跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 20:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李凡迪
研究生(外文):MOH ERLANGGA ADITYA RIFANDI
論文名稱:AC+DC 控制的雙指閘元件中的量子傳輸
論文名稱(外文):Quantum Transport in a Presence of AC+DC Controlled Double Finger Gates Device
指導教授:潘國興唐士雄
指導教授(外文):QUOC-HUNG PHANCHI-SHUNG TANG
口試委員:潘國興唐士雄關肇正
口試委員(外文):QUOC-HUNG PHANCHI-SHUNG TANGCHAO-CHENG KAUN
口試日期:2024-07-18
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:機械工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:85
中文關鍵詞:N型P型AC+DC雙指閘
外文關鍵詞:AC+DC double finger gatesn-type devicep-type devicequantum transportscattering matrix
相關次數:
  • 被引用被引用:0
  • 點閱點閱:0
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這項研究利用散射矩陣方法調查了N型和P型AC+DC雙指閘分裂閘結構的總電導。該研究深入探討了影響N型和P型器件總電導的四個主要參數。對於N型器件,這些參數包括DC勢能振幅、AC勢能振幅、雙指閘之間的距離(d)以及有效光子能量(Ω)。對於P型器件,則用角頻率(ω)替代有效光子能量(Ω)。研究結果顯示,當AC勢能與DC勢能結合時,會破壞由AC勢能振幅形成的準束縛態,導致準束縛態特徵的消失,並在DC勢能振幅超過AC勢能振幅時出現共振峰。相反地,將AC勢能添加到DC勢能系統中,會在共振峰旁邊引入一個側峰,且這些峰之間的距離受有效光子能量影響。研究還顯示,雙指閘之間的距離顯著影響準束縛態、共振峰和側峰的數量,距離為d = 10 nm時,AC+DC系統的效果最佳。此外,對於N型器件,有效光子能量(Ω)和對於P型器件,角頻率(ω)都會影響準束縛態的數量以及側峰和共振峰之間的距離。這項綜合分析闡明了AC+DC控制的雙指閘結構中的量子輸運特性,確認了由於光子關聯的電子多重散射在側帶之間形成的準束縛態的特性。所開發的理論框架為設計N型開關器件及其在半導體行業中的潛在應用提供了寶貴的見解,為推進量子計算奠定了基礎。
This research investigates the total electric conductance of N-type and P-type AC+DC double finger gate split-gate structures utilizing the scattering matrix method. The study delves into four primary parameters influencing total electric conductance for both N-type and P-type devices. For N-type devices, these parameters include DC potential energy amplitude, AC potential energy amplitude, the distance between the two finger gates (d), and the effective photon energy (Ω). For P-type devices, angular frequency (ω) replaces effective photon energy (Ω). The findings reveal that AC potential energy, when combined with DC potential energy, disrupts the quasi-bound states formed by AC potential energy amplitude, leading to the disappearance of quasi-bound states features and the emergence of a resonance peak when DC potential energy amplitude exceeds AC potential energy amplitude. Conversely, adding AC potential to a DC potential energy system introduces a side peak alongside the resonance peak, with the distance between these peaks influenced by effective photon energy. The study also shows that the separation distance between the finger gates significantly impacts the number of quasi-bound states, resonance peaks, and side peaks, with a distance of d = 10 nm yielding
optimal results for AC+DC systems. Additionally, effective photon energy (Ω) for N-type devices and angular frequency (ω) for P-type devices both affect the number of quasibound states and the distance between side and resonance peaks. This comprehensive analysis elucidates the quantum transport characteristics in AC+DC-controlled SG structures with DFGs, confirming the properties of quasi-bound states due to photonassociated electron multiple scattering between sidebands. The developed theoretical framework offers valuable insights for designing n-type switching devices and potential semiconductor industry applications, providing a foundation for advancing quantum computing.
ABSTRACT II
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IV
TABLE OF FIGURES VI
CHAPTER 1 INTRODUCTION 1
1.1 Introduction to semiconductors 1
1.2 Literature review for transistor development 2
1.3 Literature review for two-dimensional electron gas (2DEG) model 10
1.4 Literature review for AC and DC controlled quantum transport 15
1.5 Literature review for recent quantum transport innovations 21
1.5.1 N-type quantum transport 21
1.5.2 P-type quantum transport 24
CHAPTER 2 THEORETICAL MODEL 29
2.1 Quantum transport theory for N-type AC+DC double finger gates system device 29
2.2 Quantum transport theory for P-type AC+DC double finger gates system device 35
2.3 Scattering matrix method 42
CHAPTER 3 NUMERICAL ANALYSIS RESULT 46
3.1 Total electric conductance results for N-type AC+DC double finger gates 46
3.1.1 Code flow 47
3.1.2 DC addition effects towards the total electric conductance results 48
3.1.3 AC addition effects towards the total electric conductance results 50
3.1.4 The effect of distance between the two finger gates on the total electric conductance results 51
3.1.5 The effect of photon energy on the total electric conductance results 53
3.2 Total conductance results for P-type AC+DC double finger gates 55
3.2.1 Code flow 56
3.2.2 DC addition effects towards the total electric conductance results 57
3.2.3 AC addition effects towards the total electric conductance results 59
3.2.4 The effect of distance between the two finger gates on the total electric conductance results 61
3.2.5 The effect of angular frequency on the total electric conductance results 63
CHAPTER 4 CONCLUSION 66
PUBLICATIONS 68
REFERENCES 69

[1]D. Yan, Z. Meng, L. Qiu, and M. Xue, Recent Advances in Preparation and Applications of 3D Transition Metal Oxides Semiconductor Photonic Crystal, Adv. Photonics Res. 2, (2021).
[2]A. Moshovos and G. S. Sohi, Microarchitectural Innovations: Boosting Microprocessor Performance beyond Semiconductor Technology Scaling, Proc. IEEE 89, 1560 (2001).
[3]A. I. Hochbaum and P. Yang, Semiconductor Nanowires for Energy Conversion, Chem. Rev. 110, 527 (2010).
[4]P. G. Neudeck, Progress in Silicon Carbide Semiconductor Electronics Technology, J. Electron. Mater. 24, 283 (1995).
[5]K. Brennan and K. Hess, High Field Transport in GaAs, InP and InAs, Solid. State. Electron. 27, 347 (1984).
[6]L. Khiangte, R. S. Dhar, K. Kumar, and J. L. Pachuau, State-of-the-Art MOSFET and TCAD in the Advancement of Technology: A Review, (2018).
[7]G. Chen, M. F. Li, C. H. Ang, J. Zheng, and D. L. Kwong, Dynamic NBTI of P-Mos Transistors and Its Impact on MOSFET Scaling, Ieee Electron Device Lett. 23, 734 (2002).
[8]K. Hong et al., Experimental Investigations Into Temperature and Current Dependent On-State Resistance Behaviors of 1.2 KV SiC MOSFETs, Ieee J. Electron Devices Soc. 7, 925 (2019).
[9]S. Hazra, A. De, L. Cheng, J. W. Palmour, M. Schupbach, B. Hull, S. T. Allen, and S. Bhattacharya, High Switching Performance of 1700V, 50A SiC Power MOSFET Over Si IGBT/BiMOSFET for Advanced Power Conversion Applications, Ieee Trans. Power Electron. 1 (2015).
[10]H. Sheng, Z. Chen, F. Wang, and A. R. Millner, Investigation of 1.2 KV SiC MOSFET for High Frequency High Power Applications, (2010).
[11]Y.-W. Wang and M.-Z. Zheng, Invention and Technological Progresses of Integrated Circuits BT - Handbook of Integrated Circuit Industry, in edited by Y. Wang, M.-H. Chi, J. J.-C. Lou, and C.-Z. Chen (Springer Nature Singapore, Singapore, 2024), pp. 3–23.
[12]I. Lo, Advances in GaN Crystals and Their Applications, Crystals 8, 117 (2018).
[13]I. M. Ross, The Foundation of the Silicon Age, Bell Labs Tech. J. 2, 3 (1997).
[14]S. Hasegawa and F. Grey, Electronic Transport at Semiconductor Surfaces––from Point-Contact Transistor to Micro-Four-Point Probes, Surf. Sci. 500, 84 (2002).
[15]E. Ş. Lakatoş, 60 Years from the Invention of the Integrated Circuits, EEA - Electroteh. Electron. Autom. 66, 72 (2018).
[16]A. Blicher, Physics of Semiconductor Power Devices, Reports Prog. Phys. 45, 427 (1982).
[17]J. C. Zolper, A Review of Junction Field Effect Transistors for High-Temperature and High-Power Electronics, Solid. State. Electron. 42, 2153 (1998).
[18]M. S. Adler, Session 4 Solid State Devices &Amp;#8212; Power Transistors, (1979).
[19]J. Nishizawa and K. Yamamoto, High-Frequency High-Power Static Induction Transistor, IEEE Trans. Electron Devices 25, 314 (1978).
[20]Y. M. Sung, J. B. Casady, J. B. Dufrene, and A. K. Agarwal, A Review of SiC Static Induction Transistor Development for High-Frequency Power Amplifiers, Solid. State. Electron. 46, 605 (2002).
[21]B. J. Baliga, The Asymmetrical Field-Controlled Thyristor, IEEE Trans. Electron Devices 27, 1262 (1980).
[22]A. V Krishnamoorthy, R. G. Rozier, J. E. Ford, and F. E. Kiamilev, CMOS Static RAM Chip with High-Speed Optical Read and Write, IEEE Photonics Technol. Lett. 9, 1517 (1997).
[23]P. R. Patterson, K. Elliot, J. Li, Y. Royter, and T. Hussain, Integration of Compound Semiconductor Devices and CMOS (CoSMOS) With Die to Wafer Bonding, Ecs Trans. 16, 221 (2008).
[24]S. Sugahara, Perspective on Field‐effect Spin‐transistors, Phys. Status Solidi 3, 4405 (2006).
[25]B. Li, L. Wang, and G. Casati, Negative Differential Thermal Resistance and Thermal Transistor, Appl. Phys. Lett. 88, (2006).
[26]E. Pop and K. E. Goodson, Thermal Phenomena in Nanoscale Transistors, J. Electron. Packag. 128, 102 (2006).
[27]Y. Wada, Atom Electronics: A Proposal of Atom/Molecule Switching Devices, Ann. N. Y. Acad. Sci. 852, 257 (1998).
[28]T. Kuroda and T. Sakurai, Overview of Low-Power ULSI Circuit Techniques, IEICE Trans. Electron. 78, 334 (1995).
[29]P. Chatterjee, ULSI Market Opportunities and Manufacturing Challenges, in International Electron Devices Meeting 1991 [Technical Digest] (1991), pp. 11–17.
[30]A. H. Ajami, K. Banerjee, and M. Pedram, Scaling Analysis of On-Chip Power Grid Voltage Variations in Nanometer Scale ULSI, Analog Integr. Circuits Signal Process. 42, 277 (2005).
[31]J. Mannhart, High- Transistors, Supercond. Sci. Technol. 9, 49 (1996).
[32]I. Manunza, E. Orgiu, A. Caboni, M. Barbaro, and A. Bonfiglio, Producing Smart Sensing Films by Means of Organic Field Effect Transistors, (2006).
[33]R. W. Keyes, Component Variability as a Limit in Digital Electronics, J. Comput. Electron. 7, 449 (2008).
[34]S. Valasa, Performance Investigation of FinFET Structures: Unleashing Multi-Gate Control Through Design and Simulation at the 7 Nm Technology Node for Next-Generation Electronic Devices, Ecs J. Solid State Sci. Technol. 12, 113012 (2023).
[35]C. Zhang, High-Precision Pulse Reflectometry-Based Fault Localization Approach for Advanced Chip Package Failures, (2023).
[36]A. Zeumault, Innovations in Thin‐film Electronics for the New Generation of Displays, J. Soc. Inf. Disp. 32, 121 (2024).
[37]D. Bhattacharya and N. K. Jha, FinFETs: From Devices to Architectures, Digit. Analog Analog. Digit. IC Des. 2014, 21 (2015).
[38]U. K. Das and T. K. Bhattacharyya, Opportunities in Device Scaling for 3-Nm Node and Beyond: FinFET Versus GAA-FET Versus UFET, IEEE Trans. Electron Devices 67, 2633 (2020).
[39]J. Lin, Advancement and Challenges of Field Effect Transistors Based on Multi-Gate Transistor, J. Phys. Conf. Ser. 2370, 12004 (2022).
[40]S. Sharma, V. Nath, S. S. Deswal, and R. Gupta, Analytical Analysis and Linearity Performance of Dual Metal High-K Schottky Nanowire FET(DM-HK-SNWFET), Int. J. Numer. Model. Electron. Networks Devices Fields 37, (2023).
[41]R. Yerragopu, D. P. A. Priya, and J. K. Kasthuribha, Modeling, Optimization and Comprehensive Comparative Analysis of 7nm FinFET and 7nm GAAFET Devices, AIP Conf. Proc. 2277, 20003 (2020).
[42]A. J. Yang, S. Wang, J. Xu, X. J. Loh, Q. Zhu, and X. R. Wang, Two-Dimensional Layered Materials Meet Perovskite Oxides: A Combination for High-Performance Electronic Devices, ACS Nano 17, 9748 (2023).
[43]Q. Xie et al., NbN-Gated GaN Transistor Technology for Applications in Quantum Computing Systems, in 2021 Symposium on VLSI Technology (2021), pp. 1–2.
[44]P. Wang, S. Han, and R. Quhe, Quantum Transport Simulation of the Two-Dimensional GaSb Transistors, J. Semicond. 42, 122001 (2021).
[45]A. Bergara, J. M. Pitarke, and P. M. Echenique, Quadratic Electronic Response of a Two-Dimensional Electron Gas, Phys. Rev. B 59, 10145 (1999).
[46]P. Phillips, Y. Wan, I. Martin, S. Knysh, and D. Dalidovich, Superconductivity in a Two-Dimensional Electron Gas, Nature 395, 253 (1998).
[47]P. D. Pietro et al., Observation of Dirac Plasmons in a Topological Insulator, Nat. Phys. 8, 556 (2013).
[48]S. Murakami, N. Nagaosa, and S. Zhang, Dissipationless Quantum Spin Current at Room Temperature, Science (80-. ). 301, 1348 (2003).
[49]M. S. SHUR and M. DYAKONOV, TWO-DIMENSIONAL ELECTRONS IN FIELD EFFECT TRANSISTORS, Int. J. High Speed Electron. Syst. 09, 65 (1998).
[50]E. Ribeiro, R. Jaggì, T. Heinzel, K. Ensslin, G. Medeiros‐Ribeiro, and P. M. Petroff, Metal-Insulator Transition in a Disordered Two-Dimensional Electron Gas in GaAs-AlGaAs at Zero Magnetic Field, Phys. Rev. Lett. 82, 996 (1999).
[51]N. Y. Bae, J.-C. Ryu, H. M. Oh, E. H. Lee, W. M. Bae, A. N. Ha, J. Jang, and K. C. Park, Switching of Carbon‐nanotube Emitters by an Integrated MOSFET, J. Soc. Inf. Disp. 19, 398 (2011).
[52]K. von Klitzing, The Quantized Hall Effect, Rev. Mod. Phys. 58, 519 (1986).
[53]S. Mondal, G. C. Gardner, J. Watson, S. Fallahi, A. Yacoby, and M. J. Manfra, Field-Effect-Induced Two-Dimensional Electron Gas Utilizing Modulation-Doped Ohmic Contacts, Solid State Commun. 197, 20 (2014).
[54]L. Pfeiffer, K. W. West, H. L. Stormer, J. P. Eisenstein, K. W. Baldwin, D. Gershoni, and J. Spector, Formation of a High Quality Two‐dimensional Electron Gas on Cleaved GaAs, Appl. Phys. Lett. 56, 1697 (1990).
[55]M. J. Manfra, Molecular Beam Epitaxy of Ultra-High-Quality AlGaAs/GaAs Heterostructures: Enabling Physics in Low-Dimensional Electronic Systems, Annu. Rev. Condens. Matter Phys. 5, 347 (2014).
[56]T.-M. Lu, D. Luhman, K. Lai, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Undoped High Mobility Two-Dimensional Hole-Channel GaAs∕AlxGa1−xAs Heterostructure Field-Effect Transistors With Atomic-Layer-Deposited Dielectric, Appl. Phys. Lett. 90, (2007).
[57]J. C. H. Chen, D. Q. Wang, O. Klochan, A. P. Micolich, K. D. Gupta, F. Sfigakis, D. A. Ritchie, D. Reuter, A. D. Wieck, and A. R. Hamilton, Fabrication and Characterization of Ambipolar Devices on an Undoped AlGaAs/GaAs Heterostructure, Appl. Phys. Lett. 100, (2012).
[58]Y. Hirayama, Formation of Two‐dimensional Electron and Hole Gases in Undoped AlxGa1−xAs/GaAs Heterostructures, J. Appl. Phys. 80, 588 (1996).
[59]R. H. Harrell, K. S. Pyshkin, M. Y. Simmons, D. A. Ritchie, C. J. B. Ford, G. A. C. Jones, and M. Pepper, Fabrication of High-Quality One- And Two-Dimensional Electron Gases in Undoped GaAs/AlGaAs Heterostructures, Appl. Phys. Lett. 74, 2328 (1999).
[60]M. Sammon, M. A. Zudov, and B. I. Shklovskii, Mobility and Quantum Mobility of Modern GaAs/AlGaAs Heterostructures, Phys. Rev. Mater. 2, 64604 (2018).
[61]J. Kim, Improved Switching Uniformity of SCLC-RRAM Using the Vertically Formed Nanoscale 2DEG Electrode and Control of Oxygen Vacancy Distribution, Acs Appl. Electron. Mater. 5, 6178 (2023).
[62]L. Kornblum, E. N. Jin, D. P. Kumah, A. T. Ernst, C. Broadbridge, C. Ahn, and F. J. Walker, Oxide 2D Electron Gases as a Route for High Carrier Densities on (001) Si, Appl. Phys. Lett. 106, (2015).
[63]P. D. C. King et al., Subband Structure of a Two-Dimensional Electron Gas Formed at the Polar Surface of the Strong Spin-Orbit Perovskite KTaO3, Phys. Rev. Lett. 108, (2012).
[64]L. Chang, I. A. Fischer, J. Tang, C. Wang, G. Yu, Y. Fan, K. Murata, T. Nie, M. Oehme, and J. Schulze, Electrical Detection of Spin Transport in Si Two-Dimensional Electron Gas Systems, Nanotechnology 27, 365701 (2016).
[65]Y. Li, S. Kvatinsky, and L. Kornblum, Harnessing Conductive Oxide Interfaces for Resistive Random-Access Memories, Front. Phys. 9, (2021).
[66]L. Casparis et al., Superconducting Gatemon Qubit Based on a Proximitized Two-Dimensional Electron Gas, Nat. Nanotechnol. 13, 915 (2018).
[67]G. Burkard, T. D. Ladd, A. Pan, J. M. Nichol, and J. R. Petta, Semiconductor Spin Qubits, Rev. Mod. Phys. 95, 25003 (2023).
[68]P. Stipsić and M. Milivojević, Control of a Spin Qubit in a Lateral GaAs Quantum Dot Based on Symmetry of Gating Potential, Phys. Rev. B 101, 165302 (2020).
[69]S. Chen, C. Ren, and S. Liang, Spintronics Phenomena of Two-Dimensional Electron Gas at Oxide Interfaces, Adv. Devices & Instrum. 4, 24 (2024).
[70]J. Nitta, Spin–Orbit Interaction and Spintronics, JSAP Rev. 2023, (2023).
[71]A. Danilenko, A. Pöschl, D. Sabonis, V. Vlachodimitropoulos, C. Thomas, M. J. Manfra, and C. Marcus, Spin-Resolved Spectroscopy Using a Quantum Dot Defined in InAs 2DEG (2022).
[72]S. Komatsu and M. Akabori, Spin-Filter Device Using the Zeeman Effect with Realistic Channel and Structure Parameters, Jpn. J. Appl. Phys. 63, 02SP14 (2024).
[73]G. F. A. Malik, M. A. Kharadi, F. A. Khanday, and N. Parveen, Spin Field Effect Transistors and Their Applications: A Survey, Microelectronics J. 106, 104924 (2020).
[74]W.-B. Lee, S. B. Kim, K.-W. Kim, K.-J. Lee, H. C. Koo, and G.-M. Choi, Direct Observation of Spin Accumulation and Spin-Orbit Torque Driven by Rashba-Edelstein Effect in an InAs Quantum-Well Layer, Phys. Rev. B 104, 184412 (2021).
[75]H. Zhang, C. Jin, R. Lian, P. Gong, R. Wang, J. Wang, and X. Shi, Spin Field-Effect Transistors Based on Massless Birefringent Dirac Fermions in Polar Dirac Semimetals, in (2022).
[76]J. Knoch, Nanoelectronics: From Device Physics and Fabrication Technology to Advanced Transistor Concepts (Walter de Gruyter GmbH \& Co KG, 2024).
[77]A. Szyszka, M. Wośko, A. Stafiniak, J. Prażmowska, and R. Paszkiewicz, Scanning Probe Microscopy Nanoscale Electrical Characterization of AlGaN/GaN Grown on Structured GaN Templates, Solid. State. Electron. 193, 108288 (2022).
[78]A. Ganguly and R. Goswami, Chapter 8 - Low Dimensional Materials in Nanoelectronics, in Micro and Nano Technologies, edited by A. Sarkar, C. K. Sarkar, A. Deyasi, D. De, and A. B. T.-N. : P. Benfdila Materials and Devices (Elsevier, 2023), pp. 173–192.
[79]S. Ghedira, A. Fargi, and A. Kalboussi, On The Effect Of Optical Power On Quantum Dot HEMT Transistor, in 2023 20th International Multi-Conference on Systems, Signals & Devices (SSD) (2023), pp. 856–861.
[80]X. Yu, The Progress of the Quantum Hall Effect, Highlights Sci. Eng. Technol. 5, 21 (2022).
[81]Y. Gu, The Progress of Quantum Anomalous Hall Effect in Graphene and the State-of-Art Applications, Highlights Sci. Eng. Technol. 5, 223 (2022).
[82]L. P. Kouwenhoven, S. Jauhar, K. McCormick, D. Dixon, P. L. McEuen, Y. V Nazarov, N. C. van der Vaart, and C. T. Foxon, Photon-Assisted Tunneling through a Quantum Dot, Phys. Rev. B 50, 2019 (1994).
[83]D. J. Thouless, Quantization of Particle Transport, Phys. Rev. B 27, 6083 (1983).
[84]K. Hashimoto and C. Uchiyama, Nonadiabaticity in Quantum Pumping Phenomena Under Relaxation, Entropy 21, 842 (2019).
[85]E. R. Mucciolo and C. Lewenkopf, Spin Pumping With Quantum Dots, Int. J. Nanotechnol. 4, 482 (2007).
[86]M. Alos-Palop and M. Blaauboer, Adiabatic Quantum Pumping in Normal-Metal–Insulator–Superconductor Junctions in a Monolayer of Graphene, Phys. Rev. B 84, (2011).
[87]S. Rojek, M. Governale, and J. König, Spin Pumping Through Quantum Dots, Phys. Status Solidi 251, 1912 (2013).
[88]A. Saha, D. Rainis, R. P. Tiwari, and D. Loss, Quantum Charge Pumping Through Fractional Fermions in Charge Density Modulated Quantum Wires and Rashba Nanowires, Phys. Rev. B 90, (2014).
[89]M. Alos-Palop, R. P. Tiwari, and M. Blaauboer, Adiabatic Quantum Pumping of Chiral Majorana Fermions, Phys. Rev. B 89, (2014).
[90]S. Hu, Topological Quantum Transport and Spatial Entanglement Distribution via Disordered Bulk Channel, (2020).
[91]S. Hu, Y. Ke, and C. Lee, Topological Quantum Transport and Spatial Entanglement Distribution via a Disordered Bulk Channel, Phys. Rev. A 101, (2020).
[92]P. Marra and R. Citro, Fractional Quantization of Charge and Spin in Topological Quantum Pumps, Eur. Phys. J. Spec. Top. 226, 2781 (2017).
[93]P. Sharma and C. Chamon, Quantum Pump for Spin and Charge Transport in a Luttinger Liquid, Phys. Rev. Lett. 87, (2001).
[94]B. Wang, J. Wang, J. Wang, and D. Y. Xing, Spin Current Carried by Magnons, Phys. Rev. B 69, (2004).
[95]P.-H. Ahn and S.-M. Hong, Quantum Transport Simulation with the First-Order Perturbation: Intrinsic AC Performance of Extremely Scaled Nanosheet MOSFETs in THz Frequencies, in 2021 IEEE International Electron Devices Meeting (IEDM) (2021), pp. 18.4.1-18.4.4.
[96]H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu, Multichannel Ballistic Transport in Multiwall Carbon Nanotubes, Phys. Rev. Lett. 95, 86601 (2005).
[97]S. Datta, Quantum Transport: Atom to Transistor (Cambridge university press, 2005).
[98]H. Xu, Scattering-Matrix Method for Ballistic Electron Transport: Theory and an Application to Quantum Antidot Arrays, Phys. Rev. B 50, 8469 (1994).
[99]H. v. Houten, C. W. J. Beenakker, J. Williamson, M. Broekaart, P. H. M. v. Loosdrecht, van B. Wees, J. E. Mooij, C. T. Foxon, and J. J. Harris, Coherent Electron Focusing With Quantum Point Contacts in a Two-Dimensional Electron Gas, Phys. Rev. B 39, 8556 (1989).
[100] van B. Wees, L. P. Kouwenhoven, E. M. M. Willems, C. J. P. M. Harmans, J. E. Mooij, H. v. Houten, C. W. J. Beenakker, J. Williamson, and C. T. Foxon, Quantum Ballistic and Adiabatic Electron Transport Studied With Quantum Point Contacts, Phys. Rev. B 43, 12431 (1991).
[101]G. Santoruvo, A. Allain, D. Ovchinnikov, and E. Matioli, Magneto-Ballistic Transport in GaN Nanowires, Appl. Phys. Lett. 109, (2016).
[102]S. Heedt, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, Ballistic Transport and Exchange Interaction in InAs Nanowire Quantum Point Contacts, Nano Lett. 16, 3116 (2016).
[103]J. Gooth, B. Borg, H. Schmid, V. Schaller, S. Wirths, K. E. Moselund, M. Luisier, S. Karg, and H. Riel, Ballistic One-Dimensional InAs Nanowire Cross-Junction Interconnects, Nano Lett. 17, 2596 (2017).
[104]S. Li, G.-Y. Huang, J. Guo, N. Kang, P. Caroff, and H. Xu, Ballistic Transport and Quantum Interference in InSb Nanowire Devices, Chinese Phys. B 26, 27305 (2017).
[105]H.-C. Han, F. Jazaeri, A. D’Amico, Z. Zhao, S. Lehmann, C. Kretzschmar, E. Charbon, and C. Enz, Back-Gate Effects on DC Performance and Carrier Transport in 22 Nm FDSOI Technology down to Cryogenic Temperatures, Solid. State. Electron. 193, 108296 (2022).
[106]M. R. Khalid, F. Ahmad, B. K. Panigrahi, and H. Rahman, A Capacity Efficient Power Distribution Network Supported by Battery Swapping Station, Int. J. Energy Res. 46, 4879 (2021).
[107]Y. Sun, J. Geng, R. A. Badcock, and Z. Jiang, Dynamic Resistance and Voltage Response of a REBCO Bifilar Stack Under Perpendicular DC-Biased AC Magnetic Fields, Supercond. Sci. Technol. 36, 95014 (2023).
[108]J. Fu and Y. Zhou, Effect of Electric-Field Components on the Flashover Characteristics of Oil-Paper Insulation Under Combined AC-DC Voltage, Ieee Access 11, 556 (2023).
[109]J. Siegl, J. Picó-Cortés, and M. Grifoni, Particle Conserving Approach to Ac-Dc Driven Interacting Quantum Dots with Superconducting Leads, Phys. Rev. B 107, 115405 (2023).
[110]M. Kruskopf et al., Graphene Quantum Hall Effect Devices for AC and DC Electrical Metrology, IEEE Trans. Electron Devices 68, 3672 (2021).
[111]G. Qiu, C. Niu, Y. Wang, M. Si, Z. Zhang, W. Wu, and P. D. Ye, Quantum Hall Effect of Weyl Fermions in N-Type Semiconducting Tellurene, Nat. Nanotechnol. 15, 585 (2020).
[112]Y.-F. Liao, Q.-H. Phan, C.-S. Tang, N. R. Abdullah, C.-C. Kaun, and V. Gudmundsson, Spin Quantum Transport in Double Top-Gate System, Chinese J. Phys. 85, 15 (2023).
[113]L. Lee, Q.-H. Phan, C.-S. Tang, N. R. Abdullah, and V. Gudmundsson, Plunger Gate Effects on Magneto Transport in Double-Top Gate Spin-Orbit Devices, Phys. B Condens. Matter 675, 415591 (2024).
[114]Z. L. Teh, L. Hu, A. Gentle, Z. Chen, Y. Gao, L. Yuan, Y. Hu, T. Wu, R. Patterson, and S. Huang, Enhanced Power Conversion Efficiency via Hybrid Ligand Exchange Treatment of P-Type PbS Quantum Dots, ACS Appl. Mater. Interfaces 12, 22751 (2020).
[115]A. Khaliq, S. Zhang, J. Huang, K. Kang, and Y. Wang, Deep Insight Into Channel Engineering of Sub-3 Nm-Node P-Type Nanosheet Transistors With a Quantum Transport Model, Prog. Electromagn. Res. 174, 75 (2022).
[116]Y. Guan, H. Carrillo-Nuñez, V. P. Georgiev, A. Asenov, F. Liang, Z. Li, and H. Chen, Quantum Simulation Investigation of Work-Function Variation in Nanowire Tunnel FETs, Nanotechnology 32, 150001 (2021).
[117]W. A. Chen, Q. H. Phan, C. S. Tang, N. R. Abdullah, and V. Gudmundsson, Quantum Transport in P-Type Narrow Channel with DC-Biased Double Finger Gate, Phys. Lett. Sect. A Gen. At. Solid State Phys. 439, (2022).
[118]J.-Z. Lin, Q.-H. Phan, C.-S. Tang, N. R. Abdullah, and V. Gudmundsson, Spin-Orbit Magneto-Transport in P-Type Double Top-Gate Devices, Solid State Commun. 115547 (2024).
[119]C. S. Tang, Y. Y. Chen, Q. H. Phan, N. R. Abdullah, and V. Gudmundsson, AC-Gate Controlled Transport Sideband Spectroscopy in GaAs Quantum Channels, Phys. Lett. Sect. A Gen. At. Solid State Phys. 419, (2021).
[120]K. Kurokawa, Power Waves and the Scattering Matrix, IEEE Trans. Microw. Theory Tech. 13, 194 (1965).
[121]G. Lesovik and I. Sadovskyy, Scattering Matrix Approach to the Description of Quantum Electron Transport, Physics-Uspekhi 54, 1007 (2012).
[122]R. Landauer, Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction, IBM J. Res. Dev. 1, 223 (1957).
[123]I. Vurgaftman, J. Meyer, and R. Ram-Mohan, Band Parameters for III-V Compound Semiconductors and Their Alloys, J. Appl. Phys. 89, 5815 (2001).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文