|
Adegboye, O. A., Leung, D. H., & Wang, Y.-G. (2018). Analysis of spatial data with a nested correlation structure. Journal of the Royal Statistical Society Series C: Applied Statistics, 67(2), 329–354. Bertoli, W., Conceição, K. S., Andrade, M. G., & Louzada, F. (2020). A bayesian approach for some zero-modified poisson mixture models. Statistical Modelling, 20(5), 467–501. Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., … Bolker, B. M. (2017). glmmtmb balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R journal, 9(2), 378– 400. Chen, C.-S., & Shen, C.-W. (2022). Distribution-free model selection for longitudinal zero-inflated count data with missing responses and covariates. Statistics in Medicine, 41(16), 3180–3198. Feng, C. X. (2021). A comparison of zero-inflated and hurdle models for modeling zero-inflated count data. Journal of statistical distributions and applications, 8(1), 8. He, H., Wang, W., Hu, J., Gallop, R., Crits-Christoph, P., & Xia, Y. (2015). Distribution-free inference of zero-inflated binomial data for longitudinal studies. Journal of applied statistics, 42(10), 2203–2219. Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13–22. Schabenberger, O., & Gotway, C. A. (2017). Statistical methods for spatial data analysis. Chapman and Hall/CRC. TCCIP. (nd). 臺灣氣候變遷推估資訊與調適知識平台. https://tccip.ncdr.nat.gov.tw/.
|