跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/21 12:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭大緯
研究生(外文):Da-Wei Kuo
論文名稱:三碘化鉛甲基銨反式鈣鈦礦太陽能電池
論文名稱(外文):Inverted Perovskite Solar Cells Based on Methylammonium Lead Triiodide
指導教授:陳昭岑
指導教授(外文):Chao-Tsen Chen
口試委員:鄭如忠陳錦地李榮和黃炳綜
口試委員(外文):Ru-Jong JengChin-Ti ChenRong-Ho LeePing-Tsung Huang
口試日期:2023-12-28
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:182
中文關鍵詞:反式鈣鈦礦太陽能電池電洞傳輸材料溶液凝膠法氧化鎳有機光伏高分子光電轉換效率金屬螯合物
外文關鍵詞:Inverted perovskite solar cellshole transporting materialssol-gelNiOxorganic photovoltavic polymerpower conversion efficiencymetal chelate
DOI:10.6342/NTU202400188
相關次數:
  • 被引用被引用:0
  • 點閱點閱:16
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文由三個研究主題所構成,第一部分 (第三章) 著重在無機氧化鎳電洞傳輸層材料的改良,透過簡單且省時的溶膠-凝膠法 (sol-gel) 來製備氧化鎳薄膜,並藉由調整致氧化鎳薄膜之前驅液組成: 鎳鹽以及穩定劑之化學成份比例 (1:0.6、1:0.8、1:1.0、1:1.2和1:1.4) 來探討其成分組成比例的差異對於鈣鈦礦元件的電性及光伏特性的探討,本研究證實了較少穩定劑比例的組成對於氧化鎳薄膜的性質是有所助益的,在前驅液比例為1:0.8時可以得到一個最優化的元件效率表現 (19.54 %)。
第二部分(第四章)則是以優化的氧化鎳薄膜元件為基礎,分別以 (1) 有機光伏高分子材料作為氧化鎳界面修飾層、(2) 以金屬螯合物作為鈣態礦添加劑、以及 (3) 以金屬螯合物作為鈣態礦界面修飾層之三種不同的方式來對元件進行修飾,並探討其對元件光電性質的影響;首先第一種方式是透過引入了三種含有氰基團的光伏聚合物,分別是基於苯二噁呋亞乙烯噻吩亞乙烯 (pBαCN)、吡啶并吡咯吡咯四噁呋烯 (P4TDPPCN) 和吡唑并吡咯四噁呋烯 (P4TICN) 的聚合物,作為氧化鎳 (optNiOx) 和鈣鈦礦之間的界面修飾層,來彌補因氧化鎳薄膜在熱處理過程中,於表面產生的裂紋缺陷所造成劣化的界面接觸。通過引入這些光伏高分子聚合物,我們發現其不僅降低了NiOx的表面粗糙度,同時也與鈣鈦礦產生了配位作用力,形成了良好的接觸界面,抑制了缺陷的生成,從而促進了從鈣鈦礦中高效地提取電洞並抑制了載子複合行為;它們本身的疏水特性還增加了鈣鈦礦的晶粒尺寸,延長了元件的穩定性。這些含有聚合物中間層的反式鈣態礦太陽能電池展現出高達20.09 % (P4TDPPCN) 和21.43 % (P4TICN) 的光電轉換效率。第二、三種方法 (第四章) 則利用實驗室已開發的一系列以氮喹啉 (4-methyl-[1.5]-naph- thyridin-8-ol; HmND) 為配位基、搭配許多不同類型中心金屬:鋅 (Zn)、鎂 (Mg)、鋁 (Al)、鎵 (Ga)、銦 (In)、鉿 (Hf),所構成之金屬螯合物,應用於反式鈣鈦礦太陽能電池中,除了透過配基上的含孤對電子的氮原子與鈣鈦礦之間有作用力之外,其不同的中心金屬、及化學構型都將影響著元件的效率表現;作為鈣鈦礦層添加劑,InmND3有著最好的效率表現 (20.03 %),可能跟其特別的化學構型或是電性有關;作為鈣鈦礦修飾層,單純配基HmND展現出最佳的效率表現 (20.52 %),透過HmND與鈣鈦礦產生作用力,一方面除了降低鈣鈦礦表面缺陷之外,也能使電子傳輸層,[6,6]-苯基-碳61-丁酸甲酯 (PC61BM) 有較好的成膜均勻性;而更詳細深入的研究仍需更多的實驗數據作相關的探討。
最後,本研究第三部分(第五章)則是相比於無機的氧化鎳電洞傳輸材料,藉由設計合成了兩種以2,4,6-三取代吡啶為核心、和4,4''-二甲氧基三苯胺作為外圍供體基團组成之兩種新型電子供體-電子受體-電子供體型 (D-A-D) 有機小分子電洞傳輸層材料,TPA-TPy和TPA-Py-PTZ,並將其應用於反式鈣鈦礦的電洞傳輸層中;與TPA-Py-PTZ相比之下,TPA-TPy在與鈣鈦礦有著較為良好的界面接觸,並由於結構上較延展共軛系統的其有著更為良好的電洞遷移、傳輸效率,不僅如此,沉積在TPA-TPy上的鈣鈦礦展現出無針孔缺陷、緻密、覆蓋性佳且大晶粒尺寸的優點也減少了載子在界面上重組的機會,以TPA-TPy為電洞傳輸層其鈣鈦礦元件表現出15.33 %的光電轉換效率,在長時間元件穩定性的表現上,與參考元件相比 (NiOx),有機電洞傳輸層材料TPA-TPy和TPA-Py-PTZ都表現出較為優良的溼度穩定性。
This paper consists of three research themes. The first part (Chapter 3) focuses on the enhancement of inorganic nickel oxide hole transport layer material. It involves the preparation of NiOx thin films using a simple and time-efficient sol-gel method. By adjusting the precursor solution's composition of nickel salt and stabilizer in ratios of 1:0.6, 1:0.8, 1:1.0, 1:1.2, and 1:1.4, the impact of varying component proportions on the electrical and photovoltaic properties of perovskite devices is investigated. The study confirms the beneficial effects of a lower stabilizer proportion on the properties of NiOx films. The power conversion efficiency (PCE) of 19.54 % based on the optimized NiOx device is achieved with a precursor ratio of 1:0.8 (optNiOx).
The second part (Chapter 4) builds upon optNiOx thin-film devices. It explores modifications using three different methods: (1) organic photovoltaic polymer materials (OPV) as interface modifiers for NiOx, (2) using metal chelates as additives for perovskite, and (3) employing metal chelates as interfacial modifiers for perovskite. According to the first method, we introduce three cyanide-containing polymer materials—based on polybenzodithiophene-thienothiophene (pBαCN), pyridine-based (P4TDPPCN), and pyrazine-based (P4TICN) polymers—as interfacial modifiers between optNiOx and perovskite to passivate deteriorated interfacial contacts due to surface crack defects generated during the thermal treatment of NiOx films. These OPV polymers not only reduce the surface roughness of NiOx but also coordinate with perovskite, establishing better interfacial contact, suppressing defect generation, and promoting the capacity of hole extraction from perovskite while inhibiting carrier recombination. Additionally, their hydrophobic properties increase perovskite grain size, extending the device stability. The inverted perovskite solar cells (PSCs) with polymer interlayers exhibit PCE up to 20.09 % (P4TDPPCN) and 21.43 % (P4TICN). In the second and third methods (Chapter 4), we utilize a series of metal chelates were prepared in the laboratory using the coordination base of 4-methyl-[1.5]-naphthyridin-8-ol (HmND), in combination with various central metals such as zinc (Zn), magnesium (Mg), aluminum (Al), gallium (Ga), indium (In), and hafnium (Hf) to be applied in inverted PSCs. In addition to the interaction between the nitrogen atom with lone pair electrons in the coordinating base and the perovskite, the different central metals and chemical configurations had an impact on the PCE of the devices. As a perovskite layer additive, InmND3 performs the best PCE (20.03%), likely due to its unique chemical configuration or electrical properties. As a perovskite modifier, the simple ligand HmND demonstrates the highest PCE (20.52%) by interacting with perovskite, reducing surface defects, and improving the film uniformity of the electron transport layer, [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM). Further in-depth research requires additional experimental data for relevant investigation.
Finally, the third part (Chapter 5) of this study primarily focused on the design of two small molecule organic electron donor-acceptor-donor (D-A-D) type, TPA-TPy and TPA-Py-PTZ, which were applied in inverted PSCs as hole-transport layer materials (HTM). The chemical structure of these HTM materials were composed of 2,4,6-trisubstituted pyridine as an electron-acceptor core and 4,4'-dimethoxytriphenylamine as peripheral electron-donor groups. In comparison to TPA-Py-PTZ; TPA-TPy exhibited better interfacial contact with perovskite, not only that, due to its more extended conjugated structure, leading to enhance hole migration and transport efficiency. Moreover, perovskite deposited on TPA-TPy showed advantages such as defect-free, dense, good coverage, and larger grain size, which may suppress the carrier recombination at the interface. When TPA-TPy was used as the hole-transport layer, perovskite devices achieved a PCE of 15.33 %. In terms of long-term device stability, both organic hole-transport materials, TPA-TPy and TPA-Py-PTZ demonstrated excellent humidity stability compared to the reference material (NiOx).
謝誌 i
摘要 ii
Abstract iv
目 次 vii
圖 次 x
表 次 xvii
第一章 緒論 1
1.1鈣鈦礦太陽能電池 (Perovskite solar cells; PSCs) 3
1.2鈣態礦與其他類型太陽能電池材料光伏特性的比較 3
1.3鈣鈦礦太陽能電池研究發展歷程 5
1.4鈣鈦礦吸光層材料及特性 7
1.5鈣鈦礦電池元件結構 8
1.6鈣鈦礦薄膜製成方式 10
1.6.1一步溶液成膜法 (Single-step Solution Deposition) 11
1.6.2兩步溶液成膜法 (Two-step Solution Deposition) 11
1.6.3雙源共蒸鍍沉積法 (Co-Evaporation Deposition; CED) 12
1.6.4蒸氣輔助溶液法 (Vapor-assisted solution process; VASP) 13
1.6.5化學氣相沉積法 (Chemical Vapor Deposition; CVD) 14
1.6.6噴塗溶液法 (Spray Coating) 16
1.6.7刮刀塗佈法 (Blade Coating) 17
1.7鈣鈦礦太陽能電池劣化、降解原因及機制 18
1.8鈣鈦礦太陽能元件之工作原理與光電性質 25
1.9反式鈣鈦礦太陽能電池之電洞傳輸材料 (Hole Transporting Layer) 27
1.9.1有機電洞傳輸層材料 27
1.9.2無機電洞傳輸層材料 36
1.9.2.1氧化鎳薄膜製備及沉積方式 36
1.9.2.2氧化鎳薄膜的摻雜 38
1.9.2.3氧化鎳薄膜的表面修飾與改質 45
1.10研究動機 52
第二章 實驗設計與方法 54
2.1化學藥品 54
2.2實驗儀器與設備 58
2.3光電性質量測與分析 61
2.4反式鈣鈦礦太陽能電池之製備 68
第三章 改變氧化鎳前驅液的組成比例來優化元件的效率 70
結果與討論 71
3.1氧化鎳薄膜的製備與生成 71
3.2氧化鎳薄膜熱處理階段XPS、縱深分析 72
3.3紫外光照射處理氧化鎳薄膜 77
3.3.1 XPS分析紫外光處理前後氧化鎳薄膜組成、縱深分析 77
3.3.2紫外光照射前後氧化鎳薄膜接觸角分析 80
3.3.3紫外光處理前後氧化鎳薄膜之穿透度與導電性分析 81
3.4氧化鎳以及鈣鈦礦薄膜分別沉積於原始氧化鎳、紫外光處理之氧化鎳的表面形貌 83
3.5螢光光譜與陷阱態密度 85
3.6反式鈣鈦礦太陽能電池的光伏特性 87
3.7反式鈣鈦礦太陽能電池的穩定性 90
3.8結論 91
第四章 優化以氧化鎳為電洞傳輸層之反式鈣態礦太陽能電池效率 92
4.1有機光伏高分子材料作為氧化鎳界面修飾層應用於反式鈣態礦太陽能應用於反式鈣態礦太陽能電池元件之探討 94
結果與討論 94
4.1.1分子能階與吸收光譜 94
4.1.2高分子修飾的氧化鎳薄膜與鈣鈦礦薄膜表面特性 96
4.1.3高分子修飾optNiOx之電性、界面特性的分析探討 100
4.1.4電化學阻抗以及陷阱態密度分析 102
4.1.5元件光伏效率表現 104
4.1.6元件光浸潤穩定性、XRD分析 107
4.1.7結論 109
4.2以金屬螯合物作為鈣態礦添加劑應用於反式鈣態礦太陽能電池元件之光伏特性探討 110
結果與討論 (初步研究成果) 110
4.3以金屬螯合物作為鈣鈦礦界面修飾層應用於反式鈣態礦太陽能電池元件之光伏特性探討 112
結果與討論 (初步研究成果) 112
4.3.1沉積於金屬螯合物修飾鈣鈦礦之電子傳輸層PC61BM薄膜表面型態 114
4.3.2金屬螯合物與鈣鈦礦之間作用力探討 115
4.3.3金屬螯合物與鈣鈦礦之間螢光光譜分析探討 116
4.3.4結論 119
第五章 反式鈣鈦礦太陽能電池之NiOx電洞傳輸層以有機小分子TPA-TPy或TPA-Py-PTZ代替的研究 120
結果與討論 122
5.1材料合成 122
5.2吸收光譜、分子能階 122
5.3材料熱性質分析 125
5.4鈣鈦礦薄膜表面型態以及XRD分析 126
5.5電化學阻抗、穩態螢光光譜、電洞遷移率分析 129
5.6元件光伏特性分析 131
5.7元件長時間穩定性量測分析 134
5.8結論 137
第六章 總結與未來展望 138
第七章 參考文獻 139
附錄資料 162
[1] Shinn, L. Renewable energy: The clean facts. Wind and solar are powering a clean energy revolution. Here’s what you need to know about renewables and how you can help make an impact at home. NRDC, 2022.
[2] Turrentine, J. What are the solution to climate change? Some solutions are big and will require billions in investment. some are small and free. All are achievable. NRDC, 2022.
[3] Lindwall, C. What are the solution to climate change? A rapidly warming planet poses an existential threat to all life on earth. Just how bad it gets depends on how quickly we act. NRDC, 2022.
[4] Kim, H.; Ham, J.; Cho, H. Evaluation of solar energy absorption and photo-thermal conversion performance of SiC/ITO hybrid nanofluid. Case Stud. Therm. Eng. 2022, 35, No. 102151.
[5] Saga, T. Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Materials 2010, 2, 96-102.
[6] Moon, S.; Kim, K.; Kim, Y.; Heo, J.; Lee, J. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci. Rep. 2016, 6, No. 30107.
[7] Chin, X. Y.; Turkay, D.; Steele, J. A; Tabean, S.; Eswara, S.; Mensi, M.; Fiala, P.; Wolff, C. M; Paracchino, A.; Artuk, K.; Jacobs, D.; Guesnay, Q.; Sahli, F.; Andreatta, G.; Boccard, M.; Jeangros, Q.; Ballif, C. Interface passivation for 31.25 %-efficient perovskite/silicon tandem solar cells. Science 2023, 381, 59-63.
[8] National renewable energy laboratory. Best research-cell efficiency chart. 2023, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf
[9] Attfield, J. P.; Lightfoot, P.; Morris, R. E. Perovskites, Dalton Trans. 2015, 44, 10541-10542.
[10] https://en.wikipedia.org/wiki/Gustav_Rose
[11] https://en.wikipedia.org/wiki/Lev_Perovski
[12] Luo, S.; Daoud, W. A. Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. J. Mater. Chem. A 2015, 3, 8992-9010.
[13] Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019-9038.
[14] Brittman, S.; Adhyaksa, G. W. P.; Garnett, E. C. The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Communications 2015, 5, 7–26.
[15] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009, 131, 6050-6051.
[16] Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S.W.; Park, N. G. 6.5 % efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088-4093.
[17] Kim, H.-S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J. Humphry-Baker, R.; Yum, J.-H.; Moster, J. E.; Gratzel, M.; Park, N.-G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci. Rep. 2012, 2, No. 591.
[18] Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316-319.
[19] Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; S.; Seok, S. II. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897-903.
[20] Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Cesium-containing triple cation perovskite solar cells: improved stability. Energy Environ. Sci. 2016, 9, 1989-1997.
[21] Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J.; Lilliu, S.; Savenije, T. J.; Rensmo, H.; Divitini, G.; Ducati, C.; Friend, R. H.; Stranks, S. D. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018, 555, 497-501.
[22] Lee, D. G.; Kim, D. H.; Lee, J. M.; Kim, B. J.; Kim, J. Young,.; Shin, S. S.; Jung, H. S. High efficiency perovskite solar cells exceeding 22 % via a photo-assisted two-step sequential deposition. Adv. Funct. Mater. 2020, 31, No. 2006718.
[23] Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G.; Shin, T. J., Seok, S. Il. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450.
[24] Yang, S.; Fu, W.; Zhang, Z.; Chen, H.; Li, C.-Z. Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite, J. Mater. Chem. A 2017, 5, 11462–11482.
[25] Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, No. 982.
[26] Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764−1769.
[27] Meillaud, F.; Shah, A.; Droz, C.; Vallat-Sauvain, E.; Miazza, C. Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cell. 2006, 90, 2952-2959.
[28] Eperon, G. E.; Leijtens, T.; Bush, K. A.; Prasanna, R.; Green, T. J.; Wang, T.-W.; McMeekin, D. P.; Volonakis, G.; Milot, R. L.; May, R.; Palmstrom, A.; Slotcavage, D. J.; Belisle, R. A.; Patel, J. B.; Parrott, E. S.; Sutton, R. J.; Ma, W.; Moghadam, F.; Conings, B.; Babayigit, A.; Boyen, H.-G.; Bent, S.; Giustino, F.; Herz, L. M.; Johnston, M. B.; McGehee, M. D.; Snaith, H. J. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 2016, 354, 861-865
[29] Tao, S. I.; Schmidt, G.; Brocks, J.; Jiang, I. Tranca, K.; Meerholz, S.; Olthof, Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 2019, 10, No. 2560.
[30] Song, Z.; Watthage, S, C.; Phillips, A, B.; Heben, M. J. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photon. Energy 2016, 6, No. 022001.
[31] Taylor, A.D.; Sun, Q.; Goetz, K.P.; An, Q.; Schramm, T.; Hofstetter, Y.; Litterst, M.; Paulus, F.; Vaynzof, Y. A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat. Commun. 2021, 12, No. 1878.
[32] Ahn, N.; Son, D. Y.; Jang, I. H.; Kang, S. M.; Choi, M.; Park, N. G. Highly reproducible perovskite solar cells with average efficiency of 18.3 % and best efficiency of 19.7 % fabricated via Lewis base adduct of lead(II) iodide. J Am Chem Soc. 2015, 137, 8696-8699.
[33] Song, T.-B.; Chen, Q.; Zhou, H.; Jiang, C.; Wang, H.-H.; Yang, Y.; Liu, Y.; You, J.; Yang, Y. J. Perovskite solar cells: film formation and properties. J Mater. Chem. A 2015, 3, 9032–9050.
[34] Liu, M.; Johnson, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition Nature 2013, 501, 395-398.
[35] Li, J.; Cao, H.; Wang, X.; Zhu, H.; Dong, Z.; Yang, L.; Yin, S. Vapor exchange deposition of an air-stable lead iodide adduct on 19 % efficient 1.8 cm2 perovskite solar cells. ACS Appl. Energy Mater. 2019, 2, 2506-2514.
[36] Yang, Y., Chen, Q.; Zhou, H.; Hong, Z.; Long, S.; Duan, H. S.; Wang, H. H.; Liu, Y. S.; Li, G. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 2014, 136, 622−625.
[37] Zhang, H.; Cheng, J.; Li, D.; Lin, F.; Mao, J.; Liang, C.; Grätzel, M.; Jen, A. K. Y.; Grätzel, M.; Choy, W. C. H. Toward all room-temperature, solution-processed, high-performance planar perovskite solar cells: A new scheme of pyridine promoted perovskite formation. Adv. Mater. 2017, 29, 1604695.
[38] Li, Y.; Ding, B.; Yang, G. J.; Li, C. J.; Li, C. X. Achieving the high phase purity of CH3NH3PbI3 film by two-step solution processable crystal engineering. J. Mater. Sci. Technol. 2018, 34, 1405–1411.
[39] Liu, X.; Cao, L.; Guo, Z.; Li, Y.; Gao, W.; Zhou, L. A review of perovskite photovoltaic materials’ synthesis and applications via chemical vapor deposition method. Materials 2019, 12, No. 3304.
[40] Tavakoli, M. M.; Gu, L.; Gao, Y.; Reckmeier, C.; He, J.; Rogach, A. L.; Yao, Y.; Fan, Z. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Sc. Rep. 2015, 5, No. 14083.
[41] Leyden, M. R.; Ono, L. K.; Raga, S. R.; Kato, Y.; Wang, S.; Qi, Y. High performance perovskite solar cells by hybrid chemical vapor deposition. J. Mater. Chem. A 2014, 2, 18742–18745.
[42] Darr, J. A.; Guo, Z. X.; Raman, V.; Bououdina, M.; Rehman, I. U. Metal organic chemical vapour deposition (MOCVD) of bone mineral like carbonated hydroxyapatite coatings. Chem. Commun. 2004, 6, 696–697.
[43] Luo, L.; Zhang, Y.; Chai, N.; Deng, X.; Zhong, J.; Huang, F.; Peng, Y.; Ku, Z.; Cheng, Y.-B. Large-area perovskite solar cells with CsxFA1−xPbI3−yBry thin films deposited by a vapor–solid reaction method. J. Mater. Chem. A 2018, 6, 21143-21148.
[44] Barrows, A.; Pearson, A.; Kwak, C.; Dunbar, A.; Buckley, A.; Lidzey, D. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 2014, 7, No. 2944.
[45] Bishop, J. E.; Routledge, T. J.; Lidzey, D. G. Advances in spray-cast perovskite solar cells. J. Phys. Chem. Lett. 2018, 9, 1977−1984.
[46] Majumder, M.; Rendall, C.; Li, M.; Behabtu, N.; Eukel, J. A.; Hauge, R. H.; Schmidt, H. K.; Pasquali, M. Insights into the physics of spray coating of SWNT Films. Chem. Eng. Sci. 2010, 65, 2000−2008.
[47] Bishop, J. E.; Smith, J. A.; Lidzey, D. G. Development of spray-coated perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 48237−48245.
[48] Cai, H.; Liang, X.; Ye, X.; Su, J.; Guan, J.; Yang, J.; Liu, Y.; Zhou, X.; Han, R.; Ni, J.; Li, J.; Zhang, J. High efficiency over 20 % of perovskite solar cells by spray coating via a simple process. ACS Appl. Energy Mater. 2020, 3, 9696−9702.
[49] Yu, X.; Yan, X.; Xiao, J.; Ku, Z.; Zhong, J.; Li, W.; Huang, F.; Peng, Y.; Cheng, Y.-B. Interface modification effect on the performance of CsxFA1-xPbIyBr3-y perovskite solar cells fabricated by evaporation/spray-coating method. J. Chem. Phys. 2020, 153. No. 014706.
[50] Deng, Y.; Peng, E.; Shao, Y.; Xiao, Z.; Dong, Q.; Huang, J. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci. 2015, 8, 1544–1550.
[51] He, R.; Nie, S.; Huang, X.; Wu, Y.; Chen, R.; Yin, J.; Wu, B.; Li, J.; Zheng, N. Scalable preparation of high‐performance ZnO–SnO2 cascaded electron transport layer for efficient perovskite solar modules. Solar RRL 2022, 6, No.2100639.
[52] Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; Schilfgaarde, M. v.; Walsh, A. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 2014, 14, 2584–2590.
[53] Nenon, D. P.; Christians, J. A.; Wheeler, L. M. Blackburn, J. L.; Sanehira, E. M.; Dou, B.; Olsen, M. L.; Zhu, K.; Berry, J. J.; Luther, J. M. Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution. Energ Environ. Sci. 2016, 9, 2072-2082.
[54] Bækbo, M. J.; Hansen, O.; Chorkendorff, I.; Vesborg, P. C. K. Deposition of methylammonium iodide via evaporation–combined kinetic and mass spectrometric study. RSC Adv. 2018, 8, 29899- 29908.
[55] Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energ Environ Sci. 2016, 9, 3406-3410.
[56] Williams, A. E.; Holliman, P. J.; Carnie, M. J.; Davies, M. L.; Worsley, D. A.; Watson, T. M. Perovskite processing for photovoltaics: a spectro-thermal evaluation. J Mater Chem A 2014, 2, 19338-19346.
[57] Zhang, D., Li, D., Hu, Y.; Mei, A.; Han, H. Degradation pathways in perovskite solar cells and how to meet international standards. Commun. Mater. 2022, 3, No. 58.
[58] Tan, K. W.; Moore, D. T.; Saliba, M, Sai, H.; Estroff, L. A.; Hanrath, T.; Snaith, H. J.; Wiesner, U. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano. 2014, 8, 4730-4739.
[59] Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv Funct Mater. 2014, 24, 3250-3258.
[60] Chang, C.-Y.; Huang, Y.-C.; Tsao, C.-S.; Su, W.-F. Formation mechanism and control of perovskite films from solution to crystalline phase studied by in situ synchrotron scattering. ACS Appl Mater Int. 2016, 8, 26712-26721.
[61] Li, J.; Dong, Q.; Li, N.; Wang, L. Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Adv Energy Mater. 2017, 7, No. 1602922.
[62] Azpiroz, J. M.; Mosconi, E.; Bisquertcd, J.; Angelis, F. D. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 2015, 8, 2118-2127
[63] Chen, B.; Song, J.; Dai, X.; Liu, Y.; Rudd, P. N.; Hong, X.; Huang, J. Synergistic effect of elevated device temperature and excess charge carriers on the rapid light-induced degradation of perovskite solar cells. Adv Mater. 2019, 31, No. 1902413.
[64] Zhao, J.; Deng, Y.; Wei, H.; Zheng, X.; Yu, Z.; Shao, Y.; Shield, J. E.; Huang, J. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci Adv. 2017, 3, No. eaao5616.
[65] Wei, T.-C.; Wang, H.-P.; Li, T.-Y.; Lin, C.-H.; Hsieh, Y.-H.; Chu, Y.-H.; He, J.-H. Photostriction of CH3NH3PbBr3 perovskite crystals. Adv Mater. 2017, 29, No. 1701789.
[66] Kim, G. Y.; Senocrate, A.; Yang, T.-Y.; Gregori, G.; Grätzel, M.; Maier, J. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat Mater. 2018, 17, No. 445-449.
[67] Nie, W.; Blancon, J.-C.; Neukirch, A. J.; Appavoo, K.; Tsai, H.; Chhowalla, M.; Alam, M. A.; Sfeir, M. Y. Katan, C.; Even, J.; Tretiak, S.; Crochet, J. J.; Gupta, G.; Mohite, A. D. Light-activated photo-current degradation and self-healing in perovskite solar cells. Nat Commun. 2016, 7, No. 11574.
[68] Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem Sci. 2015, 6, 613-61
[69] de Quilettes, D. W.; Zhang, W.; Burlakov, V. M.; Graham, D. J.; Leijtens, T.; Osherov, A.; Bulovic, V.; Snaith, H. J.; Ginger, D. S.; Stranks, S. D. Photo-induced halide redistribution in organic–inorganic perovskite films. Nat Commun. 2016, 7, No. 11683.
[70] Yoon, S. J.; Draguta, S.; Manser, J. S.; Sharis, O.; Schneider, W. F.; Kuno, M.; Kamat, P. V. Tracking iodide and bromide ion segregation in mixed halide Lead perovskites during photoirradiation. ACS Energy Lett. 2016, 1, 290-296.
[71] Fang, H.-H.; Yang, J.; Tao, S.; Adjokatse, S.; Kamminga, M. E.; Ye, J.; Blake, G. R.; Even, J.; Loi, M. A. Unravelling light-induced degradation of layered perovskite crystals and Design of Efficient Encapsulation for improved Photostability. Adv Funct Mater. 2018, 28, No. 1800305.
[72] Kundu, S.; Kelly, T. L. In situ studies of the degradation mechanisms of perovskite solar cells. EcoMat. 2020, 2, No. 12025
[73] Liu, J.; Wu, Y.; Qin, C.; Yang, X.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W.; Chen, W.; Han, L. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ. Sci. 2014, 7, 2963–2967.
[74] Wali, Q.; Iftikhar, F. J.; Khan, M. E.; Ullah, A.; Iqbal, Y.; Jose, R. Advances in stability of perovskite solar cells. Org. Electron. 2020, 78, No.105590.
[75] Liu, F.; Li, Q.; Li, Z. Hole-transporting materials for perovskite solar cells. Asian J. Org. Chem. 2018, 7, 2182–2200.
[76] Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F., Chen, P., Wen, T.-C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013; 25, 3727–3732.
[77] Yang, Y.; Deng, H.; Fu, Q. Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Mater. Chem. Front. 2020, 4, 3130-3152
[78] Li, X.; Liu, X.; Wang, X.; Zhao, Li.; Jiu, T.; Fang, J. Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells. J. Mater. Chem. A 2015, 3, 15024–15029.
[79] Ke, Q. B.; Wu, J.-R.; Lin, C.-C.; Chang, S. H. Understanding the PEDOT:PSS, PTAA and P3CT-X hole-transport-layer-based inverted perovskite solar cells. Polymers 2022, 14, No. 823.
[80] Li, X.; Wang, Y.-C.; Zhu, L.; Zhang, W.; Wang, H.-Q.; Fang, J. Improving efficiency and reproducibility of perovskite solar cells through aggregation control in polyelectrolytes hole transport layer. ACS Appl. Mater. Interfaces 2017, 9, 31357–31361.
[81] Li, S.; He, B.; Xu, J.; Lu, H.; Jiang, J.; Zhu, J.; Kan, Z.; Zhu, L.; Wu, F. Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 V. Nanoscale 2020, 12, 3686–3691.
[82] Zhao, X.; Wang, M.; Organic hole-transporting materials for efficient perovskite solar cells. Mater. Today Energy 2018, 7, 208-220.
[83] Bi, C.; Chen, B.; Wei, H.; DeLuca, S.; Huang, J. Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv. Mater. 2017, 29, No. 1605900.
[84] Zhang, W.; Smith, J.; Hamilton, R.; Heeney, M.; Kirkpatrick, J.; Song, K.; Watkins, S. E.; Anthopoulos, T.; McCulloch, I. Systematic improvement in charge carrier mobility of air stable triarylamine copolymers. J. Am. Chem. Soc. 2009, 131, No. 10814.
[85] Park, I. J.; Kang, G.; Park, M. A.; Kim, J. S.; Seo, S. W.; Kim, D. H.; Zhu, K.; Park, T.; Kim, J. Y. Highly efficient and uniform 1 cm2 perovskite solar cells with an electrochemically deposited NiOx hole-extraction layer. ChemSusChem 2017, 10, 2660-2667.
[86] Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-J.; Sarkar, A.; Nazeeruddin, M. K. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486-491.
[87] Li, F.; Deng, X.; Qi, F.; Li, Z.; Liu, D.; Shen, D.; Qin, M.; Wu, S.; Lin, F.; Jang, S.-H. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23 % efficiency. J. Am. Chem. Soc. 2020, 142, 20134-20142.
[88] Wang, Y.; Duan, L.; Zhang, M.; Hameiri, Z.; Liu, X.; Bai, Y.; Hao, X. PTAA as efficient hole transport materials in perovskite solar cells: A review. Sol. RRL 2022, 6, No. 2200234.
[89] Petrović, M.; Maksudov, T.; Panagiotopoulos, A.; Serpetzoglou, E.; Konidakis, I.; Stylianakis, M. M.; Stratakis, E.; Kymakis, E. Limitations of a polymer-based hole transporting layer for application in planar inverted perovskite solar cells. Nanoscale Adv. 2019, 1, 3107-3118.
[90] Reddy, S. S.; Shin, S.; Aryal, U. K.; Nishikubo, R.; Saeki, A.; Song, M.; and Jin, S.-H. Highly efficient air-stable/hysteresis-free flexible inverted-type planar perovskite and organic solar cells employing a small molecular organic hole transporting material. Nano Energy 2017, 41, 10-17.
[91] Cao, Y.; Li, Y.; Morrissey, T.; Lam, B.; Patrick, B. O.; Xia, Z.; Kelly, T. L.; Berlinguette, C. P. Dopant-free molecular hole transport material that mediates a 20 % power conversion efficiency in a perovskite solar cell. Energy Environ. Sci. 2019, 12, 3502-3507.
[92] Xu, L. J.; Huang, P.; Zhang, J.; Jia, X.G.; Ma, Z. J.; Sun, Y.; Zhou, Y.; Yuan, N. Y.; Ding, J. N. N,N-di-para-methylthiophenylamine-substituted (2-ethylhexyl)-9H-carbazole: A simple, dopant-free hole-transporting material for planar perovskite solar cells. J. Phys. Chem. C 2017, 121, 21821-21826.
[93] Sun, Q.; Zhang, J.; Chen, Q.; Wang, Y.; Zhou, Y.; Song, B.; Jia, X.; Yuan, N.; Ding, J.; Li, Y. High-efficiency planar p-i-n perovskite solar cells based on dopant-free dibenzo[b,d]furan-centred linear hole transporting material. J. Power Sources. 2020, 449, No. 227488.
[94] Li, H.; Fu, K.; Boix, P. P.; Wong, L. H.; Hagfeldt, A.; Gra¨tzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C. Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells. ChemSusChem 2014, 7, 3420–3425.
[95] Rombach, F. M.; Haque, S. A.; Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 2021, 14, 5161–5190.
[96] Ren, G.; Han, W.; Deng, Y.; Wu, W.; Li, Z.; Guo, J.; Bao, H.; Liu, C.; Guo, W. Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. J. Mater. Chem. A 2021, 9, 4589-4625.
[97] Zhu, R.; Guan, N.; Wang, D.; Bao, Y.; Wu, Z.; Song, L. Review of defect passivation for NiOx-based inverted perovskite solar cells. ACS Appl. Energy Mater. 2023, 6, 2098–2121
[98] Sajid, S.; Elseman, A. M.; Huang, H.; Ji, J.; Dou, S.; Jiang, H.; Liu, X.; Wei, D.; Cui, P.; Li, M. Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy. 2018, 51, 408–424.
[99] Jeevanandam, P.; Pulimi, V.; Ranga, R. Synthesis of nanocrystalline NiO by sol-gel and homogeneous precipitation methods. NISCAIR-CSIR India 2012, 51, 586-590.
[100] Teoh, L. G.; Li, K.-D. Synthesis and characterization of NiO nanoparticles by sol­gel Method. Mater. Trans. 2012, 53, 2135-2140.
[101] Zhu, Z.; Bai, Y.; Zhang, T.; Liu, Z.; Long, X.; Wei, Z.; Wang, Z.; Zhang, L.; Wang, J.; Yan, F.; Yang, S. High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew Chem Int Ed Engl. 2014, 53, 12571-12575.
[102] Gidey, A. T.; Kuo, D. W.; Fenta, A. D.; Chen, C. T.; Chen, C. T. First conventional solution sol–gel-prepared nanoporous materials of nickel oxide for efficiency enhancing and stability extending MAPbI3 inverted perovskite solar cells. ACS Appl. Energy Mater. 2021, 4, 6486–6499.
[103] Wang, T.; Ding, D.; Wang, X.; Zeng, R.; Liu, H.; Shen, W. High-performance inverted perovskite solar cells with mesoporous NiOx hole transport layer by electrochemical deposition. ACS Omega. 2018, 3, 18434-18443.
[104] Abnavi, H.; Khosh, D.; Abnavi, M. A. Performance analysis of several electron/hole transport layers in thin film MAPbI3-based perovskite solar cells: A simulation study. Opt. Mater. 2021, 118, 111258.
[105] Hou, D.; Zhang, J.; Gan, X.; Yuan, H.; Yu, L.; Lu, C.; Sun, H.; Hu, Z.; Zhu, Y. Pb and Li co-doped NiOx for efficient inverted planar perovskite solar cells. J Colloid Interface Sci. 2020, 559, 29-38.
[106] Chen, C.; Yang, G.; Ma, J.; Zheng, X.; Chen, Z.; Zhang, Q.; Fang, G. Surface treatment via Li-bis-(trifluoromethanesulfonyl) imide to eliminate the hysteresis and enhance the efficiency of inverted perovskite solar cells. J. Mater. Chem. C 2017, 5, 10280-10287.
[107] Chen, W.; Liu, F.; Feng, X.; Djurišić, A. B.; Chan, W.; He, Z. Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv. Energy Mater. 2017, 7, No. 1700722.
[108] Seckin, A.; Neha, A.; Shaik, M. Z.; Michael, G.; Richard, H. F., Ibrahim, D.; New strategies for defect passivation in high-efficiency perovskite solar cells. Adv. Energy Mater. 2020, 10, No. 1903090.
[109] Xia, X.; Jiang, Y.; Wan, Q.; Wang, X.; Wang, L.; Li, F.; Lithium and silver co-doped nickel oxide hole-transporting layer boosting the efficiency and stability of inverted planar perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 44501-44510.
[110] Chen, W.; Wu, Y.; Fan, J.; Djurišic´, A. B.; Liu, F.; Tam, H. W. Ng, A.; Surya, C.; Chan, W. K.; Wang, D.; He, Z.-B. Understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells. Adv. Energy Mater. 2018, 8, No. 1703519
[111] Nie, W.; Tsai, H.; Blancon, J.-C.; Liu, F.; Stoumpos, C. C.; Traore, B.; Kepenekian, M.; Durand, O.; Katan, C.; Tretiak, S.; Crochet, J.; Ajayan, P. M.; Kanatzidis, M.; Even, J.; Mohite, A. D. Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide. Adv. Mater. 2017, 30, No. 1703879
[112] Ge, B.; Qiao, H. W.; Lin, Z. Q.; Zhou, Z. R.; Chen, A. P.; Yang, S.; Hou, Y.; Yang, H. G. Deepening the valance band edges of NiOx contacts by alkaline earth metal doping for efficient perovskite photovoltaics with high open-circuit voltage. Solar RRL 2019, 3, No. 1900192.
[113] Ouyang, D.; Zheng, J.; Huang, Z.; Zhu, L.; Choy, W. C. H. An efficacious multifunction codoping strategy on a room-temperature solution-processed hole transport layer for realizing high performance perovskite solar cells. J. Mater. Chem. A 2021, 9, 371−379.
[114] Wang, T.; Ding, D.; Zheng, H.; Wang, X.; Wang, J.; Liu, H.; Shen, W. Efficient inverted planar perovskite solar cells using ultraviolet/ozone-treated NiOx as the hole transport layer. Solar RRL 2019, 3, No. 1900045.
[115] Bai, Y.; Chen, H.; Xiao, S.; Xue, Q.; Zhang, T.; Zhu, Z.; Li, Q.; Hu, C.; Yang, Y.; Hu, Z.; Huang, F.; Wong, K. S.; Yip, H.-L.; Yang, S. Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward daster hole extraction and higher photovoltaic performance. Adv. Funct. Mater. 2016, 26, 2950–2958.
[116] He, J.; Xiang, Y.; Zhang, F.; Lian, J.; Hu, R.; Zeng, P.; Song, J.; Qu, J. Improvement of red light harvesting ability and open circuit voltage of Cu:NiOx based p-i-n planar perovskite solar cells boosted by cysteine enhanced interface contact. Nano Energy 2018, 45, 471–479.
[117] Niu, Q.; Deng, Y.; Cui, D.; Lv, H.; Duan, X.; Li, Z.; Liu, Z.; Zeng, W.; Xia, R.; Tan, W.; Min, Y. Enhancing the performance of perovskite solar cells via interface modification. J. Mater. Sci. 2019, 54, 14134−14142.
[118] Zheng, X.; Song, Z.; Chen, Z.; Bista, S. S.; Gui, P.; Shrestha, N.; Chen, C.; Li, C.; Yin, X.; Awni, R. A.; Lei, H.; Tao, C.; Ellingson, R. J.; Yan, Y.; Fang, G., Interface modification of sputtered NiOx as the hole-transporting layer for efficient inverted planar perovskite solar cells. J. Mater. Chem. A 2020, 8, 1972-1980.
[119] Wang, S.; Zhu, Y.; Wang, C.; Ma, R. NH4F as an Interfacial modifier for high performance NiOx-based inverted perovskite solar cells. Org. Electron. 2020, 78, 105627-105633.
[120] Zhang, B.; Su, J.; Guo, X.; Zhou, L.; Lin, Z.; Feng, L.; Zhang, J.; Chang, J.; Hao, Y., NiO/Perovskite Heterojunction contact engineering for highly efficient and stable perovskite solar cells. Adv. Sci. 2020, 7, 1903044-1903053.
[121] Wang, T.; Xie, M.; Abbasi, S.; Cheng, Z.; Liu, H.; Shen, W. High efficiency perovskite solar cells with tailorable surface wettability by surfactant. J. Power Sources 2020, 448, No. 227584.
[122] Lian, X.; Chen, J.; Shan, S.; Wu, G.; Chen, H. Polymer modification on the NiOx hole transport layer boosts open-circuit voltage to 1.19 V for perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 46340–46347.
[123] Huang, Y.-J.; Cai, C.-E.; Feng, Y.-C.; Liu, B.-T.; Lee, R.-H. Water-soluble cationic copolyacrylamides modifying NiOx for high-performance inverted perovskite solar cells. ACS Appl. Polym. Mater. 2023, 5, 8949-8959.
[124] Liu, Y.; Duan, J.; Zhang, J.; Huang, S.; Ou-Yang, W.; Bao, Q.; Sun, Z.; Chen, X. High efficiency and stability of inverted perovskite solar cells using phenethyl ammonium iodide-modified interface of NiOx and perovskite layers. ACS Appl. Mat. Interfaces 2020, 12, 771-779.
[125] Wang, Q.; Chueh, C. C.; Zhao, T.; Cheng, J.; Eslamian, M.; Choy, W. C. H.; Jen, A. K., Effects of self-assembled monolayer modification of nickel oxide nanoparticles layer on the performance and application of inverted perovskite solar cells. ChemSusChem 2017, 10, 3794-3803.
[126] Zhang, J.; Luo, H.; Xie, W.; Lin, X.; Hou, X.; Zhou, J.; Huang, S.; Ou-Yang W.; Sun Z.; Chen X., Efficient and ultraviolet durable planar perovskite solar cells via a ferrocenecarboxylic acid modified nickel oxide hole transport layer. Nanoscale 2018, 10, 5617-5625.
[127] Du, Y.; Xin, C.; Huang, W.; Shi, B.; Ding, Y.; Wei, C.; Zhao, Y.; Li, Y.; Zhang, X. Polymeric surface modification of NiOx-based inverted planar perovskite solar cells with enhanced performance. ACS Sustain. Chem. Eng. 2018, 6, 16806-16812.
[128] Chiu, Y.-L.; Li, C.-W.; Kang, Y.-H.; Lin, C.-W.; Lu, C.-W.; Chen, C.-P.; Chang, Y. J. Dual-functional enantiomeric compounds as hole-transporting materials and interfacial layers in perovskite solar cells. ACS Appl. Mater. Interfaces 2022, 14, 26135-26147.
[129] Chang, Y.-M.; Li, C.-W.; Lu, Y.-L.; Wu, M.-S.; Li, H.; Lin, Y.-S.; Lu, C.-W.; Chen, C.-P.; Chang, Y. J. Spherical hole-transporting interfacial layer passivated defect for inverted NiOx-based planar perovskite solar cells with high efficiency of over 20 %. ACS Appl. Mater. Interfaces. 2021, 13, 6450-6460.
[130] Ho, I.-H.; Huang, Y.-J.; Cai, C.-E.; Liu, B.-T.; Wu, T.-M.; Lee, R.-H. Enhanced photovoltaic performance of inverted perovskite solar cells through surface modification of a NiOx-based hole-transporting layer with quaternary ammonium halide–containing cellulose derivatives. Polymers 2023, 15, No. 437.
[131] Wang, S.-Y.; Chen, C.-P.; Chung, C.-L.; Hsu, C.-W.; Hsu, H.-L.; Wu, T.-H.; Zhuang, J.-Y.; Chang, C.-J.; Chen, H. M.; Chang, Y. J. Defect passivation by amide-based hole-transporting interfacial layer enhanced perovskite grain growth for efficient p–i–n perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 40050-40061.
[132] Alghamdi, A. R. M.; Yanagida, M.; Shirai, Y.; Andersson, G. G. Miyano, K. Surface passivation of sputtered NiOx using a SAM interface layer to enhance the performance of perovskite solar cells. ACS Omega 2022, 7, 12147-12157.
[133] Kakekochi, V.; Kuo, D.-W.; Chen, C.-T.; Wolcan, E.; Chen, C.-T.; Dalimba, U. K. A tale of two organic small molecular hole transporting materials: Showing same extended shelf-life but very different efficiency of inverted MAPbI3 perovskite solar cells. Org. Electron. 2022, 102, No. 106428.
[134] Li, S.-W.; Chen, C.-T.; and Jeng, R.-J. Elucidating the efficiency of polymer solar cells based on dicyano-substituted vinylene–thienothiophenylene–vinylene–benzodithiophenylene copolymers: β-Isomers outperform α-Isomers. Macromolecules 2021 54, 7849-7861.
[135] Yun, H.-J.; Choi, H. H.; Kwon, S.-K.; Kim, Y.-H.; Cho, K. Conformation-insensitive ambipolar charge transport in a diketopyrrolopyrrole-based co-polymer containing acetylene linkages. Chem. Mater. 2014, 26, 3928-3937.
[136] 劉彥伸碩士論文 應用在富勒烯的全高分子太陽能電池異靛藍共聚高分子合成與性質鑑定, 國立交通大學應用化學研究所-碩士論文 2020年7月。
[137] Kuo, D.-W.; Liu, Y.-S.; Fenta, A. D.; Li, S.-W.; Prasannakumar, T. M.; Chen, C.-T.; Chen, C.-T. Inverted MAPbI3 perovskite solar cells based on optimized NiOx hole-transporting material and an interlayer of photovoltaic polymers exhibit a power conversion efficiency over 21% with an extended stability. ACS Appl. Electron. Mater. 2023,5, 6897-6907.
[138] 葉世傑博士論文 染敏化太陽能電池製成優化與金屬螯合物添加劑對鈣鈦礦太陽能電池的影響探討 國立台灣大學工學院高分子科學與工程學研究所-博士論文 2017年10月。
[139] 廖思虹碩士論文 寬能隙含氮喹啉金屬螯合物之合成與鑑定及其在藍色螢光有機發光二極體之應用, 國立台灣師範大學化學研究所-碩士論文 2008年7月。
[140] Liao, S.-H.; Shiu, J.-R.; Liu, S.-W.; Yeh, S.-J.; Chen, Y.-H.; Chen, Ch.-T.; Chow, T. J.; Wu, C.-I. Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes. J. Am. Chem. Soc. 2009, 131, 763-77.
[141] Liu, S.-W.; Lee, C.-C.; Lin, C.-F.; Huang, J.-C.; Chen, C.-T.; Lee, J.-H. 4-Hydroxy-8-methyl-1,5-naphthyridine aluminium chelate: a morphologically stable and efficient exciton-blocking material for organic photovoltaics with prolonged lifetime. J. Mater. Chem. 2010, 20, 7800-7806.
[142] Paulose, R.; Mohan, R.; Parihar, V. Nanostructured nickel oxide and its electrochemical behaviour: A brief review. Nano-Struct. Nano-Objects 2017, 11, 102−111.
[143] Cao, J.; Yu, H.; Zhou, S.; Qin, M.; Lau, T.; Lu, X.; Zhao, N.; Wong, C. Low-temperature solution-processed NiOx films for air-stable perovskite solar cells. J. Mater. Chem. A 2017, 5, 11071–11077.
[144] Tolman, C. A.; Riggs, W. M.; Linn, W. J.; King, C. M.; Wendt, R. C. Electron spectroscopy for chemical analysis of nickel compounds. Inorg. Chem. 1973, 12, 2770-2778.
[145] Molina, R.; Centeno, M. A.; Poncelet, G. α-Alumina-Supported nickel catalysts prepared with nickel acetylacetonate. Adsorption in the liquid phase. J. Phys. Chem. B 1999, 103, 6036-6046.
[146] Wang, F.; Sun, G.; Li, C.; Liu, J.; Zheng, H.; Hu, S.; Tan, Z.; Li, Y. Finding the lost open-circuit voltage in polymer solar cells by uv-ozone treatment of the nickel acetate anode buffer layer. ACS Appl. Mater. Interfaces 2014, 6, 9458-9465.
[147] Seo, S.; Park, I. J.; Kim, M.; Lee, S.; Jung, C.; B.; H.; Park, N.; Kim, J.; Shin, H. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4 %) organic–inorganic hybrid perovskite solar cells. Nanoscale 2016, 8, 11403-11412.
[148] Sajida, S.; Elsemana, A. M.; Huang, H.; Jia, J.; Dou, S.; Jiang, H.; Liu, X.; Wei, D.; Cui, P.; Li, M. Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy 2018, 51, 408–424.
[149] Hoene, J. V.; Charles, R. G.; & Hickam, W. M. Thermal decomposition of metal acetylacetonates: Mass spectrometer studies. J. Phys. Chem. 1958, 62, 1098–1101.
[150] Williams, P. A.; Jones, A. C.; Bickley, J. F.; Steiner, A.; Davies, H. O.; Leedham, T. J.; Impey, S. A.; Garcia, J.; Allen, S.; Rougier, A.; Blyr, A. Synthesis and crystal structures of dimethylaminoethanol adducts of Ni(ii) acetate and Ni(ii) acetylacetonate. Precursors for the sol–gel deposition of electrochromic nickel oxide thin films. J. Mater. Chem. 2001, 11, 2329–2334.
[151] Yang, G.; Wang, C.; Lei, H.; Zheng, X.; Qin, P.; Xiong, L.; Zhao, X.; and Yan, Y.; Fang, G. Interface engineering in planar perovskite solar cells: energy level alignment perovskite morphology control and high-performance achievement. J. Mater. Chem. A 2017, 5, 1658-1666.
[152] Ke, W.; Fang, G.; Wan, J.; Tao, H.; Liu, Q.; Xiong, L.; Qin, P.; Wang, J.; Lei, H.; Yang, G.; Qin, M.; Zhao, X.; Yan, Y. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat. Commun. 2015, 6, No. 6700.
[153] Lee, K. M.; Chen, C. C.; Chen, L. C.; Chang, S. H.; Chen, K. S.; Yeh, S. C.; Chen, C. T.; Wu, C. G. Thickness effects of the thermally evaporated C60 thin films on regular-type CH3NH3PbI3 based solar cells. Sol. Energy. Mater. Sol. Cells 2017, 164, 13–18.
[154] Lee, H.; Rhee, S.; Kim, J.; Lee, C.; Kim, H. J. Surface coverage enhancement of a mixed halide perovskite film by using an uv-ozone treatment. Korean Phys. Soc. 2016, 69, 406–411.
[155] Ning, L.; Song, L.; Wen, X.; Gu, N.; Du, P.; Yu, J.; Xong, J. Enhanced molecular interaction by polymer additive for efficient and stable flexible perovskite solar cells. J Mater Sci. 2022, 57, 20654–20671.
[156] Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 2014, 8, 9815–9821.
[157] Rad, R. R.; Ganji, B. A.; Taghavinia, N. 4-tert-butyl pyridine additive for moisture-resistant wide bandgap perovskite solar cells. Opt. Mater. 2022, 123, No. 111876.
[158] Liu, H.; Lu, Z.; Zhang, W.; Wang, J.; Lu, Z.; Dai, Q.; Qi, X.; Shi, Y.; Hua, Y.; Chen, R.; Shi, T.; Xia, H.; Wang, H.-L. Anchoring vertical dipole to enable efficient charge extraction for high-performance perovskite solar cells. Adv. Sci. 2022, 9, No. 2203640.
[159] Zhang, W.; Cai, Y.; Liu, H.; Xia, Y.; Cui, J.; Shi, Y.; Chen, R.; Shi, T.; Wang H.-L. Organic-free and lead-free perovskite solar cells with efficiency over 11 %. Adv. Energy Mater. 2022, 12, No. 2202491.
[160] Wang, F.; Cao, Y.; Chen, C.; Chen, Q.; Wu, X.; Li, X.; Qin, T.; and Huang, W. Materials toward the upscaling of perovskite solar cells: Progress, challenges, and strategies. Adv. Funct. Mater. 2018, 28, No. 1803753.
[161] Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; and Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347.
[162] Ryu, S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Yang, W. S.; Seo, J.; and Seok, S. I. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 2014, 7, 2614–2618.
[163] Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. Challenges for commercializing perovskite solar cells. Science 2018, 361, No. 8235.
[164] Bu, T.; Liu, X.; Zhou, Y.; Yi, J.; Huang, X.; Luo, L.; Xiao, J.; Ku, Z.; Peng, Y.; Huang, F.; Cheng, Y.-B.; Zhong, J. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 2017, 10, 2509–2515.
[165] You, J.; Hong, Z.; Yang, Y. (Michael); Chen, Q.; Cai, M.; Song, T.-B.; Chen, C.-C.; Lu, S.; Liu, Y.; Zhou, H.; and Yang, Y. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 2014, 8, 1674–1680.
[166] Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2017, 2, No. 16177.
[167] Yin, X.; Que, M.; Xing, Y.; Que, W. High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer. J. Mater. Chem. A 2015, 3, 24495–24503.
[168] Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Hole-transporting materials in inverted planar perovskite solar cells. Adv. Energy Mater. 2016, 6, No. 1600474.
[169] Pham, H. D.; Hu, H.; Feron, K.; Manzhos, S.; Wang, H.; Lam, Y. M.; Sonar, P. Thienylvinylenethienyl and naphthalene core substituted with triphenylamines-highly efficient hole transporting materials and their comparative study for inverted perovskite solar cells. Sol. RRL 2017, 1, No. 1700105.
[170] Zhang, J.; Mao, W.; Hou, X.; Duan, J.; Zhou, J.; Huang, S.; Ou-Yang, W.; Zhang, X.; Sun, Z.; Chen, X. Solution-processed Sr-doped NiOx as hole transport layer for efficient and stable perovskite solar cells. Sol. Energy 2018, 174, 1133–1141.
[171] Wang, B.; Wong, K. Y.; Yang, S.; Chen, T. Crystallinity and defect state engineering in organo-lead halide perovskite for high-efficiency solar cells J. Mater. Chem. A 2016, 4, 3806–3812.
[172] Chung, C.-C.; Narra, S.; Jokar, E.; Wu, H.-P.; Diau, E. W.-G.; Inverted planar solar cells based on perovskite/graphene oxide hybrid composites. J. Mater. Chem. A 2017, 5, 13957–13965.
[173] Gao, Y.-B.; Wu, Y.-J.; Liu, Y.; Chen, C.; Bai, X.; Yang, L.-L.; Shi, Z.-F.; Yu, William W.; Dai, Q.-L.; Zhang, Y. Dual functions of crystallization control and defect passivation enabled by an ionic compensation strategy for stable and high-efficient perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 3631-3641.
[174] Yang, D.; Zhang, X.; Wang, K.; Wu, C.-C.; Yang, R.; Hou, Y.-C.; Jiang, Y.-Y.; Liu, S.-Z.; Priya, S. Stable efficiency exceeding 20.6 % for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers. Nano Lett. 2019, 19, 3313-3320.
電子全文 電子全文(網際網路公開日期:20290124)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 藉由改質電子傳輸層及電洞傳輸層以實現及理解高效率反式結構鈣鈦礦太陽能電池
2. I.雙邊胍基修飾具有聚集誘導放光性質的順式與偕式四苯乙烯分子骨架以作為偵測去氧核醣核酸之螢光探針並探討去氧核醣核酸的二級結構變化 II.胍基與磷酸基修飾四苯乙烯應用於自我組裝誘導發光超分子
3. 浮力式光伏電源可靠性和能量回饋的整合分析方法
4. 高品質有機金屬鹵化物鈣鈦礦太陽能電池的固態反應過程與無機電洞傳輸層之研究
5. 使用PTAA衍生物當作混合錫鉛鈣鈦礦太陽能電池之電洞傳輸材料
6. 以溴摻雜甲基銨碘化鉛(MAPbI3)疊層薄膜實現鈣鈦礦太陽能電池及其特性量測
7. 發展1,4-二硫蘇糖醇響應性比例螢光型高分子奈米探針與麩胱甘肽響應性高分子奈米藥物載體
8. 鈣鈦礦太陽能電池的衰退機制與發展非鉛鈣鈦礦太陽能電池
9. 紙張基底材受銅箔影響之穩定性處理評估
10. 具有多功能與適應性的鈣鈦礦量子點並應用於光電裝置
11. 逆溫結晶法製備無鉛MASnI3鈣鈦礦光電探測器的研究
12. 金屬鹵化物鈣鈦礦材料與開發高效率、超高亮度、以及具有穩定度鈣鈦礦發光二極體之研究
13. 碳點對染料敏化與鈣鈦礦太陽能電池光電性能的影響
14. 分級醫療與就醫自由: 醫院組織、醫師及就醫民眾之意向與行為研究
15. 探討醫師對臨床決策支援系統的接受度--以透析患者貧血治療為例