and Ecological Consequences for Biofilm Dispersal. Nat. Rev. Microbiol. 2012, 10, 39.
25.Dethlefsen, L.; Huse, S.; Sogin, M. L.; Relman, D. A. The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biol. 2008, 6, e280.
26.Dethlefsen, L.; Relman, D. A. Incomplete Recovery and Individualized Responses of the Human Distal Gut Microbiota to Repeated Antibiotic Perturbation. Proc. Natl. Acad. Sci. USA 2010, 108 Suppl 1, 4554–4561.
27.Ubeda, C.; Taur, Y.; Jenq, R. R.; Equinda, M. J.; Son, T.; Samstein, M.; Viale, A.; Socci, N. D.; van den Brink, M. R.; Kamboj, M., et al. Vancomycin-Resistant Enterococcus Domination of Intestinal Microbiota Is Enabled by Antibiotic Treatment in Mice and Precedes Bloodstream Invasion in Humans. J. Clin. Invest. 2010, 120, 4332–4341.
28.Secinti, K. D.; Ozalp, H.; Attar, A.; Sargon, M. F. Nanoparticle Silver Ion Coatings Inhibit Biofilm Formation on Titanium Implants. J. Clin. Neurosci. 2011, 18, 391–395.
29.Fey, P. D. Modality of Bacterial Growth Presents Unique Targets: How Do We Treat Biofilm-Mediated Infections? Curr. Opin. Microbiol. 2010, 13, 610–615.
30.Hall, C. W.; Mah, T. F. Molecular Mechanisms of Biofilm-Based Antibiotic Resistance and Tolerance in Pathogenic Bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301.
31.Ju, X.; Li, J.; Zhu, M.; Lu, Z.; Lv, F.; Zhu, X., et al. Effect of the luxS Gene on Biofilm Formation and Antibiotic Resistance by Salmonella Serovar Dublin. Food Res. Int. 2018, 107, 385–393.
32.Sahal, G.; Woerdenbag, H. J.; Hinrichs, W. L. J.; Visser, A.; Tepper, P. G.; Quax, W. J., et al. Antifungal and Biofilm Inhibitory Effect of Cymbopogon citratus (Lemongrass) Essential Oil on Biofilm Forming by Candida tropicalis Isolates; An in Vitro Study. J. Ethnopharmacol. 2020, 246, 112188.
33.Shahid, A.; Rasool, M.; Akhtar, N.; Aslam, B.; Hassan, A.; Sana, S., et al. Innovative Strategies for the Control of Biofilm Formation in Clinical Settings. In: Dincer, S.; Özdenefe, M. S.; Arkut, A., Eds. Bacterial Biofilms; IntechOpen: London, UK, 2019.
34.Satpute, S. K.; Mone, N. S.; Das, P.; Banat, I. M.; Banpurkar, A. G. Inhibition of Pathogenic Bacterial Biofilms on PDMS Based Implants by L. acidophilus Derived Biosurfactant. BMC Microbiol. 2019, 19, 1–15.
35.Rather, M. A.; Gupta, K.; Mandal, M. Inhibition of Biofilm and Quorum Sensing-Regulated Virulence Factors in Pseudomonas aeruginosa by Cuphea carthagenensis (Jacq.) J.F. Macbr. Leaf Extract: An in Vitro Study. J. Ethnopharmacol. 2020, 269, 113699.
36.Gupta, K.; Singh, S. P.; Manhar, A. K.; Saikia, D.; Namsa, N. D.; Konwar, B. K., et al. Inhibition of Staphylococcus aureus and Pseudomonas aeruginosa Biofilm and Virulence by Active Fraction of Syzygium cumini (L.) Skeels Leaf Extract: In Vitro and in Silico Studies. Indian J. Microbiol. 2019, 59, 13–21.
37.Gupta, K.; Barua, S.; Hazarika, S. N.; Manhar, A. K.; Nath, D.; Karak, N., et al. Green Silver Nanoparticles: Enhanced Antimicrobial and Antibiofilm Activity with Effects on DNA Replication and Cell Cytotoxicity. RSC Adv. 2014, 4, 52845–52855.
38.Gupta, K.; Hazarika, S. N.; Saikia, D.; Namsa, N. D.; Mandal, M. One Step Green Synthesis and Anti-Microbial and Anti-Biofilm Properties of Psidium guajava L. Leaf Extract-Mediated Silver Nanoparticles. Mater. Lett. 2014, 125, 67–70.
39.Karlapudi, A. P.; Venkateswarulu, T. C.; Srirama, K.; Kota, R. K.; Mikkili, I.; Kodali, V. P. Evaluation of Anti-Cancer, Anti-Microbial and Anti-Biofilm Potential of Biosurfactant Extracted from an Acinetobacter M6 Strain. J. King Saud Univ. Sci. 2020, 32, 223–227.
40.Grigore-Gurgu, L.; Bucur, F. I.; Borda, D.; Alexa, E. A.; Neagu, C.; Nicolau, A. I. Biofilms Formed by Pathogens in Food and Food Processing Environments. In: Dincer, S.; Özdenefe, M. S.; Arkut, A., Eds. Bacterial Biofilms; IntechOpen, 2019. https://www.intechopen.com/online-first/biofilms-formed-by-pathogens-in-food-and-food-processing-environments (accessed Dec 15, 2020).
41.Swar, S.; Máková, V.; Stibor, I. The Covalent Tethering of Poly(ethylene glycol) to Nylon 6 Surface via N,N′-Disuccinimidyl Carbonate Conjugation: A New Approach in the Fight Against Pathogenic Bacteria. Polymers 2020, 12, 2181.
42.Andrade del Olmo, J.; Ruiz Rubio, L.; Saez Martinez, L.; Perez-Alvarez, V.; Vilas, Vilela, J. L. Antibacterial Coatings for Improving the Performance of Biomaterials. Coatings 2020, 10, 139.
43.Ferriol-González, C.; Domingo-Calap, P. Phages for Biofilm Removal. Antibiotics 2020, 9, 268.
44.Kumar, S.; Pandey, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750.
45.Hanasaki, Y.; Ogawa, S.; Fukui, S. The Correlation between Active Oxygens Scavenging and Antioxidative Effects of Flavonoids. Free Radic. Biol. Med. 1994, 16, 845850.
46.ÇİMEN, M. B. Y. Flavonoids and their Antioxidant Properties. TURK. J. MED. SCI. 1999, 19, 296.
47.De Souza, V. T.; De Franco, É. P. D.; De Araújo, M. E. M. B.; Messias, M. C. F.; Priviero, F. B. M.; Frankland Sawaya, A. C.; de Oliveira Carvalho, P. Characterization of the Antioxidant Activity of Aglycone and Glycosylated Derivatives of Hesperetin: an in Vitro and in Vivo Study. J. Mol. Recognit. 2016, 29, 8087.
48.Hu, L.; Wang, H.; Pei, J.; Liu, Y. Research Progress of Antitumor Effects of Resveratrol and Its Mechanism. Shandong Yiyao 2010, 50, 111112.
49.Hattori, M.; KUSUMOTO, I. T.; NAMBA, T.; ISHIGAMI, T.; HARA, Y. Effect of Tea Polyphenols on Glucan Synthesis by Glucosyltransferase from Streptococcus Mutans. Chem. Pharm. Bull. 1990, 38, 717720.
50.Mishra, A. K.; Mishra, A.; Kehri, H.; Sharma, B.; Pandey, A. K. Inhibitory Activity of Indian Spice Plant Cinnamomum zeylanicum Extracts against Alternaria solani and Curvularia lunata, the Pathogenic Dematiaceous Moulds. Ann. Clin. Microbiol. Antimicrob. 2009, 8, 9.
51.Nakahara, K.; Kawabata, S.; Ono, H.; Ogura, K.; Tanaka, T.; Ooshima, T.; Hamada, S., Inhibitory Effect of Oolong Tea Polyphenols on Glycosyltransferases of Mutans Streptococci. Appl. Environ. Microbiol. 1993, 59, 968973.
52.Gupta, S. C.; Patchva, S.; Aggarwal, B. B. Therapeutic Roles of Curcumin: Lessons Learned from Clinical Trials. AAPS J. 2013, 15, 195–218.
53.Basnet, P.; Skalko-Basnet, N. Curcumin: An Anti-Inflammatory Molecule from a Curry Spice on the Path to Cancer Treatment. Molecules 2011, 16, 4567–4598.
54.Lao, C. D.; Ruffin, M. T.; Normolle, D.; Heath, D. D.; Murray, S. I.; Bailey, J. M.; Boggs, M. E.; Crowell, J.; Rock, C. L.; Brenner, D. E. Dose Escalation of a Curcuminoid Formulation. BMC Complement. Altern. Med. 2006, 6, 10.
55.Prasad, S.; Gupta, S. C.; Tyagi, A. K.; Aggarwal, B. B. Curcumin, a Component of Golden Spice: From Bedside to Bench and Back. Biotechnol. Adv. 2014, 32, 1053–1064.
56.Kocaadam, B.; Sanlier, N. Curcumin, an Active Component of Turmeric (Curcuma longa), and Its Effects on Health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2889–2895. (accessed on 3 February 2022).
57.Dai, C.; Xiao, X.; Zhang, Y.; Xiang, B.; Hoyer, D.; Shen, J.; Velkov, T.; Tang, S. Curcumin Attenuates Colistin-Induced Peripheral Neurotoxicity in Mice. ACS Infect. Dis. 2020, 6, 715–724.
58.Liu, M.; Lu, Y.; Gao, P.; Xie, X.; Li, D.; Yu, D.; Yu, M. Effect of Curcumin on Laying Performance, Egg Quality, Endocrine Hormones, and Immune Activity in Heat-Stressed Hens. Poult. Sci. 2020, 99, 2196–2202.
59.Yasbolaghi Sharahi, J.; Aliakbar Ahovan, Z.; Taghizadeh Maleki, D.; Riahi Rad, Z.; Riahi Rad, Z.; Goudarzi, M.; Shariati, A.; Bostanghadiri, N.; Abbasi, E.; Hashemi, A. In Vitro Antibacterial Activity of Curcumin-Meropenem Combination Against Extensively Drug-Resistant (XDR) Bacteria Isolated from Burn Wound Infections. Avicenna J. Phytomed. 2020, 10, 3–10.
60.Taghavifar, S.; Afroughi, F.; Saadati Keyvan, M. Curcumin Nanoparticles Improved Diabetic Wounds Infected with Methicillin-Resistant Staphylococcus aureus Sensitized with HAMLET. Int. J. Low. Extrem. Wounds 2020.
61.Morão, L. G.; Polaquini, C. R.; Kopacz, M.; Torrezan, G. S.; Ayusso, G. M.; Dilarri, G.; Cavalca, L. B.; Zielińska, A.; Scheffers, D. J.; Regasini, L. O.; et al. A Simplified Curcumin Targets the Membrane of Bacillus subtilis. Microbiologyopen 2019, 8, e00683.
62.Kaur, A.; Sharma, P.; Capalash, N. Curcumin Alleviates Persistence of Acinetobacter baumannii Against Colistin. Sci. Rep. 2018, 8, 11029.
63.Sundaramoorthy, N. S.; Sivasubramanian, A.; Nagarajan, S. Simultaneous Inhibition of MarR by Salicylate and Efflux Pumps by Curcumin Sensitizes Colistin Resistant Clinical Isolates of Enterobacteriaceae. Microb. Pathog. 2020, 148, 104445.
64.Batista de Andrade Neto, J.; Pessoa de Farias Cabral, V.; Brito Nogueira, L. F.; Rocha da Silva, C.; Gurgel do Amaral Valente Sá, L.; Ramos da Silva, A.; Barbosa da Silva, W. M.; Silva, J.; Marinho, E. S.; Cavalcanti, B. C.; et al. Anti-MRSA Activity of Curcumin in Planktonic Cells and Biofilms and Determination of Possible Action Mechanisms. Microb. Pathog. 2021, 155, 104892.
65.Bonifácio, D.; Martins, C.; David, B.; Lemos, C.; Neves, M.; Almeida, A.; Pinto, D.; Faustino, M. A. F.; Cunha, Â. Photodynamic Inactivation of Listeria innocua Biofilms with Food-Grade Photosensitizers: A Curcumin-Rich Extract of Curcuma longa vs Commercial Curcumin. J. Appl. Microbiol. 2018, 125, 282–294.
66.Darmani, H.; Smadi, E. A. M.; Bataineh, S. B. M. Blue Light Emitting Diodes Enhance the Antivirulence Effects of Curcumin Against Helicobacter pylori. J. Med. Microbiol. 2020, 69, 617–624.
67.Zheng, D.; Huang, C.; Huang, H.; Zhao, Y.; Khan, M. R. U.; Zhao, H.; Huang, L. Antibacterial Mechanism of Curcumin: A Review. Chem. Biodivers. 2020, 17, e2000171. (accessed on 3 February 2022).
68.Ding, T.; Li, T.; Li, J. Impact of Curcumin Liposomes with Anti-Quorum Sensing Properties Against Foodborne Pathogens Aeromonas hydrophila and Serratia grimesii. Microb. Pathog. 2018, 122, 137–143.
69.Rocha, M. P.; Santos, M. S.; Rodrigues, P. L. F.; Araújo, T. S. D.; de Oliveira, J. M.; Rosa, L. P.; Bagnato, V. S.; da Silva, F. C. Photodynamic Therapy with Curcumin in the Reduction of Enterococcus faecalis Biofilm in Bone Cavity: Microbiological and Spectral Fluorescence Analysis. Photodiagn. Photodyn. Ther. 2021, 33, 102084.
70.Santos, C. A.; Lima, E. M. F.; Franco, B.; Pinto, M. U. Exploring Phenolic Compounds as Quorum Sensing Inhibitors in Foodborne Bacteria. Front. Microbiol. 2021, 12, 735931.
71.Berbezier, I.; De Crescenzi, M. Self-Assembly of Nanostructures and Nanomaterials. Beilstein J. Nanotechnol. 2015, 6, 1397–1398.
72.Liang, H.; Friedman, J. M.; Nacharaju, P. Fabrication of Biodegradable PEG–PLA Nano-Spheres for Solubility, Stabilization, and Delivery of Curcumin. Artif. Cells Nanomed. Biotechnol. 2017, 45, 297–304.
73.Branquinho, R. T.; Roy, J.; Farah, C.; Garcia, G. M.; Aimond, F.; Le Guennec, J.-Y.; et al. Biodegradable Polymeric Nanocapsules Prevent Cardiotoxicity of Anti-Trypanosomal Lychnopholide. Sci. Rep. 2017, 7, 44998.
74.Tahara, Y.; Akiyoshi, K. Current Advances in Self-Assembled Nanogel Delivery Systems for Immunotherapy. Adv. Drug Deliv. Rev. 2015, 95, 65–76.
75.Zhang, Y.; Ren, T.; Gou, J.; Zhang, L.; Tao, X.; Tian, B.; et al. Strategies for Improving the Payload of Small Molecular Drugs in Polymeric Micelles. J. Control. Release 2017, 261, 352–366.
76.Ahmed, F.; Discher, D. E. Self-Porating Polymersomes of PEG–PLA and PEG–PCL: Hydrolysis-Triggered Controlled Release Vesicles. J. Control. Release 2004, 96, 37–53.
77.Spillmann, C. M.; Naciri, J.; Algar, W. R.; Medintz, I. L.; Delehanty, J. B. Multifunctional Liquid Crystal Nanoparticles for Intracellular Fluorescent Imaging and Drug Delivery. ACS Nano 2014, 8, 6986–6997.
78.Lim, J.; Simanek, E. E. Triazine Dendrimers as Drug Delivery Systems: From Synthesis to Therapy. Adv. Drug Deliv. Rev. 2012, 64, 826–835.
79.Puri, A.; Loomis, K.; Smith, B.; Lee, J.-H.; Yavlovich, A.; Heldman, E.; et al. Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic. Crit. Rev. Ther. Drug Carrier Syst. 2009, 26, 523–580.
80.Weber, S.; Zimmer, A.; Pardeike, J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for Pulmonary Application: A Review of the State of the Art. Eur. J. Pharm. Biopharm. 2014, 86, 7–22.
81.Hirsjärvi, S.; Dufort, S.; Gravier, J.; Texier, I.; Yan, Q.; Bibette, J.; et al. Influence of Size, Surface Coating, and Fine Chemical Composition on the In Vitro Reactivity and In Vivo Biodistribution of Lipid Nanocapsules versus Lipid Nanoemulsions in Cancer Models. Nanomedicine 2013, 9, 375–387.
82.Liu, C.-H.; Chang, F.-Y. Development and Characterization of Eucalyptol Microemulsions for Topical Delivery of Curcumin. Chem. Pharm. Bull. 2011, 59, 172–178.
83.Lee, Y. S. Self-Assembly and Nanotechnology, a Force Balance Approach; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008.
84.Lombardo, D.; Kiselev, M. A.; Magazu, S.; Calandra, P. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Adv. Cond. Matter Phys. 2015, 2015, 151683.
85.Lombardo, D.; Calandra, P.; Pasqua, L.; Magazù, S. Self-Assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. Materials 2020, 13, 1048.
86.Carmona-Ribeiro, A. M.; Barbassa, L.; de Melo, L. D. Antimicrobial Biomimetics. In Biomimetic Based Applications; George, A., Ed.; Volume 1, Rijeka, Croatia, 2011; pp 227–284. Chapter 10.
87.Carmona-Ribeiro, A. M. Interactions between Bilayer Vesicles, Biomolecules, and Interfaces. In Handbook of Surfaces and Interfaces of Materials; Nalwa, H. S., Ed.; Academic Press: Burlington, NJ, USA, 2001; pp 129–165. Chapter 4.
88.Carmona-Ribeiro, A. M. Biomimetic Systems in Nanomedicine. In Handbook of Nanobiomedical Research: Fundamentals, Applications and Recent Developments; Torchilin, W., Ed.; Volume 3, Singapore, 2014; pp 401–456. Chapter B5.
89.Bassegoda, A.; Ivanova, K.; Ramon, E.; Tzanov, T. Strategies to Prevent the Occurrence of Resistance Against Antibiotics by Using Advanced Materials. Appl. Microbiol. Biotechnol. 2018, 102, 2075–2089.
90.Carrasco, L. D. M.; Santos, H. C. A. S.; Sampaio, J. L. M.; Carmona-Ribeiro, A. M. Self-Assembled Antibiotic Nanoparticles Against Intracellular Bacteria. Drug Deliv. Lett. 2017, 7, 39–47.
91.Vieira, D. B.; Carmona-Ribeiro, A. M. Cationic Nanoparticles for Delivery of Amphotericin B: Preparation, Characterization and Activity In Vitro. J. Nanobiotechnol. 2008, 6, 6.
92.Carmona-Ribeiro, A. M.; de Melo Carrasco, L. D. Novel Formulations for Antimicrobial Peptides. Int. J. Mol. Sci. 2014, 15, 18040–18083.
93.Carmona-Ribeiro, A. M. Lipid Bilayer Fragments and Disks in Drug Delivery. Curr. Med. Chem. 2006, 13, 1359–1370.
94.Melo, L. D.; Palombo, R. R.; Petri, D. F. S.; Bruns, M.; Pereira, E. M. A.; Carmona-Ribeiro, A. M. Structure–Activity Relationship for Quaternary Ammonium Compounds Hybridized with Poly(Methyl Methacrylate). ACS Appl. Mater. Interfaces 2011, 3, 1933–1939.
95.Pereira, E. M. A.; Kosaka, P. M.; Rosa, H.; Vieira, D. B.; Kawano, Y.; Petri, D. F. S.; Carmona-Ribeiro, A. M. Hybrid Materials from Intermolecular Associations Between Cationic Lipid and Polymers. J. Phys. Chem. B 2008, 112, 9301–9310.
96.Ahonen, M.; Kahru, A.; Ivask, A.; Kasemets, K.; Kõljalg, S.; Mantecca, P.; Vinković-Vrček, I.; Keinänen-Toivola, M. M.; Crijns, F. Proactive Approach for Safe Use of Antimicrobial Coatings in Healthcare Settings: Opinion of the COST Action Network AMiCI. Int. J. Environ. Res. Public Health 2017, 14, 366.
97.Gao, A.; Hang, R.; Chu, P. K. Recent Advances in Anti-Infection Surfaces Fabricated on Biomedical Implants by Plasma-Based Technology. Surf. Coat. Technol. 2017, 312, 2–6.
98.González-Henríquez, C. M.; Sarabia-Vallejos, M. A.; Rodriguez-Hernandez, J. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications. Materials 2017, 10, 232.
99.Jiang, L.; Xu, D.; Sellati, T. J.; Dong, H. Self-Assembly of Cationic Multidomain Peptide Hydrogels: Supramolecular Nanostructure and Rheological Properties Dictate Antimicrobial Activity. Nanoscale 2015, 7, 19160–19169.
100.Carmona-Ribeiro, A. M.; Vieira, D. B.; Lincopan, N. Cationic Surfactants and Lipids as Anti-Infective Agents. Anti-Infect. Agents Med. Chem. 2006, 5, 33–51.
101.Carmona-Ribeiro, A. M.; de Melo Carrasco, L. D. Cationic Antimicrobial Polymers and Their Assemblies. Int. J. Mol. Sci. 2013, 14, 9906–9946.
102.Brandelli, A. Nanostructures as Promising Tools for Delivery of Antimicrobial Peptides. Mini-Rev. Med. Chem. 2012, 12, 1000–1007.
103.Graves, J. L.; Thomas, M.; Ewunkem, J. A. Antimicrobial Nanomaterials: Why Evolution Matters. Nanomaterials 2017, 7, 283.
104.Krepker, M.; Shemesh, R.; Danin Poleg, Y.; Kashi, Y.; Vaxman, A.; Segal, E. Active Food Packaging Films with Synergistic Antimicrobial Activity. Food Control 2017, 76, 117–126.
105.Zia, Q.; Khan, A. A.; Swaleha, Z.; Owais, M. Self-Assembled Amphotericin B-Loaded Polyglutamic Acid Nanoparticles: Preparation, Characterization and In Vitro Potential Against Candida albicans. Int. J. Nanomed. 2015, 10, 1769–1790.
106.Carmona-Ribeiro, A. M. The Versatile Dioctadecyldimethylammonium Bromide. In Application and Characterization of Surfactants; Najjar, R., Ed.; Volume 1, Rijeka, Croatia, 2017; pp 157–181. Chapter 5.
107.Liu, Y.; Guo, P.; He, X.; Li, L.; Wang, A.; Li, H. Developing Transparent Copper-Doped Diamond-Like Carbon Films for Marine Antifouling Applications. Diam. Relat. Mater. 2016, 69, 144–151.
108.Love, C. A.; Cook, R. B.; Harvey, T. J.; Dearnley, P. A.; Wood, R. J. K. Diamond Like Carbon Coatings for Potential Application in Biological Implants—A Review. Tribol. Int. 2013, 63, 141–150.
109.Lan, W.-C.; Ou, S.-F.; Lin, M.-H.; Ou, K.-L.; Tsai, M.-Y. Development of Silver-Containing Diamond-Like Carbon for Biomedical Applications. Part I: Microstructure Characteristics, Mechanical Properties and Antibacterial Mechanisms. Ceram. Int. 2013, 39, 4099–4104.
110.Dearnaley, G.; Arps, J. H. Biomedical Applications of Diamond-Like Carbon (DLC) Coatings: A Review. Surf. Coat. Technol. 2005, 200, 2518–2524.
111.Zhang, R.; Zhao, J.; Yang, Y. A Novel Diamond-Like Carbon Film. Surf. Interfaces 2017, 7, 1–5.
112.Swiatek, L.; Olejnik, A.; Grabarczyk, J.; Jedrzejczak, A.; Sobczyk-Guzenda, A.; Kaminska, M.; Jakubowski, W.; Szymanski, W.; Bociaga, D. Multi-Doped Diamond Like-Carbon Coatings (DLC-Si/Ag) for Biomedical Applications Fabricated Using the Modified Chemical Vapour Deposition Method. Diam. Relat. Mater. 2016, 67, 54–62.
113.Zhang, L. L.; Yang, Q.; Tang, Y.; Yang, L.; Zhang, C.; Hu, Y.; Cui, X. Synthesis and Characterization of Boron Incorporated Diamond-Like Carbon Thin Films. Thin Solid Films 2015, 589, 457–464.
114.Blois, M. S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199.
115.N. Javed, D. M. O'Carroll. Investigating the Role of Nanoparticles in Environmental Remediation. Part. Part. Syst. Charact. 2021, 38, 2000271.
116.Van Everbroeck, T.; Papavasiliou, A.; Ciocarlan, R. G.; Poulakis, E.; Philippopoulos, C. J.; Jardim, E. O.; Katsaros, F. K. Towards Highly Loaded and Finely Dispersed CuO Catalysts via ADP: Effect of the Alumina Support. Catalysts 2022, 12, 628.
117.Dubale, A. A.; Pan, C. J.; Tamirat, A. G.; Chen, H. M.; Su, W. N.; Chen, C. H.; Hwang, B. J. Heterostructured Cu2O/CuO Decorated with Nickel as a Highly Efficient Photocathode for Photoelectrochemical Water Reduction. J. Mater. Chem. A 2015, 3, 12482–12499.
118.Tsai, Y. H.; Chanda, K.; Chu, Y. T.; Chiu, C. Y.; Huang, M. H. Direct Formation of Small Cu2O Nanocubes, Octahedra, and Octapods for Efficient Synthesis of Triazoles. Nanoscale 2014, 6, 8704–8709.
119.Jerome, P.; Kausalya, G.; Thangadurai, T. D.; Karvembu, R. Green Synthesis of CuO Nanoflakes from Copper Pincer Complex for Effective N-Arylation of Benzimidazole. Catal. Commun. 2016, 75, 50–54.
120.Sanphui, P.; Goud, N. R.; Khandavilli, U. R.; Bhanoth, S.; Nangia, A. New polymorphs of curcumin. Chem. Commun. 2011, 47 (14), 5013–5015.
121.Lin, C. J.; Hwang, T. L.; Wang, R. Y.; Nain, A.; Shih, R. H.; Chang, L.; Huang, C. C. Augmenting Neutrophil Extracellular Traps with Carbonized Polymer Dots: A Potential Treatment for Bacterial Sepsis. Small 2024, 2307210.
122.Elango, M.; Deepa, M.; Subramanian, R.; Mohamed Musthafa, A. Synthesis, Characterization, and Antibacterial Activity of Polyindole/Ag–CuO Nanocomposites by Reflux Condensation Method. Polym.-Plast. Technol. Eng. 2018, 57, 1440–1451.
123.Shukla, A. K.; Morya, V.; Datta, B. Bacteria-Derived Topologies of Cu2O Nanozymes Exert a Variable Antibacterial Effect. RSC Adv. 2023, 13, 28767–28772.
124.Asmat-Campos, D.; de Oca-Vásquez, G. M.; Rojas-Jaimes, J.; Delfín-Narciso, D.; Juárez-Cortijo, L.; Nazario-Naveda, R.; de la Cruz, M. S. Cu2O Nanoparticles Synthesized by Green and Chemical Routes, and Evaluation of Their Antibacterial and Antifungal Effect on Functionalized Textiles. Biotechnol. Rep. 2023, 37, e00785.
125.Applerot, G.; Lellouche, J.; Lipovsky, A.; Nitzan, Y.; Lubart, R.; Gedanken, A.; Banin, E. Understanding the Antibacterial Mechanism of CuO Nanoparticles: Revealing the Route of Induced Oxidative Stress. Small 2012, 8, 3326–3337.
126.Meghana, S.; Kabra, P.; Chakraborty, S.; Padmavathy, N. Understanding the Pathway of Antibacterial Activity of Copper Oxide Nanoparticles. RSC Adv. 2015, 5, 12293–12299.
127.Shkodenko, L.; Kassirov, I.; Koshel, E. Metal Oxide Nanoparticles against Bacterial Biofilms: Perspectives and Limitations. Microorganisms 2020, 8, 1545.
128.Shariati, A.; Noei, M.; Askarinia, M.; Khoshbayan, A.; Farahani, A.; Chegini, Z. Inhibitory Effect of Natural Compounds on Quorum Sensing System in Pseudomonas aeruginosa: A Helpful Promise for Managing Biofilm Community. Front. Pharmacol. 2024, 15, 1350391.
129.Rutherford, S. T.; Bassler, B. L. Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control. Cold Spring Harb. Perspect. Med. 2012, 2, a012427.
130.Abdelaziz, A. A.; Kamer, A. M. A.; Al-Monofy, K. B.; Al-Madboly, L. A. Pseudomonas aeruginosa’s Greenish-Blue Pigment Pyocyanin: Its Production and Biological Activities. Microbial Cell Factories 2023, 22, 110.
131.Gonçalves, T.; Vasconcelos, U. Colour Me Blue: The History and the Biotechnological Potential of Pyocyanin. Molecules 2021, 26, 927.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊