|
1.Abubakar, A.; Suberu, H.A.; Bello, I.M.; Abdulkadir, R.; Daudu, O.A. and Lateef, A.A. (2013). Effect of pH on mycelial growth and sporulation of Aspergillus parasiticus. Journal of Plant Sciences. 1(4), 64-67. 2.Adamatzky, A., & Jones, J. (2010). Road planning with slime mould: If Physarum built motorways it would route M6/M74 through Newcastle. International Journal of Bifurcation and Chaos, 20(10), 3065–3084. 3.Adamatzky, A., & Alonso-Sanz, R. (2011, July). Rebuilding Iberian motorways with slime mould. Biosystems, 5(1), 89–100. 4.Berger, H., Basheer, A., Böck, S., Reyes-Dominguez, Y., Dalik, T., Altmann, F., et al. (2008).Dissecting individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster. Mol. Microbiol. 69, 1385-1398. doi: 10.1111/j.1365-2958.2008.06359.x. 5.Ben-Jacob, E., Cohen, I., & Levine, H. (2000). Cooperative self-organization of microorganisms. Advances in Physics, 49, 395–554. 6.Ben-Jacob, E., Cohen, I., & Gutnick, D. L. (1998). Cooperative organization of bacterial colonies: From genotype to morphotype. Annual Review of Microbiology, 52, 779–806. 7.Bleichrodt, R. J., Vinck, A., Read, N. D., & Wösten, H. A. B. (2015). Selective transport between heterogeneous hyphal compartments via the plasma membrane lining septal walls of Aspergillus niger. Fungal Genetics and Biology, 82, 193–200. 8.Broekaert, W. F., Terras, F. R. G., Cammue, B. P. A., & Vanderleyden, J. (1990). An automated assay for fungal growth inhibition. FEMS Microbiological Letters, 69, 55–60. 9.Carlos, A. and Josep, A. (2012). Effects of Temperature, pH and Water Potential on Mycelial Growth, Sporulation and Chlamydospore Production in Culture of Cylindrocarpon species Associated with Black Foot of Grape vines. Phytopathologia Mediterranea, 51(1), 37-50. 10.Carlile, M.J. (1995) In N.A.R. Gow and G.M. Gadd (Eds.), The Growing Fungus, Chapmanand Hall, London, pp. 3-19. 11.Cheung, Y.Y.; Lee, S.H.C.; Hui, M. and Luk, T.N.M. (2014). Effect of pH on fungal growth: problems with using vinegar (5% acetic acid) in treating superficial fungal infections. Hong Kong J. Dermatol. Venereol. 22, 57-64. 12.Chimileski, S., & Kolter, R. (2018). Life at the Edge of Sight. Harvard University Press. 13.Deshmukh, A.J.; Mehta, B.P.; Sabalpara, A.N. and Patil, V.A. (2012). In vitro effect of various nitrogen, carbon sources and pH regimes on the growth and sporulation of Colletotrichum gloeosporioides Penz. And Sacc causing anthracnose of Indian bean. Journal of Biopest. 5, 46-49. 14.Fraser, J. A., Davis, M. A., and Hynes, M. J. (2001). The formamidase gene of Aspergillus nidulans: regulation by nitrogen metabolite repression and transcriptional interference by an overlapping upstream gene. Genetics 157, 119–131. 15. 16.Howard, R.J and J.R.Aist (1979) J.Ultrastruct. Res. 66: 224-234. 17.Ishitsuka Y, Savage N, Li Y, Bergs A, Grün N, Kohler D, et al., (2015). Superresolu- tion microscopy reveals a dynamic picture of cell polarity maintenance during directional growth. Science Advances, 1, e1500947. 18.Kahm, M. and Hasenbrink, G. and Lichtenberg-Fraté, H. and Ludwig, J. and Kschischo, M. grofit: Fitting Biological Growth Curves with R. Journal of Statistical Software 33 (7). 2010: 1–21 19.Latty, Tanya; Beekman, Madeleine (2010). "Speed–accuracy trade-offs during foraging decisions in the acellular slime mould Physarum polycephalum". Proceedings of the Royal Society B: Biological Sciences. The Royal Society. 278(1705), 539–545. 20.Li, Y.; Wadso, L. and Larsson, L. (2009). Impact of temperature on growth and metabolic efficiency of Penicillium roqueforti – correlations between produced heat, ergosterol content and biomass. Journal of Applied Microbiology. 106, 1494 -1501. 21.Lomas, A. (2005). Aggregation: Complexity out of Simplicity. 22.Lomas, A. (2014). Cellular Forms: an Artistic Exploration of Morphogenesis. In SIGGRAPH 2014: Proceedings of the 41st Graphics and Interactive Techniques Conference, August 10-14, Vancouver, British Columbia, Canada. ACM. 23.Lomas, A. (2019). Morphogenetic vase forms. In The 2019 Conference on Artificial Life: A Hybrid of the European Conference on Artificial Life (ECAL) and the International Conference on the Synthesis and Simulation of Living Systems (ALIFE) (pp. 525-528). 24.Ludwig, A., & Boller, T. (1990). A method for the study of fungal growth inhibition by plant proteins. FEMS Microbiological Letters, 69, 61–66. 25.Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research, 9 (Nov), 2579–2605. 26.Magasanik, B., and Kaiser, C. A. (2002). Nitrogen regulation in Saccharomyces cerevisiae. Gene 290, 1–18. doi: 10.1016/S0378-1119(02)00558-9 27.Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoen- coders. arXiv preprint arXiv:1511.05644 (2015) 28.Maor, E. (2002). Trigonometric delights. Princeton University Press. 29.Marzluf, G. A. (1997). Genetic regulation of nitrogen metabolism in the fungi. Micrbiol. Mol. Biol. Rev. 61,17-32. 30.McInnes, L., Healy, J., Melville, J.: UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018) 31.MORGAN, MIKE PR Week, London ed.; London (2019), 90. 32.Muro-Pastor, M. I., Strauss, J., Ramón, A., and Scazzocchio, C. (2004). A paradoxical mutant GATA factor. Eukaryot. Cell 3, 393-405. doi: 10.1128/EC.3.2.393- 405.2004 33.McCormack, J., & Lomas, A. (2020). Understanding Aesthetic Evaluation using Deep Learning. In Proceedings of the evoMUSART Conference (pp. 3-5), 15-17 April, Seville, Spain. 34.Narendja, F., Goller, S. P., Wolschuk, M., and Strauss, J. (2002). Nitrate and the GATA factor AreA are necessary for in vivo binding of NirA, the pathway-specific transcriptional activator of Aspergillus nidulans. Mol. Microbiol. 44, 573-583. doi: 10.1046/j.1365-2958.2002.02911.x 35.Nakagaki, Toshiyuki; Yamada, Hiroyasu; Tóth, Ágota (2000). Intelligence: Maze-solving by an amoeboid organism. Nature. 407 (6803), 470. 36.Nielsen, K.F. (2001). Mould growth on building materials, secondary metabolites, mycotoxins and biomarkers. PhD thesis. Technical University of Denmark. Lyngby, Denmark. 37.Oiartzabal-Arano, E., Perez-de-Nanclares-Arregi, E., Espeso, E. A., & Etxebeste, O. (2016). Apical control of conidiation in Aspergillus nidulans. Current Genetics, 62, 371–377. 38.Pardo, E.; Marin, S.; Ramos, A.J. and Sanchis, V. (2006). Ecophysiology of ochratoxigenic Aspergillus ochraceus and Penicillium verrucosum isolates. Predictive models for fungal spoilage prevention - a review. 23(4), 398-410. 39.Remy, W., T.N. Taylor, H. Haas and H. Kerp (1994) Proc. Natl. Acad. Sci. USA 91: 11841-11843. 40.Rockefeller University - The Journal of Cell Biology 87, 55-64 (1980). 41.Sibounnavoung, P.; Kalaw, S.P.; Divina, C.C. and Soytong, K. (2009). Mycelial Growth and Sporulation of Emericella nidulans, A New Fungal Antagonist On Two Culture Media. Journal of Agricultural Technology, 5(2), 317-324. 42.Simon, L., J. Bousquet, R.C. Levesque and M. Lalonde (1993) Nature 363: 67-69. 43.Steinberg, G., Peñalva, M. A., Riquelme, M., Wösten, H. A., & Harris, S. D. (2017). Cell biology of hyphal growth. Microbiology Spectrum, 5, 1–34. 44.Takeshita, N., & Fischer, R. (2011). On the role of microtubules, cell end markers, and septal microtubule organizing centres on site selection for polar growth in Aspergillus nidulans. Fungal Biology, 115(5), 506–517. 45.Takeshita N, Mania D, Herrero S, Ishitsuka Y, Nienhaus GU, Podolski M,et al. ,(2013).The cell-end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of Aspergil- lus nidulans to provide polarity maintenance. Journal of Cell Science, 126 (Pt 23):5400. 46.Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., Yumiki, K., Kobayashi, R., & Nakagaki, T. (2010). Rules for biologically inspired adaptive network design. Science, 327(5964), 439-442. 47.Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., Yumiki, K., Kobayashi, R., & Nakagaki, T. (2010). Rules for biologically inspired adaptive network design. Science, 327(5964), 439–442. https://doi.org/10.1126/science.1177894. 48.Thompson, D. W. (1917). On Growth and Form, pp.302. 49.Wadso, L.; Li, Y. and Bjurman, J. (2004). Measurements on two mold fungi with a calorespirometric method. Thermochimica Acta, 422, 63-68. 50.Weisstein, E. W. (Ed.). (2009, July 6). Heron's formula. MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. 51.Weisstein, E. W. (n.d.). Heron's formula. MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. Retrieved July 6, 2009. 52.Weber, R.W.S., G.E. Wakley and D.Pitt (1999) Histochem. J. 31(in press). 53.Wiame, J. M., Grenson, M., and Arst, H. N. Jr. (1985). Nitrogen catabolite repression in yeasts and filamentous fungi. Adv. Microb. Physiol. 26, 1–88. 54.Wiemann, P., and Tudzynski, B. (2013). “The nitrogen regulation network and its impact on secondary metabolism and pathogenicity,” in Fusarium: Genomics, Molecular and Cellular Biology, eds D. W. Brown and R. H. Proctor (Norwich: Caister Academic Press), 111–142. 55.Wong, K. H., Hynes, M. J., and Davis, M. A. (2008). Recent advances in nitrogen reg- ulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. Eukaryot. Cell 7, 917–925. doi:10.1128/EC.00076-08 56.Wu, V. W., Thieme, N., Huberman, L. B., Dietschmann, A., Bleek, E., Kowbel, D. J., Lee, J., Calhoun, S., Singan, V., Lipzen, A., Xiong, Y., Monti, R., Blow, M. J., O'Malley, R. C., Grigoriev, I. V., Benz, J. P., & Glass, N. L. (2020). The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus. PNAS, 117(11), 6003–6013.
|