|
1.Liu, H.; Li, M.; Xia, Y.; Ren, X., A turn-on fluorescent sensor for selective and sensitive detection of alkaline phosphatase activity with gold nanoclusters based on inner filter effect. ACS Applied Materials & Interfaces 2017, 9 (1), 120-126. 2. Kang, X.; Zhu, M., Tailoring the photoluminescence of atomically precise nanoclusters. Chemical Society Reviews 2019, 48 (8), 2422-2457. 3. Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J., Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chemistry–An Asian Journal 2013, 8 (5), 858-871. 4. Deng, H.-H.; Shi, X.-Q.; Wang, F.-F.; Peng, H.-P.; Liu, A.-L.; Xia, X.-H.; Chen, W., Fabrication of water-soluble, green-emitting gold nanoclusters with a 65% photoluminescence quantum yield via host–guest recognition. Chemistry of Materials 2017, 29 (3), 1362-1369. 5. Kundu, S.; Ghosh, M.; Sarkar, N., State of the art and perspectives on the biofunctionalization of fluorescent metal nanoclusters and carbon quantum dots for targeted imaging and drug delivery. Langmuir 2021, 37 (31), 9281-9301. 6. Meng, F.; Yin, H.; Li, Y.; Zheng, S.; Gan, F.; Ye, G., One-step synthesis of enzyme-stabilized gold nanoclusters for fluorescent ratiometric detection of hydrogen peroxide, glucose and uric acid. Microchemical Journal 2018, 141, 431-437. 7. Jin, R., Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale 2015, 7 (5), 1549-1565. 8. Maity, S.; Bain, D.; Patra, A., An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications. Nanoscale 2019, 11 (47), 22685-22723. 9. Zhang, L.; Wang, E., Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 2014, 9 (1), 132-157. 10. He, X.; Ma, X.; Yang, Y.; Hu, X.; Wang, T.; Chen, S.; Mao, X., Metal Cluster Triggered-Assembling Heterogeneous Au-Ag Nanoclusters with Highly Loading Performance and Biocompatible Capability. International Journal of Molecular Sciences 2022, 23 (19), 11197. 11. Liu, W. D.; Wang, J. Q.; Yuan, S. F.; Chen, X.; Wang, Q. M., Chiral superatomic -66- nanoclusters Ag47 induced by the ligation of amino acids. Angewandte Chemie International Edition 2021, 60 (20), 11430-11435. 12. Mi, W.; Tang, S.; Jin, Y.; Shao, N., Au/Ag bimetallic nanoclusters stabilized by glutathione and lysozyme for ratiometric sensing of H2O2 and hydroxyl radicals. ACS Applied Nano Materials 2021, 4 (2), 1586-1595. 13. Jia, M.; Mi, W.; Guo, S.; Yang, Q.-Z.; Jin, Y.; Shao, N., Peptide-capped functionalized Ag/Au bimetal nanoclusters with enhanced red fluorescence for lysosome-targeted imaging of hypochlorite in living cells. Talanta 2020, 216, 120926. 14. Cao, L.; Zhou, M.; Wang, J.; Zhu, Q.; Liu, T.; Ding, S.; Fu, D.-Y., Gold–Silver Bimetallic Nanoclusters Protected by Glutathione S-Transferase for Colorimetric Sensing of Oxytetracycline. ACS Applied Nano Materials 2022, 5 (8), 11176-11184. 15. Li, W.; Wen, X.; Zhao, H.; Yan, W.; Trant, J. F.; Li, Y., Acid-triggered self-assembled egg white protein-coated gold nanoclusters for selective fluorescent detection of Fe3+, NO2–, and cysteine. ACS Applied Nano Materials 2020, 3 (12), 11838-11849. 16. Borghei, Y.-S.; Hosseini, M.; Ganjali, M. R., Fluorescence based turn-on strategy for determination of microRNA-155 using DNA-templated copper nanoclusters. Microchimica Acta 2017, 184, 2671-2677. 17. Wang, X.; Zhu, X.; Shi, X.; Zhou, Y.; Chai, Y.; Yuan, R., Electrostatic Interaction-Induced Aggregation-Induced Emission-Type AgAu Bimetallic Nanoclusters as a Highly Efficient Electrochemiluminescence Emitter for Ultrasensitive Detection of Glial Fibrillary Acidic Protein. Analytical Chemistry 2023, 95 (6), 3452-3459. 18. Jin, H.; Li, P.; Jin, Y.; Sheng, L., Effect of sodium tripolyphosphate on the interaction and aggregation behavior of ovalbumin-lysozyme complex. Food Chemistry 2021, 352, 129457. 19. Milião, G. L.; de Souza Soares, L.; Balbino, D. F.; Barbosa, É. d. A. A.; Bressan, G. C.; de Carvalho Teixeira, A. V. N.; dos Reis Coimbra, J. S.; de Oliveira, E. B., pH influence on the mechanisms of interaction between chitosan and ovalbumin: a multi-spectroscopic approach. Food Hydrocolloids 2022, 123, 107137. 20. Qu, F.; Wang, Z.; Li, C.; Jiang, D.; Zhao, X.-e., Peptide cleavage-mediated -67- aggregation-enhanced emission from metal nanoclusters for detecting trypsin and screen its inhibitors from foods. Sensors and Actuators B: Chemical 2022, 359, 131610. 21. Huang, K.-Y.; Xiu, L.-F.; Fang, X.-Y.; Yang, M.-R.; Noreldeen, H. A.; Chen, W.; Deng, H.-H., Highly efficient luminescence from charge-transfer gold nanoclusters enabled by lewis acid. The Journal of Physical Chemistry Letters 2022, 13 (40), 9526-9533. 22. Yan, M.; Wang, R.; Wang, Q.; Li, Y.; Liu, B.; Li, Y.; Jiang, M., Label-free and highly-sensitive protamine detection by layer-by-layer assembled chitosan/heparin functionalized optical fiber mode interferometer. Sensors and Actuators B: Chemical 2023, 395, 134414. 23. Pandey, S. P.; Jha, P.; Singh, P. K., Aggregation induced emission of an anionic tetraphenylethene derivative for efficient protamine sensing. Journal of Molecular Liquids 2020, 315, 113625. 24. Cheng, H.; Zhao, Y.; Xu, H.; Hu, Y.; Zhang, L.; Song, G.; Yao, Z., Rapid and visual detection of protamine based on ionic self-assembly of a water soluble perylene diimide derivative. Dyes and Pigments 2020, 180, 108456. 25. Gorai, S.; Mula, S.; Jonnalgadda, P. N.; Patro, B. S.; Chakraborty, G., In house synthesized novel distyryl-BODIPY dye and polymer assembly as deep-red emitting probe for protamine detection. Talanta 2023, 265, 124915. 26. Zheng, J.; Ye, T.; Chen, J.; Xu, L.; Ji, X.; Yang, C.; He, Z., Highly sensitive fluorescence detection of heparin based on aggregation-induced emission of a tetraphenylethene derivative. Biosensors and Bioelectronics 2017, 90, 245-250. 27. Cheng, T.-J.; Lin, T.-M.; Wu, T.-H.; Chang, H.-C., Determination of heparin levels in blood with activated partial thromboplastin time by a piezoelectric quartz crystal sensor. Analytica Chimica Acta 2001, 432 (1), 101-111. 28. Rengaraj, A.; Haldorai, Y.; Hwang, S. K.; Lee, E.; Oh, M.-H.; Jeon, T.-J.; Han, Y.-K.; Huh, Y. S., A protamine-conjugated gold decorated graphene oxide composite as an electrochemical platform for heparin detection. Bioelectrochemistry 2019, 128, 211-217. 29. Awotwe-Otoo, D.; Agarabi, C.; Faustino, P. J.; Habib, M. J.; Lee, S.; Khan, M. A.; Shah, R. B., Application of quality by design elements for the development and optimization of an analytical method for protamine sulfate. Journal of -68- Pharmaceutical and Biomedical Analysis 2012, 62, 61-67. 30. Qu, G.; Zhang, G.; Wu, Z.; Shen, A.; Wang, J.; Hu, J., A “turn-off” SERS assay of heparin with high selectivity based on heparin–peptide complex and Raman labelled gold nanoparticles. Biosensors and Bioelectronics 2014, 60, 124-129. 31. Transue, T. R.; Krahn, J. M.; Gabel, S. A.; DeRose, E. F.; London, R. E., X-ray and NMR characterization of covalent complexes of trypsin, borate, and alcohols. Biochemistry 2004, 43 (10), 2829-2839. 32. Vagadia, B. H.; Vanga, S. K.; Raghavan, V., Inactivation methods of soybean trypsin inhibitor–A review. Trends in Food Science & Technology 2017, 64, 115-125. 33. You, J.-G.; Tseng, W.-L., Peptide-induced aggregation of glutathione-capped gold nanoclusters: A new strategy for designing aggregation-induced enhanced emission probes. Analytica Chimica Acta 2019, 1078, 101-111. 34. Lucas, E.; Knoblauch, R.; Combs-Bosse, M.; Broedel Jr, S. E.; Geddes, C. D., Low-concentration trypsin detection from a metal-enhanced fluorescence (MEF) platform: Towards the development of ultra-sensitive and rapid detection of proteolytic enzymes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 228, 117739. 35. Lin, X.; Zhu, Z.; Lin, D.; Bao, Q.; Gao, Y.; Liu, Q.; Liu, A.; Lin, L.; Lin, X., Boosting the oxidase-like activity of platinum nanozyme in MBTH-TOOS chromogenic system for detection of trypsin and its inhibitor. Talanta 2021, 234, 122647. 36. Lake-Bakaar, G.; McKavanagh, S.; Redshaw, M.; Wood, T.; Summerfield, J.; Elias, E., Serum immunoreactive trypsin concentration after a Lundh meal. Its value in the diagnosis of pancreatic disease. Journal of Clinical Pathology 1979, 32 (10), 1003-1008. 37. Hu, Q.; Su, L.; Chen, Z.; Huang, Y.; Qin, D.; Niu, L., Coenzyme-mediated electro-RAFT polymerization for amplified electrochemical interrogation of trypsin activity. Analytical Chemistry 2021, 93 (27), 9602-9608. 38. See, W. A.; Smith, J. L., Urinary levels of activated trypsin in whole-organ pancreas transplant patients with duodenocystostomies. Transplantation 1991, 52 (4), 630-633. 39. Guo, Q.; Zhou, J.; Hu, K.; He, Y.; Huang, K.; Chen, P., Enzymatic reaction -69- modulated gold nanoparticle aggregation-induced photothermal and smartphone readable colorimetry dual-mode biosensing platform for trypsin detection in clinical samples. Sensors and Actuators B: Chemical 2023, 374, 132841. 40. Park, T.; Han, M.; Schanze, K. S.; Lee, S. H., Ultrasensitive determination of trypsin in human urine based on amplified fluorescence response. ACS Sensors 2023. 41. Luo, Q.; Tian, M.; Luo, F.; Zhao, M.; Lin, C.; Qiu, B.; Wang, J.; Lin, Z., Multicolor biosensor for trypsin detection based on the regulation of the peroxidase activity of bovine serum albumin-coated gold nanoclusters and etching of gold nanobipyramids. Analytical Chemistry 2023, 95 (4), 2390-2397. 42. Vandermarliere, E.; Mueller, M.; Martens, L., Getting intimate with trypsin, the leading protease in proteomics. Mass Spectrometry Reviews 2013, 32 (6), 453-465. 43. Chen, L.; Fu, X.; Li, J., Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases. Nanoscale 2013, 5 (13), 5905-5911. 44. Roushani, M.; Zalpour, N., Impedimetric ultrasensitive detection of trypsin based on hybrid aptamer-2DMIP using a glassy carbon electrode modified by nickel oxide nanoparticle. Microchemical Journal 2022, 172, 106955. 45. Steiner, J. M.; Williams, D. A.; Moeller, E. M.; Melgarejo, T., Development and validation of an enzyme-linked immunosorbent assay for feline trypsin-like immunoreactivity. American Journal of Veterinary Research 2000, 61 (6), 620-623. 46. Karaseva, N. A.; Pluhar, B.; Beliaeva, E. A.; Ermolaeva, T. N.; Mizaikoff, B., Synthesis and application of molecularly imprinted polymers for trypsin piezoelectric sensors. Sensors and Actuators B: Chemical 2019, 280, 272-279. 47. Duan, X.; Li, N.; Wang, G.; Su, X., High sensitive ratiometric fluorescence analysis of trypsin and dithiothreitol based on WS2 QDs. Talanta 2020, 219, 121171. 48. Patil, D. N.; Chaudhary, A.; Sharma, A. K.; Tomar, S.; Kumar, P., Structural basis for dual inhibitory role of tamarind K unitz inhibitor (TKI) against factor X a and trypsin. The FEBS Journal 2012, 279 (24), 4547-4564. -70- 49. Kaur, J.; Singh, P. K., Trypsin detection strategies: A review. Critical Reviews in Analytical Chemistry 2022, 52 (5), 949-967. 50. Kakade, M.; Rackis, J.; McGhee, J.; Puski, G., Determination of trypsin inhibitor activity of soy products: a collaborative analysis of an improved procedure. 1974. 51. Ge, G.; Guo, W.; Zheng, J.; Zhao, M.; Sun, W., Effect of interaction between tea polyphenols with soymilk protein on inactivation of soybean trypsin inhibitor. Food Hydrocolloids 2021, 111, 106177. 52. Kong, X.; Li, Y.; Liu, X., Purification of soybean Kunitz trypsin inhibitor and the mechanism of its passivation by lysine and disulfide bond modifications. Food Bioscience 2023, 55, 103042. 53. Avilés‐Gaxiola, S.; Chuck‐Hernández, C.; Serna Saldívar, S. O., Inactivation methods of trypsin inhibitor in legumes: A review. Journal of Food Science 2018, 83 (1), 17-29. 54. Cristina Oliveira de Lima, V.; Piuvezam, G.; Leal Lima Maciel, B.; Heloneida de Araújo Morais, A., Trypsin inhibitors: promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders? Journal of Enzyme Inhibition and Medicinal Chemistry 2019, 34 (1), 405-419. 55. Gillman, J. D.; Kim, W.-S.; Krishnan, H. B., Identification of a new soybean Kunitz trypsin inhibitor mutation and its effect on Bowman− Birk protease inhibitor content in soybean seed. Journal of Agricultural and Food Chemistry 2015, 63 (5), 1352-1359. 56. Chen, Y.; Xu, Z.; Zhang, C.; Kong, X.; Hua, Y., Heat-induced inactivation mechanisms of Kunitz trypsin inhibitor and Bowman-Birk inhibitor in soymilk processing. Food Chemistry 2014, 154, 108-116. 57. Li, T.; Zhang, X.; Ren, Y.; Zeng, Y.; Huang, Q.; Wang, C., Antihypertensive effect of soybean bioactive peptides: A review. Current Opinion in Pharmacology 2022, 62, 74-81. 58. Vanga, S. K.; Wang, J.; Raghavan, V., Effect of ultrasound and microwave processing on the structure, in-vitro digestibility and trypsin inhibitor activity of soymilk proteins. Lwt 2020, 131, 109708. 59. Zhou, T.; Han, S.; Li, Z.; He, P., Purification and quantification of Kunitz trypsin inhibitor in soybean using two-dimensional liquid chromatography. Food Analytical Methods 2017, 10, 3350-3360. -71- 60. Coscueta, E. R.; Pintado, M. E.; Picó, G. A.; Knobel, G.; Boschetti, C. E.; Malpiedi, L. P.; Nerli, B. B., Continuous method to determine the trypsin inhibitor activity in soybean flour. Food Chemistry 2017, 214, 156-161. 61. Matias, L. L.; Costa, R. O.; Passos, T. S.; Queiroz, J. L.; Serquiz, A. C.; Maciel, B. L.; Santos, P.; Camillo, C. S.; Gonçalves, C.; Amado, I. R., Tamarind trypsin inhibitor in chitosan–whey protein nanoparticles reduces fasting blood glucose levels without compromising insulinemia: A preclinical study. Nutrients 2019, 11 (11), 2770. 62. Carvalho, F. M.; Lima, V. C.; Costa, I. S.; Medeiros, A. F.; Serquiz, A. C.; Lima, M. C.; Serquiz, R. P.; Maciel, B. L.; Uchôa, A. F.; Santos, E. A., A trypsin inhibitor from tamarind reduces food intake and improves inflammatory status in rats with metabolic syndrome regardless of weight loss. Nutrients 2016, 8 (10), 544. 63. Hasan, N.; Dalayoan, D. J.; Lee, J.; Lee, J.; Kim, J.; Bae, J.-S.; Liu, C., Ag 0/Au 0 nanocluster loaded Bi 2 O 4 photocatalyst for methyl orange dye photodegradation. RSC Advances 2021, 11 (43), 26607-26619. 64. Peng, B.; Zheng, L.-X.; Wang, P.-Y.; Zhou, J.-F.; Ding, M.; Sun, H.-D.; Shan, B.-Q.; Zhang, K., Physical origin of dual-emission of Au–Ag bimetallic nanoclusters. Frontiers in Chemistry 2021, 9, 756993. 65. Kaur, J.; Malegaonkar, J. N.; Bhosale, S. V.; Singh, P. K., An anionic tetraphenyl ethylene based simple and rapid fluorescent probe for detection of trypsin and paraoxon methyl. Journal of Molecular Liquids 2021, 333, 115980. 66. Qi, S.; Al-mashriqi, H. S.; Salah, A.; Zhai, H., Glutathione capped gold nanoclusters-based fluorescence probe for highly sensitive and selective detection of transferrin in serum. Microchemical Journal 2022, 175, 107163. 67. Ran, F.; Xu, Y.; Ma, M.; Liu, X.; Zhang, H., Flower-like ZIF-8 enhance the peroxidase-like activity of nanoenzymes at neutral pH for detection of heparin and protamine. Talanta 2022, 250, 123702. 68. Li, M.; Xie, Y.; Lei, L.; Huang, H.; Li, Y., Colorimetric logic gate for protamine and trypsin based on the Bpy-Cu nanozyme with laccase-like activity. Sensors and Actuators B: Chemical 2022, 357, 131429. 69. Yue, X.; Pan, Q.; Zhou, J.; Ren, H.; Peng, C.; Wang, Z.; Zhang, Y., A simplified fluorescent lateral flow assay for melamine based on aggregation induced -72- emission of gold nanoclusters. Food Chemistry 2022, 385, 132670. 70. Xiang, H.; He, S.; Zhao, G.; Zhang, M.; Lin, J.; Yang, L.; Liu, H., Gold Nanocluster-Based Ratiometric Probe with Surface Structure Regulation-Triggered Sensing of Hydrogen Sulfide in Living Organisms. ACS Applied Materials & Interfaces 2023, 15 (10), 12643-12652. 71. Xiong, J.; Zhang, S.; Qin, L.; Shan, W.; Sun, B.; Shen, J.; Jiang, H., Ultrasensitive inner filter effect fluorescence sensing platform for alkaline phosphatase based on arginine surface-engineered gold nanoclusters. Sensors and Actuators B: Chemical 2023, 378, 133177. 72. Zhang, Y.; Liu, R.; Li, H.; Li, Y.; Liu, X., Interactions between Soybean Trypsin Inhibitor and Chitosan in an Aqueous Solution. Polymers 2023, 15 (7), 1594. 73. Cheng, Z.; Fan, Y.; Zhang, L.; Wang, C., Preparation of co-enhanced gold nanoclusters and its application in the detections of 4-hexylresorcinol and Cr6+. Journal of Molecular Structure 2023, 1275, 134712. 74. Wang, L.; Chen, X.; Ran, X.; Tang, H.; Cao, D., Recent advance of lipid droplets fluorescence imaging with aggregation-induced emission luminogens (AIEgens). Dyes and Pigments 2022, 203, 110332. 75. Elias, E.; Wood, T.; Redshaw, M., Diagnostic importance of changes in circulating concentrations of immunoreactive trypsin. The Lancet 1977, 310 (8028), 66-68. 76. Huang, J.; Pan, H.; Wang, J.; Wang, T.; Huo, X.; Ma, Y.; Lu, Z.; Sun, B.; Jiang, H., Unfolded protein response in colorectal cancer. Cell & Bioscience 2021, 11 (1), 1-16. 77. Moradi, A.; Srinivasan, S.; Clements, J.; Batra, J., Beyond the biomarker role: prostate-specific antigen (PSA) in the prostate cancer microenvironment. Cancer and Metastasis Reviews 2019, 38, 333-346. 78. Raninga, P. V.; Lee, A.; Sinha, D.; Dong, L.-f.; Datta, K. K.; Lu, X.; Kalita-de Croft, P.; Dutt, M.; Hill, M.; Pouliot, N., Marizomib suppresses triple-negative breast cancer via proteasome and oxidative phosphorylation inhibition. Theranostics 2020, 10 (12), 5259. 79. Kong, D.; Jin, R.; Zhao, X.; Li, H.; Yan, X.; Liu, F.; Sun, P.; Gao, Y.; Liang, X.; Lin, Y., Protein–inorganic hybrid nanoflower-rooted agarose hydrogel platform for point-of-care detection of acetylcholine. ACS Applied Materials & Interfaces -73- 2019, 11 (12), 11857-11864. 80. Wei, Z.; Pan, Y.; Hou, G.; Ran, X.; Chi, Z.; He, Y.; Kuang, Y.; Wang, X.; Liu, R.; Guo, L., Excellent multiphoton excitation fluorescence with large multiphoton absorption cross sections of arginine-modified gold nanoclusters for bioimaging. ACS Applied Materials & Interfaces 2022, 14 (2), 2452-2463. 81. Yang, H.; Wu, Y.; Ruan, H.; Guo, F.; Liang, Y.; Qin, G.; Liu, X.; Zhang, Z.; Yuan, J.; Fang, X., Surface-engineered gold nanoclusters for stimulated emission depletion and correlated light and electron microscopy imaging. Analytical Chemistry 2022, 94 (7), 3056-3064. 82. Li, M.; Zhu, N.; Zhu, W.; Zhang, S.; Li, F.; Wu, P.; Li, X., Enhanced emission and higher stability ovalbumin-stabilized gold nanoclusters (OVA-AuNCs) modified by polyethyleneimine for the fluorescence detection of tetracyclines. Microchemical Journal 2021, 169, 106560. 83. Wang, L.-L.; Qiao, J.; Qi, L.; Xu, X.-Z.; Li, D., Construction of OVA-stabilized fluorescent gold nanoclusters for sensing glucose. Science China Chemistry 2015, 58, 1508-1514. 84. Chen, Y.; Qiao, J.; Liu, Q.; Qi, L., Ovalbumin-stabilized gold nanoclusters with ascorbic acid as reducing agent for detection of serum copper. Chinese Chemical Letters 2018, 29 (3), 366-370. 85. Zhang, F.; Liu, M.; Liu, R.; Li, J.; Sang, Y.; Tang, Y.; Wang, X.; Wang, S., A broad-spectrum sensing strategy for the tetracycline family of antibiotics based on an ovalbumin-stabilized gold nanocluster and its application in a pump-free microfluidic sensing platform. Biosensors and Bioelectronics 2021, 171, 112701. 86. Jin, Y.; Zeng, Q.; Geng, F.; Ma, M., Characterization of the interaction between hen egg white lysozyme and ovalbumin: Interaction between lysozyme and ovalbumin. Food Bioscience 2020, 36, 100674. 87. Li, X.; Wu, X.; Zhang, F.; Zhao, B.; Li, Y., Label-free detection of folic acid using a sensitive fluorescent probe based on ovalbumin stabilized copper nanoclusters. Talanta 2019, 195, 372-380. 88. Liang, M.; Lei, Z.; Li, Y.; Xiao, Y., A simple strategy to enhance the luminescence of metal nanoclusters and its application for turn-on detection of 2-thiouracil and hyaluronidase. Talanta 2022, 236, 122876. 89. Wang, W.-Y.; Chiu, C.-L.; Hu, C.-C.; Chiu, T.-C., Ag Nanoparticles Decorated -74- by Gallic Acid as a Colorimetric Sensor for the Detection of Cartap Pesticide. ACS Applied Nano Materials 2023, 6 (16), 15324-15329. 90. Eswaran, S. G.; Mamat, M. H. B.; Vasimalai, N., Facile Ultrasonication-Assisted Synthesis of Purpald-Functionalized Silver Nanoparticles for the Rapid Spectrophotometric Detection of Acetamiprid Pesticide in Food and Environmental Samples. Journal of Molecular Liquids 2023, 122425. 91. Sokołowska, K.; Luan, Z.; Hulkko, E.; Rameshan, C.; Barrabés, N.; Apkarian, V. A.; Lahtinen, T., Chemically Selective Imaging of Individual Bonds through Scanning Electron Energy-Loss Spectroscopy: Disulfide Bridges Linking Gold Nanoclusters. The Journal of Physical Chemistry Letters 2020, 11 (3), 796-799. 92. Yang, X.; Yang, J.; Zhang, M.; Wang, Y.; Zhang, B.; Mei, X., Tiopronin protected gold-silver bimetallic nanoclusters for sequential detection of Fe3+ and ascorbic acid in serum. Microchemical Journal 2022, 174, 107048. 93. Battocchio, C.; Porcaro, F.; Mukherjee, S.; Magnano, E.; Nappini, S.; Fratoddi, I.; Quintiliani, M.; Russo, M. V.; Polzonetti, G., Gold nanoparticles stabilized with aromatic thiols: Interaction at the molecule–metal interface and ligand arrangement in the molecular shell investigated by SR-XPS and NEXAFS. The Journal of Physical Chemistry C 2014, 118 (15), 8159-8168. 94. Xiao, W.; Yang, Z.; Liu, J.; Chen, Z.; Li, H., Sensitive cholesterol determination by β-cyclodextrin recognition based on fluorescence enhancement of gold nanoclusters. Microchemical Journal 2022, 175, 107125. 95. Jiang, X.; Zhang, H.; Yang, C.; Xia, J.; Liu, G.; Luo, X., A novel electrostatic drive strategy to prepare glutathione-capped gold nanoclusters embedded quaternized cellulose membranes fluorescent colorimetric sensor for Pb (II) and Hg (II) ions detection. Sensors and Actuators B: Chemical 2022, 368, 132046. 96. Bhunia, S.; Kumar, S.; Purkayastha, P., Gold nanocluster-grafted cyclodextrin suprastructures: formation of nanospheres to nanocubes with intriguing photophysics. ACS Omega 2018, 3 (2), 1492-1497. 97. Mishra, D.; Aldeek, F.; Lochner, E.; Palui, G.; Zeng, B.; Mackowski, S.; Mattoussi, H., Aqueous growth of gold clusters with tunable fluorescence using photochemically modified lipoic acid-based ligands. Langmuir 2016, 32 (25), 6445-6458. 98. Chakraborty, S.; Bain, D.; Maity, S.; Kolay, S.; Patra, A., Controlling -75- aggregation-induced emission in bimetallic gold–copper nanoclusters via surface motif engineering. The Journal of Physical Chemistry C 2022, 126 (5), 2896-2904. 99. Jalili-Firoozinezhad, S.; Filippi, M.; Mohabatpour, F.; Letourneur, D.; Scherberich, A., Chicken egg white: Hatching of a new old biomaterial. Materials Today 2020, 40, 193-214. 100. Panthi, G.; Park, M., Synthesis of metal nanoclusters and their application in Hg2+ ions detection: A review. Journal of Hazardous Materials 2022, 424, 127565. 101. Sahu, D.; Mohapatra, P.; Swain, S. K., Highly orange fluorescence emission by water soluble gold nanoclusters for “turn off” sensing of Hg2+ ion. Journal of Photochemistry and Photobiology A: Chemistry 2020, 386, 112098. 102. Li, Y.; Yuan, M.; Khan, A. J.; Wang, L.; Zhang, F., Peptide-gold nanocluster synthesis and intracellular Hg2+ sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 579, 123666. 103. Liu, Y.; Zhang, F.; He, X.; Ma, P.; Huang, Y.; Tao, S.; Sun, Y.; Wang, X.; Song, D., A novel and simple fluorescent sensor based on AgInZnS QDs for the detection of protamine and trypsin and imaging of cells. Sensors and Actuators B: Chemical 2019, 294, 263-269. 104. Zheng, X.; Dai, J.; Shen, B.; Zhang, X., Quantitative determination of protamine using a fluorescent protein chromophore-based AIE probe. Tetrahedron 2021, 90, 132218. 105. Zhou, J.; Zhang, F.; Zhao, R.; Liu, S.; Li, W.; He, F.; Gai, S.; Yang, P., A novel “off-on-off” fluorescent sensor based on inner filter effect for ultrasensitive detection of protamine/trypsin and subcellular colocalization. Sensors and Actuators B: Chemical 2021, 340, 129930. 106. Liu, L.; Dai, J.; Ji, Y.; Shen, B.; Zhang, X.; Linhardt, R. J., Detection of protamine and heparin using a promising metal organic frameworks based fluorescent molecular device BZA-BOD@ ZIF-90. Sensors and Actuators B: Chemical 2021, 341, 130006. 107. Bao, Q.; Lin, D.; Gao, Y.; Wu, L.; Fu, J.; Galaa, K.; Lin, X.; Lin, L., Ultrasensitive off-on-off fluorescent nanosensor for protamine and trypsin detection based on inner-filter effect between N, S-CDs and gold nanoparticles. -76- Microchemical Journal 2021, 168, 106409. 108. Ji, Z.; Shang, Z.; Sohail, M.; Wang, P.; Li, B.; Zhang, X.; Chen, G., A CRISPR-enabled fluorometric biosensor for the sensitive detection of heparin antidote protamine based on programmable nuclease Cas12a. Sensors and Actuators B: Chemical 2023, 374, 132709. 109. Liu, D.; Guo, X.; Wu, H.; Chen, X., Aggregation-induced emission enhancement of gold nanoclusters triggered by sodium heparin and its application in the detection of sodium heparin and alkaline amino acids. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2024, 304, 123255. 110. Wu, Y.; Li, W.; Martin, G. J.; Ashokkumar, M., Mechanism of low-frequency and high-frequency ultrasound-induced inactivation of soy trypsin inhibitors. Food Chemistry 2021, 360, 130057. 111. Pilon, A. M.; Oliveira, M. G. A.; Guedes, R. N. C., Protein digestibility, protease activity, and post-embryonic development of the velvetbean caterpillar (Anticarsia gemmatalis) exposed to the trypsin-inhibitor benzamidine. Pesticide Biochemistry and Physiology 2006, 86 (1), 23-29. 112. Markwardt, F.; Landmann, H.; Walsmann, P., Comparative studies on the inhibition of trypsin, plasmin, and thrombin by derivatives of benzylamine and benzamidine. European Journal of Biochemistry 1968, 6 (4), 502-506. 113. Jia, L.; Yang, Y.; Liu, X.; Chen, S.; Zhu, J., A novel fluorometric assay for trypsin on the basis of a gemini anionic surfactant/BSA/NR supramolecular assembly system with favorable salt resistance. Analytical Methods 2019, 11 (37), 4822-4828. 114. Zhang, L.; Qin, H.; Cui, W.; Zhou, Y.; Du, J., Label–free, turn–on fluorescent sensor for trypsin activity assay and inhibitor screening. Talanta 2016, 161, 535-540. 115. Cai, Y.; Dong, T.; Zhang, X.; Liu, A., Morphology and Enzyme-Mimicking Activity of Copper Nanoassemblies Regulated by Peptide: Mechanism, Ultrasensitive Assaying of Trypsin, and Screening of Trypsin Inhibitors. Analytical Chemistry 2022, 94 (51), 18099-18106. 116. Ergenoğlu, B.; Ertekin, Ö.; Pirinçci Göktürk, Ş. Ş.; Dinç, G. G.; Akçael, E.; Bağirova, M.; Yücel, F., ELISA-based competitive trypsin inhibition assay. Biotechnology & Biotechnological Equipment 2021, 35 (1), 1385-1392.
|