跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/19 14:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宗宸
研究生(外文):Tsung-Chen Lee
論文名稱:臺灣東北部森林之苔蘚群集多樣性與環境的關係
論文名稱(外文):Environment-diversity relationships of bryophyte communities in Northeastern Taiwan forest
指導教授:澤大衛關秉宗
指導教授(外文):David ZelenýBiing T. Guan
口試委員:楊嘉棟張世杰陳可萱
口試委員(外文):Jia-Dong YangShih-Chieh ChangKo-Hsuan Chen
口試日期:2023-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學系
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
論文頁數:111
中文關鍵詞:苔蘚植物樹冠開闊度雲霧森林海拔環境因子雲霧頻度蘚類植物苔類植物物種豐富度物種更迭
外文關鍵詞:bryophytescanopy opennesscloud forestelevationenvironmental factorsfog frequencyliverwortsmossesspecies richnessspecies turnover
DOI:10.6342/NTU202304498
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在臺灣東北部森林進行了苔蘚植物物種組成調查,以瞭解苔蘚植物與環境因子之關係,並結合樣區內維管束植物物種組成資料進行分析。研究旨在闡明環境因子對苔蘚植物之物種豐富度和物種組成所造成的影響,並且透過與維管束植物群集進行比較,以提供苔蘚植物群集與環境因子關係之見解。
在20 m × 20 m樣區尺度上,本研究先以典型對應分析(Canonical correspondence analysis)量化苔蘚植物之物種更迭(Species turnover)與環境因子之間的關係,結果發現數個苔蘚物種對特定環境具有偏好,且可與過去文獻之定性及觀察性描述相應對照。其次以典型對應分析之結果搭配降趨對應分析(Detrended correspondence analysis)探討苔蘚植物群集與維管束植物群對於環境因子之反應之差異。結果發現苔類植物與蘚類植物對不同環境因子在解釋其物種更迭的重要性排序不同:對於蘚類植物而言,雲霧頻率對物種更迭的解釋比樹冠開闊度更為重要;然而,對於苔類植物上則呈現相反的排序。這些結果可能是由於苔類植物和蘚類植物在構造上的差異所致,反映了這些苔蘚植物對不同環境因子的敏感性。而與維管束植物相比,苔蘚植物在海拔梯度上的物種更迭最低,這可能是由於苔蘚植物高度的散佈能力及較高的取樣完整度所致。
本研究亦使用多元線性迴歸分析苔蘚植物和維管束植物的物種豐富度沿海拔梯度變化的模式。研究結果顯示苔類植物的物種豐富度與海拔呈現正相關,進一步分析顯示環境因子中僅樹冠開闊度對其具有顯著影響,這或許代表即使與海拔不相關的環境因子,也可能會對觀察到的苔類植物物種豐富度的變化有所影響。此外,本研究的結果顯示雲霧頻度對蘚類植物的物種豐富度有顯著影響,這表明雲霧頻度不僅影響蘚類植物的物種更迭,還影響其物種豐富度,再次驗證各環境因子在苔類植物和蘚類植物上的重要性排序不同。對於維。管束植物群集而言,沒有環境因子與其物種豐富度呈顯著相關,顯示苔蘚植物之物種豐富度對環境因子之改變可能較為敏感。
總結而言,本研究突顯了臺灣的蘚類植物、苔類植物及各維管束植物群集在不同的環境因子下,其物種組成與物種豐富度會表現出不同的反應。此外,本研究亦提供了可能的解釋並指出研究結果在推論上的限制。
This study investigated the relationships between bryophytes and environmental factors in Taiwan, specifically focusing on species turnover and richness patterns. By conducting bryophyte surveys and combining them with data on vascular plant composition from the same plots, this study provided insights into the relationship between environmental factors and bryophyte communities.
On a 20 m × 20 m plot scale, the canonical correspondence analysis (CCA) revealed the environment-species turnover relationship of some bryophyte species and specific environmental preferences. Additionally, combined with detrended correspondence analysis (DCA), the results showed varying responses to environmental factors between liverworts, mosses, and vascular plants, possibly due to their anatomical differences, sampling completeness, and sensitivities. Notably, liverworts and mosses exhibited different orders of importance of environmental factors in explaining species turnover, with fog frequency being more critical for liverworts and canopy openness for mosses.
Analyzing all life-form groups' species richness-environmental factor patterns, a positive linear relationship was found for mosses with canopy openness. Furthermore, fog frequency was identified as a driver of liverwort species richness, suggesting its influence on both species turnover and richness in liverworts. In contrast, no significant relationship was found between environmental factors and the species richness of vascular plants, indicating that the response of species richness of bryophytes may be more sensitive to environmental changes than that of vascular plants.
This study highlights the different responses in species turnover and richness between liverworts, mosses, and vascular plant communities to environmental factors in Taiwan. In addition, this study provides possible explanations for the results and cautions to interpret them.
誌謝 i
中文摘要 ii
Abstract iv
Contents vi
List of Figures viii
List of Tables ix
1. Introduction 1
2. Materials and methods 6
2.1. Study area 6
2.2 Sampling design 7
2.3 Species composition data 9
2.4 Environmental variables 11
2.5 Data analysis 14
3. Results 18
3.1 Bryophyte census of study area 18
3.2 Species composition-environment relationships 20
3.3 Species richness-environment relationship 24
4. Discussion 27
4.1 The response of species composition to environmental factors 27
4.2 Characteristics of the bryophyte species turnover compared to other life-form groups 31
4.3 Bryophyte species richness along elevation and the relationships with the environment 34
5. Conclusion 38
References 40
Supplementary Information 53
List of Supplementary Figures 53
List of Supplementary Tables 54
Supplementary Results 55
Appendices 77
Appendix 1: Taxonomical references 77
Appendix 2: Species list 81
Appendix 3: R codes 93
Ah-Peng, C., Chuah-Petiot, M., Descamps-Julien, B., Bardat, J., Stamenoff, P., & Strasberg, D. (2007). Bryophyte diversity and distribution along an altitudinal gradient on a lava flow in La Réunion. Diversity and Distributions, 13, 654–662.
Ah-Peng, C., Wilding, N., Kluge, J., Descamps-Julien, B., Bardat, J., Chuah-Petiot, M., ... & Hedderson, T. A. (2012). Bryophyte diversity and range size distribution along two altitudinal gradients: Continent vs. island. Acta Oecologica, 42, 58–65.
Akiyama, H., Yokoyama, H., Tanaka, A., Furuki, T., & Yamaguchi, T. (2013). Bryophyte species richness investigated by long belt-transects method: A case study in Yakushima Island. Humans and Nature, 24, 21–31.
Ando, Y., Fukasawa, Y., & Oishi, Y. (2017). Interactive effects of wood decomposer fungal activities and bryophytes on spruce seedling regeneration on coarse woody debris. Ecological Research, 32, 173–182.
Ball, L., & Tzanopoulos, J. (2020). Interplay between topography, fog and vegetation in the central South Arabian mountains revealed using a novel Landsat fog detection technique. Remote Sensing in Ecology and Conservation, 6, 498–513.
Brodribb, T. J., & McAdam, S. A. (2011). Passive origins of stomatal control in vascular plants. Science, 331, 582–585.
Bruun, H., Moen, J., Virtanen, R., Grytnes, J. A., Oksanen, L., & Angerbjörn, A. (2006). Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. Journal of Vegetation Science, 17, 37–46.
Catalogue of Life in Taiwan, TAICOL. https://taibnet.sinica.edu.tw/ [Accessed at 8 May 2023]
Central Geological Survey, MOEA. https://gis3.moeacgs.gov.tw/gwh/gsb97-1/sys8/t3/index1.cfm [Accessed at 8 May 2023]
Chang, S.-C., Lai, I.-L., & Wu, J.-T. (2002). Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmospheric Research, 64, 159–167.
Chao, A., & Jost, L. (2012). Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93, 2533–2547.
Chen, C.-H., Lin, T.-C., & Hwong, J.-L. (2007) Variations in the leaf area index and its effect on estimations of primary production in a natural hardwood forest and a cunninghamia lanceolata plantation at the Lienhuachi experimental forest, central Taiwan. Taiwan Journal of Forest Science, 22, 423–439.
Chu, H.-S., Chang, S.-C., Klemm, O., Lai, C.-W., Lin, Y.-Z., Wu, C.-C., ... & Hsia, Y.-J. (2014). Does canopy wetness matter? Evapotranspiration from a subtropical montane cloud forest in Taiwan. Hydrological Processes, 28, 1190–1214.
Colwell, R. K., & Futuyma, D. J. (1971). On the measurement of niche breadth and overlap. Ecology, 52, 567–576.
Cornelissen, J. H. C., & Gradstein, S. R. (1990). On the occurrence of bryophytes and macrolichens in different lowland rain forest types at Mabura Hill, Guyana. Tropical Bryology, 3, 29–35.
de Oliveira, S. M., & ter Steege, H. (2015). Bryophyte communities in the Amazon forest are regulated by height on the host tree and site elevation. Journal of Ecology, 103, 441–450.
De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M., ... & Lenoir, J. (2019). Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3, 744–749.
Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., ... & Mouquet, N. (2010). Defining and measuring ecological specialization. Journal of Applied Ecology, 47, 15–25.
Frahm, J.-P. (1990). The effect of light and temperature on the growth of the bryophytes of tropical rain forests. Nova Hedwigia, 51, 151–164.
Frahm, J.-P., & Gradstein, S. R. (1991). An altitudinal zonation of tropical rain forests using byrophytes. Journal of Biogeography, 18, 669–678.
Frazer, G. W., Canham, C. D., & Lertzman, K. P. (1999). Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York, 36.
Gauch, H. G., & Gauch Jr, H. G. (1982). Multivariate Analysis in Community Ecology. Cambridge University Press.
Gehlhausen, S. M., Schwartz, M. W., & Augspurger, C. K. (2000). Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecology, 147, 21–35.
Gradstein, S. R., Griffin III, D., Morales, M. I., & Nadkarni, N. M. (2001). Diversity and habitat differentiation of mosses and liverworts in the cloud forest of Monteverde, Costa Rica. Caldasia, 23, 203–212.
Gradstein, S. R., Van Reenen, G. B. A., & Griffin III, D. (1989). Species richness and origin of the bryophyte flora of the Colombian Andes. Acta Botanica Neerlandica, 38, 439–448.
Grubb, P. J., Lloyd, J. R., Pennington, T. D., & Whitmore, T. C. (1963). A comparison of montane and lowland rain forest in Ecuador I. The forest structure, physiognomy, and floristics. The Journal of Ecology, 51, 567–601.
Grubb, P. J., & Whitmore, T. C. (1967). A comparison of montane and lowland forest in Ecuador: III. The light reaching the ground vegetation. The Journal of Ecology, 55, 33–57.
Helsen, K., Shen, Y.-C., Lin, T.-Y., Chen, C.-F., Huang, C.-M., Li, C.-F., & Zelený, D. (2022). Climate and soil differentially affect species, trait and diversity patterns of woody overstorey and fern understorey in a subtropical forest along an elevation gradient in Taiwan. Journal of Vegetation Science, 33, e13130.
Hernández‐Hernández, R., Borges, P. A., Gabriel, R., Rigal, F., Ah‐Peng, C., & González‐Mancebo, J. M. (2017). Scaling α‐and β‐diversity: bryophytes along an elevational gradient on a subtropical oceanic Island (La Palma, Canary Islands). Journal of Vegetation Science, 28, 1209–1219.
Hettenbergerová, E., Hájek, M., Zelený, D., Jiroušková, J., & Mikulášková, E. (2013). Changes in species richness and species composition of vascular plants and bryophytes along a moisture gradient. Preslia, 85, 369–388.
Hill, M. O., & Gauch, H. G. (1980). Detrended correspondence analysis: an improved ordination technique. In Classification and ordination: Symposium on advances in vegetation science, Nijmegen, The Netherlands, May 1979 (pp. 47–58). Springer Netherlands.
Hodkinson, I. D. (2005). Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews, 80, 489–513.
Hsieh, T.-C., Ma, K.-H., Chao, A., & Hsieh, M.-T. (2016). Package ‘iNEXT’ (version 3.00). https://cran.r-project.org/web/packages/iNEXT/index.html/ [Accessed at 8 May 2023]
Humphrey, J. W., Davey, S., Peace, A. J., Ferris, R., & Harding, K. (2002). Lichens and bryophyte communities of planted and semi-natural forests in Britain: the influence of site type, stand structure and deadwood. Biological conservation, 107, 165–180.
Hurvich, C. M., & Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297–307.
Hylander, K., Jonsson, B. G., & Nilsson, C. (2002). Evaluating buffer strips along boreal streams using bryophytes as indicators. Ecological Applications, 12, 797–806.
Körner, C. (2007). The use of 'altitude' in ecological research. Trends in Ecology & Evolution, 22, 569–574.
Laanisto, L., Tamme, R., Hiiesalu, I., Szava-Kovats, R., Gazol, A., & Pärtel, M. (2013). Microfragmentation concept explains non-positive environmental heterogeneity–diversity relationships. Oecologia, 171, 217–226.
Lee, T. D., & La Roi, G. H. (1979). Bryophyte and understory vascular plant beta diversity in relation to moisture and elevation gradients. Vegetatio, 40, 29–38.
Legendre, P., & Legendre, L. (2012). Numerical Ecology: Elsevier.
León-Vargas, Y., Engwald, S., & Proctor, M. C. F. (2006). Microclimate, light adaptation and desiccation tolerance of epiphytic bryophytes in two Venezuelan cloud forests. Journal of Biogeography, 33, 901–913.
Lepš, J., & Šmilauer, P. (2003). Multivariate Analysis of Ecological Data Using CANOCO. Cambridge university press.
Levins, R. (1968). Evolution in Changing Environments: Some Theoretical Explorations (No. 2). Princeton University Press.
Lavrakas, P. J. (2008). Encyclopedia of Survey Research Methods. Sage publications.
Li, C.-F., Chytrý, M., Zelený, D., Chen, M.-Y., Chen, T.-Y., Chiou, C.-R., ... & Hsieh, C.-F. (2013). Classification of Taiwan forest vegetation. Applied Vegetation Science, 16, 698–719.
Li, H.-J., Lo, M.-H., Juang, J.-Y., Wang, J., & Huang, C.-Y. (2022). Assessment of spatiotemporal dynamics of diurnal fog occurrence in subtropical montane cloud forests. Agricultural and Forest Meteorology, 317, 108899.
Lin, P.-Y. (2021). Woody species richness along elevation in Taiwan: patterns and mechanisms [Master’s thesis, National Taiwan University]
Lin, T.-C., Hamburg, S. P., Lin, K.-C., Wang, L.-J., Chang, C.-T., Hsia, Y.-J., . . . Liu, C.-P. (2011). Typhoon Disturbance and Forest Dynamics: Lessons from a Northwest Pacific Subtropical Forest. Ecosystems, 14, 127–143.
Lin, T.-Y., The pattern of fern and lycophyte species composition and community-level fern leaf functional traits along an elevation gradient in Northeastern Taiwan [Master’s thesis, National Taiwan University]
Lu, M., & Jetz, W. (2023). Scale-sensitivity in the measurement and interpretation of environmental niches. Trends in Ecology & Evolution, 38, 554–567.
Madigosky, S. R. (2004). CHAPTER 2 - Tropical Microclimatic Considerations. In M. D. Lowman & H. B. Rinker (Eds.), Forest Canopies (Second Edition) (pp. 24–48). San Diego: Academic Press.
Márialigeti, S., Tinya, F., Bidló, A., & Ódor, P. (2016). Environmental drivers of the composition and diversity of the herb layer in mixed temperate forests in Hungary. Plant Ecology, 217, 549–563.
Marline, L., Ah-Peng, C., & Hedderson, T. A. J. (2020). Epiphytic bryophyte diversity and range distributions along an elevational gradient in Marojejy, Madagascar. Biotropica, 52, 616–626.
Mouton, L., Patiño, J., Carine, M., Rumsey, F., de Sequeira, M. M., González-Mancebo, J. M., . . . Vanderpoorten, A. (2023). Patterns and drivers of beta diversity across geographic scales and lineages in the Macaronesian flora. Journal of Biogeography, 50, 858–869.
Økland, R. H. (1994). Patterns of bryophyte associations at different scales in a Norwegian boreal spruce forest. Journal of Vegetation Science, 5, 127–138.
Økland, R. H. (1999). On the variation explained by ordination and constrained ordination axes. Journal of Vegetation Science, 10, 131–136.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. B., ... & Oksanen, M. J. (2022). Package ‘vegan’. Community ecology package in R (version 2.6-4). https://cran.r-project.org/web/packages/vegan [Accessed at 8 May 2023]
Patiño, J., & Vanderpoorten, A. (2018). Bryophyte Biogeography. Critical Reviews in Plant Sciences, 37, 175–209.
Pócs, T. (2011). Signs of Climate Change in the Bryoflora of Hungary. In L. R. Stark, N. G. Slack, & Z. Tuba (Eds.), Bryophyte Ecology and Climate Change (pp. 359–370). Cambridge: Cambridge University Press.
Proctor, M. C. F. (2000). The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecology, 151, 41–49.
Proctor, M. C. F. (2011). Climatic Responses and Limits of Bryophytes: Comparisons and Contrasts with Vascular Plants. In L. R. Stark, N. G. Slack, & Z. Tuba (Eds.), Bryophyte Ecology and Climate Change (pp. 35–54). Cambridge: Cambridge University Press.
Pulliam, H. R. (2000). On the relationship between niche and distribution. Ecology Letters, 3, 349–361.
R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ [Accessed at 8 May 2023]
Rahbek, C. (1995). The Elevational Gradient of Species Richness: A Uniform Pattern? Ecography, 18, 200–205.
Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8, 224–239.
Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G., Morueta-Holme, N., . . . Fjeldså, J. (2019). Humboldt's enigma: What causes global patterns of mountain biodiversity? Science, 365, 1108–1113.
Rey Benayas, J. M. (1995). Patterns of diversity in the strata of boreal montane forest in British Columbia. Journal of Vegetation Science, 6, 95–98.
Pharo, E. J., Beattie, A. J., & Binns, D. (1999). Vascular plant diversity as a surrogate for bryophyte and lichen diversity. Conservation Biology, 13, 282–292.
Richards, P.W. (1984). The ecology of tropical forest bryophytes. In R.M. Schuster (ed.), New Manual of Bryology (pp. 1233–1270). The Hattori Botanical Laboratory, Nichinan.
Rola, K., Plášek, V., Rożek, K., & Zubek, S. (2021). Effect of tree species identity and related habitat parameters on understorey bryophytes–interrelationships between bryophyte, soil and tree factors in a 50-year-old experimental forest. Plant and Soil, 466, 613–630.
Sabatini, F. M., Burrascano, S., Tuomisto, H., & Blasi, C. (2014). Ground layer plant species turnover and beta diversity in southern-European old-growth forests. PLoS One, 9, e95244.
Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1986). Akaike information criterion statistics. Dordrecht, The Netherlands: D. Reidel, 81, 26853.
Sanders, N. J., & Rahbek, C. (2012). The patterns and causes of elevational diversity gradients. Ecography, 35, 1–3.
Schulz, H. M., Li, C.-F., Thies, B., Chang, S.-C., & Bendix, J. (2017). Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data. PLoS One, 12, e0172663.
Sears, M. W., Raskin, E., & Angilletta Jr, M. J. (2011). The world is not flat: defining relevant thermal landscapes in the context of climate change. Integrative and Comparative Biology, 51, 666–675.
Shaw, A. J., & Goffinet, B. (2000). Bryophyte Biology: Cambridge University Press.
Sheh, C.-S., & Wang, M.-K. (1991). An Atlas of Major Soils of Taiwan. Taichung: Soil Survey and Testing Center, National Chung Hsing University
Shimadzu, H. (2018). On species richness and rarefaction: size-and coverage-based techniques quantify different characteristics of richness change in biodiversity. Journal of Mathematical Biology, 77, 1363–1381.
Shmida, A., & Wilson, M. V. (1985). Biological determinants of species diversity. Journal of Biogeography, 12, 1–20.
Slack, N. G. (1982). Bryophytes in relation to ecological niche theory. The Journal of the Hattori Botanical Laboratory, 52, 199–217.
Song, L., Ma, W. Z., Yao, Y. L., Liu, W. Y., Li, S., Chen, K., . . . Nakamura, A. (2015). Bole bryophyte diversity and distribution patterns along three altitudinal gradients in Yunnan, China. Journal of Vegetation Science, 26, 576–587.
Spasojevic, M. J., Grace, J. B., Harrison, S., & Damschen, E. I. (2014). Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients. Journal of Ecology, 102, 447–455.
Táborská, M., Kovács, B., Németh, C., & Ódor, P. (2020). The relationship between epixylic bryophyte communities and microclimate. Journal of Vegetation Science, 31, 1168–1180.
Takahara, H., & Matsumoto, J. (2002). Climatological Study of Precipitation Distribution in Yaku-shima Island, Southern Japan. Journal of Geography (Chigaku Zasshi), 111, 726–746.
Taiwan Climate Change Projection and Information Platform, TCCIP. https://tccip.ncdr.nat.gov.tw/ [Accessed at 8 May 2023]
ter Braak, C. J. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.
Thiers, B. M. (1988). Morphological adaptations of the Jungermanniales (Hepaticae) to the tropical rainforest habitat. The Journal of the Hattori Botanical Laboratory, 64, 5–14.
Tinya, F., Márjaligeti, S., Király, I., Németh, B., & Ódor, P. (2009). The effect of light conditions on herbs, bryophytes and seedlings of temperate mixed forests in Őrség, western Hungary. Plant Ecology, 204, 69–81.
Tuba, Z. (2011). Bryophyte physiological processes in a changing climate: an overview. In L. R. Stark, N. G. Slack, & Z. Tuba (Eds.), Bryophyte Ecology and Climate Change (pp. 13–32). Cambridge: Cambridge University Press.
Westhoff, V., & Van Der Maarel, E. (1978). The Braun-Blanquet Approach (pp. 287–399). Springer Netherlands.
Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3, 385–397.
Yamaguchi, T. (1993) A revision of the genus Leucobryum (Musci) in Asia. The Journal of the Hattori Botanical Laboratory, 73, 1–123.
Yang, J.-D. (2014). Taxonomic studies of Lejeuneaceae subfamily Lejeuneoideae in Taiwan [Doctor’s thesis, Tunghai University]
Zanatta, F., Engler, R., Collart, F., Broennimann, O., Mateo, R. G., Papp, B., ... & Vanderpoorten, A. (2020). Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nature Communications, 11, 5601.
電子全文 電子全文(網際網路公開日期:20241219)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊