跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 01:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪靖唐
研究生(外文):Ching-Tang Hung
論文名稱:水下音響目標偵測與追蹤研究
論文名稱(外文):Study of detection and tracking of underwater acoustic target
指導教授:陳琪芳陳琪芳引用關係
指導教授(外文):Chi-Fang Chen
口試委員:黃維信彭巧明胡惟鈞賴堅戊
口試委員(外文):Wei-Shien HwangChiao-Ming PengWei-Chun HuJian-Wu Lai
口試日期:2024-01-22
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:139
中文關鍵詞:到達時間差接收訊號的強度指示水下目標偵測定位水下聲學貝式定理
外文關鍵詞:TDOARSSIUnderwater localizationUnderwater acousticBayes' theorem
DOI:10.6342/NTU202400690
相關次數:
  • 被引用被引用:0
  • 點閱點閱:12
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究發展一套結合到達時間差(Time Difference of Arrival,TDOA)、接收訊號的強度指示(Received Signal Strength Indication,RSSI)、傳輸損失(Transmission Loss)與貝式定理(Bayes'' theorem)之水下目標定位技術,藉由計算聲源強度分佈、接收強度分佈與機率的不確定性使得傳統之定值結果擴展成機率分佈結果,並帶入貝式定理計算條件機率關係與更新偵測結果信心程度,讓研究人員能更方便的了解目標分佈情形。
本文主要分為三大核心部分,分別為使用單支水下麥克風時偵測方法、使用水下陣列時偵測方法以及建構聲學傳播與定位模擬環境。單支水下麥克風偵測方法的偵測目標為裝有水下發報器之美洲擬鰈,利用低噪音自動無人帆船範圍式偵測與本文演算法計算出波士頓港灣內區域之美洲擬鰈分佈情形。水下陣列偵測方法的偵測目標為飛航紀錄器的水下發報器,與洋聲股份有限公司、海洋委員會國家海洋研究院、國家運輸安全調查委員會合作,利用拖曳方式於臺灣小琉球南方海域試驗,並使用本文演算法推估出水下發報器位置以及信心權重。聲學傳播與定位模擬環境使用Bellhop、Gazebo、ROS與MOOS-IvP開源軟體在Ubuntu 20.04作業系統上架設,其程式語言主要為C++與Python,此模擬環境中利用Bellhop聲線模擬模組計算聲線與轉移函數並做摺積得出模擬接收訊號,且環境中透過兩支水下麥克風計算到達時間差估計聲源方位。
雖說本文提出的兩個偵測方法使用不同的偵測目標做試驗,但兩者偵測目標的本質均相同-被動音響目標定位,因此,無論為單數或複數水下麥克風做水下目標定位,只要在了解聲源特性的情況下均能使用本文發展的水下定位演算法,在生物族群的偵測或是水下發報器定位上達到預期目標。
This study develops an underwater target localization technique that integrates Time Difference of Arrival (TDOA), Received Signal Strength Indication (RSSI), Transmission Loss, and Bayes'' theorem. By calculating the distribution of sound source strength, received strength, and the uncertainty of probabilities, this method extends traditional determine results to probabilistic distributions, allowing researchers to better understand target distributions.
The paper is divided into three sections: detection methods using a single hydrophone, detection methods using an array of hydrophones, and an acoustic propagation and localization simulation environment. The single hydrophone detection targets winter flounder tagged with underwater transmitters, using low-noise automated unmanned sailboats for range-based detection and the algorithms presented in this paper to map the distribution of winter flounder in the Boston Harbor area. The hydrophone array detection targets the underwater transmitters of flight recorders. In collaboration with OceanSound CO., LTD., National Academy of Marine Research (OAC), and Taiwan Transportation Safety Board, experiments were conducted south of Xiao Liuqiu, Taiwan. The location and confidence weight of the underwater transmitters were estimated using the algorithms in this paper. The acoustic propagation and localization simulation was set up on Ubuntu 20.04 using open-source software such as Bellhop, Gazebo, ROS, and MOOS-IvP. The main programming languages are C++ and Python. The Bellhop acoustic ray simulation module calculates the eigen ray and transfer functions, and convolution is performed to obtain simulated received signals. With two hydrophones in the simulation environment, TDOA can be calculated to determine the bearing angle.
Although the two detection methods proposed in this study detect different targets, the nature of both targets is the same - passive acoustic target localization. Therefore, whether using a single or multiple hydrophones for underwater target localization, the algorithm developed in this paper can be utilized, provided the characteristics of the sound source are understood. This approach can achieve the expected goals in detecting biological populations or locating underwater beacons.
博士學位論文口試委員會審定書 i
謝誌 ii
中文摘要 iii
Abstract iv
目次 vi
圖次 viii
表次 xvi
符號表 xvii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 4
1.3 文獻回顧 6
1.4 論文架構 19
1.5 主要成果與貢獻 20
第二章 單一水下麥克風偵測定位 21
2.1 偵測目標 21
2.2 硬體架構 22
2.3 聲學訊號偵測 24
2.4 目標分佈估計 29
2.5 實地試驗 33
2.6 試驗結果 38
第三章 水下陣列偵測定位 47
3.1 偵測目標 47
3.2 硬體架構 48
3.3 水下目標偵測定位演算法 51
3.4 實地試驗 67
3.5 試驗結果 78
第四章 聲學傳播與定位模擬環境 91
4.1 聲學計算模組 91
4.2 Gazebo機器人模擬環境 94
4.3 Robot operating system機器人系統 96
4.4 特徵聲線與偵測結果視覺化 99
4.5 載具控制與資訊呈現 101
4.6 模擬試驗 102
4.7 模擬結果 104
第五章 結論與建議 112
5.1 結論 112
5.2 建議 114
參考文獻 116
附錄A 127
附錄B 130
附錄C 136
附錄D 139
[1]F. R. Spellman, The Handbook of Nature (The Handbook of Nature). Bernan Pr, 2019.
[2]B. Eakins and G. Sharman, "Hypsographic curve of Earth’s surface from ETOPO1," NOAA National Geophysical Data Center, Boulder, CO, vol. 5, p. 1, 2012.
[3]M. Fava. "How much of the Ocean has been explored?" https://oceanliteracy.unesco.org/ocean-exploration/.
[4]K. L. Bell et al., "Low-cost, deep-sea imaging and analysis tools for deep-sea exploration: a collaborative design study," Frontiers in Marine Science, vol. 9, p. 873700, 2022.
[5]A. Oka and L. Lampe, "Distributed target tracking using signal strength measurements by a wireless sensor network," IEEE Journal on selected areas in Communications, vol. 28, no. 7, pp. 1006-1015, 2010.
[6]M. Wälchli, P. Skoczylas, M. Meer, and T. Braun, "Distributed event localization and tracking with wireless sensors," in International Conference on Wired/Wireless Internet Communications, 2007: Springer, pp. 247-258.
[7]J. M. Hovem, "Underwater acoustics: Propagation, devices and systems," Journal of Electroceramics, vol. 19, pp. 339-347, 2007.
[8]L. D. Stone, C. Keller, T. Kratzke, and J. Strumpfer, "Search analysis for the location of the AF447 underwater wreckage," Report to BEA, pp. 1-8, 2011.
[9]N. C. Mitchell and J. E. H. Clarke, "Classification of seafloor geology using multibeam sonar data from the Scotian Shelf," Marine Geology, vol. 121, no. 3-4, pp. 143-160, 1994.
[10]S. Siddagangaiah, C.-F. Chen, W.-C. Hu, and A. Farina, "The dynamical complexity of seasonal soundscapes is governed by fish chorusing," Communications Earth & Environment, vol. 3, no. 1, p. 109, 2022.
[11]陳琪芳, 黃維信, 謝力文 和 張元櫻, "『先進聲納偵測距離預測系統』環境資料庫模組建立與系統升級," 2002-10. [Online]. Available: http://140.112.114.62/handle/246246/134703.
[12]陳琪芳, 林穎聰 和 謝力文, "『先進聲納偵測距離預測系統』驗證與評估," 2001. Accessed: 2023-12-12. [Online]. Available: http://140.112.114.62/handle/246246/135435
[13]S. M. Wiggins, I. Leifer, P. Linke, and J. A. Hildebrand, "Long-term acoustic monitoring at North Sea well site 22/4b," Marine and Petroleum Geology, vol. 68, pp. 776-788, 2015.
[14]M. Reggiannini and O. Salvetti, "Seafloor analysis and understanding for underwater archeology," Journal of Cultural Heritage, vol. 24, pp. 147-156, 2017.
[15]R. Barkley, "The Kuroshio current," Science Journal, vol. 6, pp. 54-60, 1970.
[16]T. Tang, J. Tai, and Y. Yang, "The flow pattern north of Taiwan and the migration of the Kuroshio," Continental Shelf Research, vol. 20, no. 4-5, pp. 349-371, 2000.
[17]K. McIntosh, Y. Nakamura, T.-K. Wang, R.-C. Shih, A. Chen, and C.-S. Liu, "Crustal-scale seismic profiles across Taiwan and the western Philippine Sea," Tectonophysics, vol. 401, no. 1-2, pp. 23-54, 2005.
[18]E. A. Hetland and F. T. Wu, "Deformation of the Philippine Sea Plate under the coastal range, Taiwan: Results from an offshore-onshore seismic experiment," Terr. Atmos. Oceanic Sci, vol. 9, pp. 363-378, 1998.
[19]J.-C. Sibuet and S.-K. Hsu, "How was Taiwan created?," Tectonophysics, vol. 379, no. 1-4, pp. 159-181, 2004.
[20]J. Hu, H. Kawamura, C. Li, H. Hong, and Y. Jiang, "Review on current and seawater volume transport through the Taiwan Strait," Journal of Oceanography, vol. 66, no. 5, pp. 591-610, 2010/10/01 2010, doi: 10.1007/s10872-010-0049-1.
[21]Y. Yamamoto et al., "Modeling the geometry of plate boundary and seismic structure in the southern Ryukyu Trench subduction zone, Japan, using amphibious seismic observations," Journal of Geophysical Research: Solid Earth, vol. 123, no. 2, pp. 1793-1809, 2018.
[22]國家海洋科學研究中心海洋資料庫. "台灣周圍海域海底地形圖." https://openmuseum.tw/muse/digi_object/5e991cceaf56426a1ce21f621db14118.
[23]水產試驗所. "1960年至2021年台灣漁業生產量變動." https://e-info.org.tw/node/235774.
[24]蘇水灶, "我國歷年海上空難案例," 飛航安全調查委員會, 2016.
[25]E. DeLetter, "Watch Coast Guard press conference live: Officials give updates on missing Titanic sub," in USA TODAY, ed. USA TODAY: USA TODAY, 2023.
[26]J. Luo, Y. Han, and L. Fan, "Underwater Acoustic Target Tracking: A Review," Sensors, vol. 18, no. 1, p. 112, 2018. [Online]. Available: https://www.mdpi.com/1424-8220/18/1/112.
[27]X. Su, I. Ullah, X. Liu, and D. Choi, "A Review of Underwater Localization Techniques, Algorithms, and Challenges," Journal of Sensors, vol. 2020, p. 6403161, 2020/01/13, doi: 10.1155/2020/6403161.
[28]Z. Chen, G. Gokeda, and Y. Yu, Introduction to Direction-of-arrival Estimation. Artech House, 2010.
[29]M. Arrays, "Signal Processing Techniques and Applications," in Microphone Arrays: Signal Processing Techniques and Applications: Springer-Verlag, 2001.
[30]D. E. Dudgeon, "Fundamentals of digital array processing," Proceedings of the IEEE, vol. 65, no. 6, pp. 898-904, 1977, doi: 10.1109/PROC.1977.10587.
[31]J. L. Flanagan, J. D. Johnston, R. Zahn, and G. W. Elko, "Computer‐steered microphone arrays for sound transduction in large rooms," The Journal of the Acoustical Society of America, vol. 78, no. 5, pp. 1508-1518, 1985, doi: 10.1121/1.392786.
[32]J. L. Flanagan, D. A. Berkley, G. W. Elko, J. E. West, and M. M. Sondhi, "Autodirective Microphone Systems," Acta Acustica united with Acustica, vol. 73, no. 2, pp. 58-71, // 1991. [Online]. Available: https://www.ingentaconnect.com/content/dav/aaua/1991/00000073/00000002/art00004.
[33]S. A. Schelkunoff, "A mathematical theory of linear arrays," The Bell System Technical Journal, vol. 22, no. 1, pp. 80-107, 1943, doi: 10.1002/j.1538-7305.1943.tb01306.x.
[34]J. Benesty, Jingdong Chen, and Yiteng Huang, "Conventional Beamforming Techniques," in Microphone Array Signal Processing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 39-65.
[35]H. Cox, R. Zeskind, and M. Owen, "Robust adaptive beamforming," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 10, pp. 1365-1376, 1987.
[36]Y. M. Shi, L. Huang, C. Qian, and H. C. So, "Shrinkage Linear and Widely Linear Complex-Valued Least Mean Squares Algorithms for Adaptive Beamforming," IEEE Transactions on Signal Processing, vol. 63, no. 1, pp. 119-131, 2015, doi: 10.1109/TSP.2014.2367452.
[37]J. Liu, W. Liu, H. Liu, B. Chen, X. G. Xia, and F. Dai, "Average SINR Calculation of a Persymmetric Sample Matrix Inversion Beamformer," IEEE Transactions on Signal Processing, vol. 64, no. 8, pp. 2135-2145, 2016, doi: 10.1109/TSP.2015.2512527.
[38]J. R. H. Hakan Erdogan, Shinji Watanabe, Michael I. Mandel, Jonathan Le Roux, "Improved mvdr beamforming using single-channel mask prediction networks," 2016, doi: 10.21437/Interspeech.2016-552.
[39]S. C. Douglas, "Widely-linear recursive least-squares algorithm for adaptive beamforming," in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 19-24 April 2009 2009, pp. 2041-2044, doi: 10.1109/ICASSP.2009.4960015.
[40]B. Friedlander, "A sensitivity analysis of the MUSIC algorithm," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 10, pp. 1740-1751, 1990, doi: 10.1109/29.60105.
[41]M. V. Jakuba et al., "Long‐baseline acoustic navigation for under‐ice autonomous underwater vehicle operations," Journal of Field Robotics, vol. 25, no. 11‐12, pp. 861-879, 2008.
[42]S. M. Smith and D. Kronen, "Experimental results of an inexpensive short baseline acoustic positioning system for AUV navigation," in Oceans'' 97. MTS/IEEE Conference Proceedings, 1997, vol. 1: IEEE, pp. 714-720.
[43]X. Li, X. Liu, L. Qu, Y. Lou, and S. Sun, "Three-dimensional ultra-short base line based underwater acoustical localization utilizing modified Newton algorithm," IEEE Access, vol. 9, pp. 80671-80681, 2021.
[44]M. A. E. Mofeed and H. A. E. Mofeed, "Direction-of-arrival methods (DOA) and time difference of arrival (TDOA) position location technique," in Proceedings of the Twenty-Second National Radio Science Conference, 2005. NRSC 2005., 15-17 March 2005 2005, pp. 173-182, doi: 10.1109/NRSC.2005.193998.
[45]X. Li, Z. D. Deng, L. T. Rauchenstein, and T. J. Carlson, "Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements," Review of Scientific Instruments, vol. 87, no. 4, 2016, doi: 10.1063/1.4947001.
[46]T. Casey, B. Guimond, and J. Hu, "Underwater Vehicle Positioning Based on Time of Arrival Measurements from a Single Beacon," in OCEANS 2007, 29 Sept.-4 Oct. 2007, pp. 1-8, doi: 10.1109/OCEANS.2007.4449186.
[47]J. Yi, D. Mirza, R. Kastner, C. Schurgers, P. Roberts, and J. Jaffe, "ToA-TS: Time of arrival based joint time synchronization and tracking for mobile underwater systems," Ad Hoc Networks, vol. 34, pp. 211-223, 2015/11/01/ 2015, doi: https://doi.org/10.1016/j.adhoc.2014.10.010.
[48]J. Yi, D. Mirza, C. Schurgers, and R. Kastner, "Joint time synchronization and tracking for mobile underwater systems," presented at the Proceedings of the 8th International Conference on Underwater Networks & Systems, Kaohsiung, Taiwan, 2013. [Online]. Available: https://doi.org/10.1145/2532378.2532404.
[49]李威倫, "海豚哨叫聲偵測之研究," 碩士, 工程科學及海洋工程學系, 國立臺灣大學, 2018.
[50]朱韋諺, "中華白海豚哨叫聲偵測、模擬與定位之研究," 碩士, 工程科學及海洋工程學研究所, 國立臺灣大學, 2020.
[51]C.-T. Hung, W.-Y. Chu, W.-L. Li, Y.-H. Huang, W.-C. Hu, and C.-F. Chen, "A Case Study of Whistle Detection and Localization for Humpback Dolphins in Taiwan," Journal of Marine Science and Engineering, vol. 9, no. 7, p. 725, 2021. [Online]. Available: https://www.mdpi.com/2077-1312/9/7/725.
[52]T. Akamatsu, D. Wang, K. Wang, and Y. Naito, "Biosonar behaviour of free-ranging porpoises," Proceedings of the Royal Society B: Biological Sciences, vol. 272, no. 1565, pp. 797-801, 2005, doi: doi:10.1098/rspb.2004.3024.
[53]T. Akamatsu, S. Kimura, S. Li, L. Dong, K. Wang, and D. Wang, "A stereo acoustic event recorder for monitoring abundance and movements of dolphins and porpoises," in 2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, 5-8 April 2011, pp. 1-2, doi: 10.1109/UT.2011.5774144.
[54]張祐誠, "智能載台之水下聲學定位技術研究," 碩士, 工程科學及海洋工程學系, 國立臺灣大學, 2021.
[55]C. T. Hung, Y. C. Zhang, and C. F. Chen, "Autonomous underwater acoustic localization through multiple unmanned surface vehicle," in OCEANS 2022, Hampton Roads, 17-20 Oct. 2022 2022, pp. 1-5, doi: 10.1109/OCEANS47191.2022.9977104.
[56]P. Lourenço, P. Batista, P. Oliveira, C. Silvestre, and P. Chen, "A received signal strength indication-based localization system," in 21st Mediterranean Conference on Control and Automation, 25-28 June 2013, pp. 1242-1247, doi: 10.1109/MED.2013.6608878.
[57]M. I. Jais, P. Ehkan, R. B. Ahmad, I. Ismail, T. Sabapathy, and M. Jusoh, "Review of angle of arrival (AOA) estimations through received signal strength indication (RSSI) for wireless sensors network (WSN)," in 2015 International Conference on Computer, Communications, and Control Technology (I4CT), 21-23 April 2015, pp. 354-359, doi: 10.1109/I4CT.2015.7219597.
[58]G. F. Edelmann, H. C. Song, S. Kim, W. S. Hodgkiss, W. A. Kuperman, and T. Akal, "Underwater acoustic communications using time reversal," IEEE Journal of Oceanic Engineering, vol. 30, no. 4, pp. 852-864, 2005, doi: 10.1109/JOE.2005.862137.
[59]D. R. Jackson and D. R. Dowling, "Phase conjugation in underwater acoustics," The Journal of the Acoustical Society of America, vol. 89, no. 1, pp. 171-181, 1991, doi: 10.1121/1.400496.
[60]D. R. Dowling, "Phase‐conjugate array focusing in a moving medium," The Journal of the Acoustical Society of America, vol. 94, no. 3, pp. 1716-1718, 1993, doi: 10.1121/1.408116.
[61]D. R. Dowling, "Acoustic pulse compression using passive phase‐conjugate processing," The Journal of the Acoustical Society of America, vol. 95, no. 3, pp. 1450-1458, 1994, doi: 10.1121/1.408482.
[62]劉冠汶, 黃清哲, 涂季平, 沈宗佑, 王思皓 和 孫永大, "運用被動時間反轉法及聲線法建立水中聲源二維及三維定位之方法," 中國造船暨輪機工程學刊, vol. 40, no. 3, pp. 153-169, 2021. [Online]. Available: Article/Detail?docID=10234535-202108-202208090003-202208090003-153-169.
[63]T. L. N. Nguyen and Y. Shin, "An Efficient RSS Localization for Underwater Wireless Sensor Networks," Sensors, vol. 19, no. 14, doi: 10.3390/s19143105.
[64]陳昶志, "海洋聲源偵測與定位研究," 碩士, 工程科學及海洋工程學系, 國立臺灣大學, 2022.
[65]陳昶志 和 陳琪芳, "短基線被動式聲學監測-以彰化新虎尾溪口海域為例,"第23屆海洋及水下技術研討會, 2022.
[66]V. Červený, M. M. Popov, and I. Pšenčík, "Computation of wave fields in inhomogeneous media — Gaussian beam approach," Geophysical Journal International, vol. 70, no. 1, pp. 109-128, 1982, doi: 10.1111/j.1365-246X.1982.tb06394.x.
[67]M. D. Collins, "Applications and time‐domain solution of higher‐order parabolic equations in underwater acoustics," The Journal of the Acoustical Society of America, vol. 86, no. 3, pp. 1097-1102, 1989, doi: 10.1121/1.398101.
[68]M. D. Collins, "User’s Guide for RAM Versions 1.0 and 1.0 p," Naval Research Lab, Washington, DC, vol. 20375, p. 14, 1995.
[69]E. L. Hazen et al., "Ontogeny in marine tagging and tracking science: technologies and data gaps," Marine Ecology Progress Series, vol. 457, pp. 221-240, 2012. [Online]. Available: https://www.int-res.com/abstracts/meps/v457/p221-240/.
[70]M. R. Donaldson, S. G. Hinch, C. D. Suski, A. T. Fisk, M. R. Heupel, and S. J. Cooke, "Making connections in aquatic ecosystems with acoustic telemetry monitoring," Frontiers in Ecology and the Environment, vol. 12, no. 10, pp. 565-573, 2014, doi: https://doi.org/10.1890/130283.
[71]N. E. Hussey et al., "Aquatic animal telemetry: A panoramic window into the underwater world," Science, vol. 348, no. 6240, p. 1255642, 2015, doi: doi:10.1126/science.1255642.
[72]Z. D. Deng et al., "Development of external and neutrally buoyant acoustic transmitters for juvenile salmon turbine passage evaluation," Fisheries Research, vol. 113, no. 1, pp. 94-105, 2012/01/01, doi: https://doi.org/10.1016/j.fishres.2011.08.018.
[73]R. S. Brown et al., "A Field Evaluation of an External and Neutrally Buoyant Acoustic Transmitter for Juvenile Salmon: Implications for Estimating Hydroturbine Passage Survival," PLOS ONE, vol. 8, no. 10, p. e77744, 2013, doi: 10.1371/journal.pone.0077744.
[74]G. R. Decelles and S. X. Cadrin, "Movement patterns of winter flounder (Pseudopleuronectes americanus) in the southern Gulf of Maine: observationswith the use of passive acoustic telemetry," (in en), 2010. [Online]. Available: http://hdl.handle.net/1834/25386.
[75]E. Spaulding et al., "An autonomous, near-real-time buoy system for automatic detection of North Atlantic right whale calls," Proceedings of Meetings on Acoustics, vol. 6, no. 1, 2010, doi: 10.1121/1.3340128.
[76]D. Gillespie, "Detection and classification of right whale calls using an ''edge'' detector operating on a smoothed spectrogram," Canadian Acoustics, vol. 32, no. 2, pp. 39-47, 06/01 2004. [Online]. Available: https://jcaa.caa-aca.ca/index.php/jcaa/article/view/1586.
[77]S. Siddagangaiah et al., "Automatic detection of dolphin whistles and clicks based on entropy approach," Ecological Indicators, vol. 117, p. 106559, 2020/10/01, doi: https://doi.org/10.1016/j.ecolind.2020.106559.
[78]W.-C. Hu, S. Siddagangaiah, C.-F. Chen, and N. Pieretti, "Impact of Vessel Transit on Vocalizations of the Taiwanese Humpback Dolphin," Diversity, vol. 14, no. 6, p. 426, 2022. [Online]. Available: https://www.mdpi.com/1424-2818/14/6/426.
[79]D. R. Grossi, "Aviation recorder overview," in Transportation Recording: 2000 and Beyond. International Symposium on Transportation RecordersNational Transportation Safety BoardInternational Transportation Safety Association, 1999.
[80]J. Sear, "The ARL ‘Black Box’Flight Recorder–Invention and Memory," Bachelor Arts (Honours), The University of Melbourne, 2001.
[81]"Final report on the accident on 1st June 2009 to the Airbus A330-203 registered F-GZCP operated by Air France flight AF 447 Rio de Janeiro–Paris," Bureau d’Enquêtes et d’Analyses, 2012.
[82]E. A. Alvanas, "A Line Array of Directional Hydrophones for Improved Detection of Emergency Locator Beacons," M.S., University of Rhode Island, United States -- Rhode Island, 10843891, 2018. [Online]. Available: https://www.proquest.com/dissertations-theses/line-array-directional-hydrophones-improved/docview/2090819948/se-2?accountid=14229
[83]劉文暘, "飛航紀錄器水下定位研究," 碩士, 工程科學及海洋工程學系, 國立臺灣大學, 2020.
[84]L. Wen-Yang, J. Richard, and C. Chi-Fang, "Research on Low-Frequency Underwater Locator Beacon for Aviation," 14th Iinternational Conference On Theoretical And Computational Acoustics (ICTCA), 2019.
[85]J. C. H. Wu, K. C. Wu, and C. F. Chen, "Inversion of ocean currents using NTU-RAY," in 2013 IEEE International Underwater Technology Symposium (UT), 5-8 March 2013 2013, pp. 1-4, doi: 10.1109/UT.2013.6519866.
[86]蘇逸芸, "飛航紀錄器水下偵蒐系統建置之研究," 碩士, 工程科學及海洋工程學系, 國立臺灣大學, 2021.
[87]蘇逸芸, 莊禮彰, 方凱弘, 楊開丞 和 陳琪芳, "飛航記錄器水下偵蒐系統之研究," 中國造船暨輪機工程研討會, 2021.
[88]楊開丞, "使用拖曳式水下麥克風陣列之飛航紀錄器水下偵蒐及定位," 工程科學及海洋工程學系, 國立臺灣大學, 2022.
[89]楊開丞 和 陳琪芳, "拖曳式水下麥克風陣列之飛航紀錄器偵測與定位," 第23屆海洋及水下技術研討會, 2022.
[90]吳昭蓉, "飛航紀錄器水下定位精進研究," 碩士, 工程科學及海洋工程學系, 國立臺灣大學, 2023.
[91]C.-J. Wu et al., "Underwater Positioning Analysis and System Establishment of the Towed Underwater Hydrophone Array System," INTER-NOISE and NOISE-CON Congress and Conference Proceedings, vol. 268, no. 4, pp. 4781-4792, // 2023, doi: 10.3397/IN_2023_0680.
[92]吳昭蓉 et al., "拖曳式水下麥克風系統針對飛行記錄器之水下定位分析及系統建置," 第24屆海洋及水下技術研討會, 2023.
[93]E. A. Fairchild, L. Siceloff, W. H. Howell, B. Hoffman, and M. P. Armstrong, "Coastal spawning by winter flounder and a reassessment of essential fish habitat in the Gulf of Maine," Fisheries Research, vol. 141, pp. 118-129, 2013.
[94]C.-T. Hung, M. Sacarny, K. Zarrella-Smith, M. R. Benjamin, M. Triantafallou, and C.-F. Chen, "Tracking acoustically tagged fish by autonomous sailboat while underway. [Manuscript submitted for publication]," Journal of Ocean Engineering and Science, 2024.
[95]J. B. Allen and L. R. Rabiner, "A unified approach to short-time Fourier analysis and synthesis," Proceedings of the IEEE, vol. 65, no. 11, pp. 1558-1564, 1977.
[96]S. H. Jin et al., "An FPGA-based voice signal preprocessor for the real-time cross-correlation," in 2007 International Conference on Control, Automation and Systems, 2007: IEEE, pp. 793-797.
[97]W.-X. Zhou, "Multifractal detrended cross-correlation analysis for two nonstationary signals," Physical Review E, vol. 77, no. 6, p. 066211, 2008.
[98]R. Byers, "Half‐Normal Distribution," Wiley StatsRef: Statistics Reference Online, 2014.
[99]R. P. Hodges, Underwater acoustics: Analysis, design and performance of sonar. John Wiley & Sons, 2011.
[100]R. J. Urick, Principles of underwater sound, 3 ed. McGraw Hill, 1983.
[101]R. Francois and G. Garrison, "Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption," The Journal of the Acoustical Society of America, vol. 72, no. 6, pp. 1879-1890, 1982, doi: https://doi.org/10.1121/1.388673.
[102]M. A. Ainslie and J. G. McColm, "A simplified formula for viscous and chemical absorption in sea water," The Journal of the Acoustical Society of America, vol. 103, no. 3, pp. 1671-1672, 1998.
[103]J. V. Candy, Bayesian signal processing: classical, modern, and particle filtering methods. John Wiley & Sons, 2016.
[104]T. M. Donovan and R. M. Mickey, Bayesian Statistics for Beginners: a step-by-step approach. Oxford University Press, USA, 2019.
[105]M. Moore, M. E. Madray, and D. A. Rutecki, "2021 Flounder monitoring results," in "Boston: Massachusetts Water Resources Authority.," 2021.
[106]M. Derakhti, J. Thomson, C. S. Bassett, M. P. Malila, and J. T. Kirby, "Statistics of bubble plumes generated by breaking surface waves," ESS Open Archive, 2023, doi: https://doi.org/10.22541/essoar.167751591.11265648/v1.
[107]L. M. Brekhovskikh and Y. P. Lysanov, Fundamentals of Ocean Acoustics (Modern Acoustics and Signal Processing). Springer New York, NY, 2003.
[108]D. Gillespie et al., "PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localisation of cetaceans," Journal of the Acoustical Society of America, vol. 30, no. 5, pp. 54-62, 2008.
[109]B. C. Pijanowski et al., "Soundscape ecology: the science of sound in the landscape," BioScience, vol. 61, no. 3, pp. 203-216, 2011.
[110]M. Ainslie, J. Miksis-Olds, B. Martin, K. Heaney, C. De Jong, and A. von Benda-Beckmann, "Underwater Soundscape and Modeling Metadata Standard," Technical Report by JASCO Applied Sciences for ADEON Prime Contract, 2018.
[111]冉祥萱, "臺灣苗栗外海水下聲景量測分析研究," 碩士, 工程科學及海洋工程學系, 國立臺灣大學, 2021.
[112]胡惟鈞, "臺灣西部近岸海域水下聲景研究," 博士, 工程科學及海洋工程學系, 國立臺灣大學, 2023.
[113]冉祥萱, 何聲衛, Shashidhar Siddagangaiah, 胡惟鈞 和 陳琪芳, "臺灣苗栗外海水下聲景量測分析研究," 第23屆海洋與水下技術研討會, 2021.
[114]A. Zielinski, Y.-H. Yoon, and L. Wu, "Performance analysis of digital acoustic communication in a shallow water channel," IEEE journal of Oceanic Engineering, vol. 20, no. 4, pp. 293-299, 1995.
[115]B. Li, H. Yang, G. Liu, and X. Peng, "A new joint channel equalization and estimation algorithm for underwater acoustic channels," EURASIP Journal on Wireless Communications and Networking, vol. 2017, pp. 1-6, 2017.
[116]J. C. Bancroft, "Introduction to matched filters," CREWES Research, vol. 297, 2002.
[117]K. Ho and Y. Chan, "Solution and performance analysis of geolocation by TDOA," IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no. 4, pp. 1311-1322, 1993.
[118]C.-T. Hung, Y.-C. Zhang, and C.-F. Chen, "Autonomous underwater acoustic localization through multiple unmanned surface vehicle," in OCEANS 2022, Hampton Roads, 2022: IEEE, pp. 1-5.
[119]C.-T. Hung, S.-H. Liu, Y.-H. Huang, C.-F. Chan, and H.-C. Wang, "Localization of an underwater beacon in Task2 of maritime RobotX," in 2019 IEEE Underwater Technology (UT), 2019: IEEE, pp. 1-4.
[120]K. V. Mackenzie, "Nine‐term equation for sound speed in the oceans," The Journal of the Acoustical Society of America, vol. 70, no. 3, pp. 807-812, 1981.
[121]ISO 18405:2017 Underwater acoustics - Terminology, G. International Organization for Standardization (ISO, Switzerland), 2017.
[122]J. A. Hartigan and M. A. Wong, "Algorithm AS 136: A k-means clustering algorithm," Journal of the royal statistical society. series c (applied statistics), vol. 28, no. 1, pp. 100-108, 1979.
[123]水下噪音量測方法(NIEA P210.21B), 環境檢驗所, 行政院環境保護署, 2023.
[124]D. SEACOM. "DK140 - RECORDER BEACON." https://www.dukaneseacom.com/products/aviation/dk140/.
[125]O. Instruments. "SoundTrap ST300 STD - Compact Recorder." https://www.oceaninstruments.co.nz/product/soundtrap-300-std/.
[126]INNOVASEA. "Ascent Acoustic Release." https://www.innovasea.com/fish-tracking/products/acoustic-release-solutions/.
[127]Z. Zhu, S. Han, L. Qi, and H. Zhou, "Mobile broadband waveform prediction based on BELLHOP model," in Tenth International Conference on Digital Image Processing (ICDIP 2018), 2018, vol. 10806: SPIE, pp. 1785-1791.
[128]M. B. Porter, "The bellhop manual and user’s guide: Preliminary draft," Heat, Light, and Sound Research, Inc., La Jolla, CA, USA, Tech. Rep, vol. 260, 2011.
[129]朱韋諺, "中華白海豚哨叫聲偵測、模擬與定位之研究," 工程科學及海洋工程學研究所, 國立臺灣大學, 2020.
[130]朱韋諺 和 陳琪芳, "中華白海豚哨叫聲時序列模擬—利用Bellhop聲線追蹤模型," 第21屆海洋及水下技術研討會, 2019.
[131]F. B. Jensen, W. A. Kuperman, M. B. Porter, H. Schmidt, and A. Tolstoy, Computational ocean acoustics. Springer, 2011.
[132]H. Ching Tang et al., "Enhance signal of underwater locator beacon by adaptive filter and simulation received signal," presented at the INTER-NOISE, Tokyo, Japan, 2023.
[133]N. Koenig and A. Howard, "Design and use paradigms for gazebo, an open-source multi-robot simulator," in 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS)(IEEE Cat. No. 04CH37566), 2004, vol. 3: IEEE, pp. 2149-2154.
[134]H. R. Kam, S.-H. Lee, T. Park, and C.-H. Kim, "Rviz: a toolkit for real domain data visualization," Telecommunication Systems, vol. 60, pp. 337-345, 2015.
[135]M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard, "Nested autonomy for unmanned marine vehicles with MOOS‐IvP," Journal of Field Robotics, vol. 27, no. 6, pp. 834-875, 2010.
[136]"Notched Box Plots." https://sites.google.com/site/davidsstatistics/davids-statistics/notched-box-plots.
電子全文 電子全文(網際網路公開日期:20290215)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊