|
1.Thorburn AW, Storlien LH, Jenkins AB, Khouri S, Kraegen EW. Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. The American Journal of Clinical Nutrition. 49(6): 1155-1163, 1989. 2.Miller A, Adeli K. Dietary fructose and the metabolic syndrome. Current Opinion in Gastroenterology. 24(2):204-9, 2008. 3.Kawabata K, Kanmura S, Morinaga Y, Tanaka A, Makino T, Fujita T, Arima S, Sasaki F, Nasu Y, Tanoue S, Hashimoto S, Ido A. A high‑fructose diet induces epithelial barrier dysfunction and exacerbates the severity of dextran sulfate sodium‑induced colitis. International Journal of Molecular Medicine. 43(3):1487-1496, 2019. 4.Volynets V, Spruss A, Kanuri G, Wagnerberger S, Bischoff S C, Bergheim I. Protective effect of bile acids on the onset of fructose-induced hepatic steatosis in mice. Journal of lipid research. 51(12): 3414-3424, 2010. 5.Miranda PJ, DeFronzo RA, Califf RM, Guyton JR. Metabolic syndrome: definition, pathophysiology, and mechanisms. Am Heart J. 149(1):33-45, 2005. 6.蘇郁文。腸道微菌叢與糖尿病及代謝症候群。臨床醫學月刊。84(1):477-483, 2019。 7.Samson SL, Garber AJ. Metabolic syndrome. Endocrinol Metab Clin North Am. 43:1-23, 2014. 8.Gobato AO, Vasques AC, Zambon MP, Barros Filho Ade A, Hessel G. Metabolic syndrome and insulin resistance in obese adolescents. Rev Paul Pediatr. 32(1):55-62, 2014. 9.Groschwitz KR, Hogan SP. Intestinal Barrier Function: Molecular Regulation and Disease Pathogenesis. J Allergy Clin Immunol. 124:3–20; quiz 21–22, 2009. 10.Schulz O, Pabst O. Antigen Sampling in the Small Intestine. Trends Immunol. 34:155–61, 2013. 11.Nagura H, Sumi Y. Immunological functions of the gut-role of the mucosal immune system. Toxicol Pathol. 16:154-164, 1988. 12.Scaldaferri F, Pizzoferrato M, Gerardi V, Lopetuso L, Gasbarrini A. The Gut Barrier: New Acquisitions and Therapeutic Approaches. J Clin Gastroenterol. 46:S12–7, 2012. 13.Xu, D., & Lu, W. Defensins: A Double-Edged Sword in Host Immunity. Frontiers in immunology. 11: 764, 2020. 14.Riedel Sylvia , Pheiffer Carmen , Johnson Rabia , Louw Johan , Muller Christo J. F. Intestinal Barrier Function and Immune Homeostasis Are Missing Links in Obesity and Type 2 Diabetes Development. Frontiers in Endocrinology. 12:1664-2392, 2022. 15.Jinbao Wu, Jide Wang, Yali Zhang. Research progress on intestinal mucosal barrier. World Chinese Journal of Digestology. 11(5): 619-623, 2003. 16.Gieryńska M, Szulc-Dąbrowska L, Struzik J, Mielcarska MB, Gregorczyk-Zboroch KP. Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota-A Mutual Relationship. Animals (Basel). 12(2):145, 2022. 17.Laissue JA, Chappuis BB, Muller C, Reubi JC, Gebbers JO. The intestinal immune system and its relation to disease. Dig Dis. 11:298-312, 1993. 18.Jafari, Nazila & Rohn, Jennifer. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunology. 15:1-16, 2022. 19.Hu Y-J, Wang Y-D, Tan F-Q, Yang W-X. Regulation of paracellular permeability: factors and mechanisms. Mol Biol Rep. 40:6123–42, 2013. 20.Odenwald MA, Turner JR. Intestinal Permeability Defects: Is it Time to Treat? Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 11:1075–83, 2013. 21.Vogelmann R, Nelson WJ. Fractionation of the epithelial apical junctional complex: reassessment of protein distributions in different substructures. Mol Biol Cell. 16(2):701-716, 2005. 22.Zuo L, Kuo W-T, Turner JR. Tight Junctions as Targets and Effectors of Mucosal Immune Homeostasis. Cell Mol Gastroenterol Hepatol. 10:327–40, 2020. 23.Suzuki T. Regulation of the Intestinal Barrier by Nutrients: The Role of Tight Junctions. Anim Sci J Nihon Chikusan Gakkaiho. 91:e13357, 2020. 24.Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell Mol Gastroenterol Hepatol. 11:1463–82, 2021. 25.Nusrat A, Turner JR, Madara JL. Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol. 279:G851-G857, 2000. 26.Colgan SP, Dzus AL, Parkos CA. Epithelial exposure to hypoxia modulates neutrophil transepithelial migration. J Exp Med. 184:1003-1015, 1996. 27.Hervé JC, Derangeon M, Sarrouilhe D, Bourmeyster N. Influence of the scaffolding protein Zonula Occludens (ZOs) on membrane channels. Biochim Biophys Acta. 1838(2):595-604, 2014. 28.H. Bauer, J. Zweimueller-Mayer, P. Steinbacher, A. Lametschwandtner, H.C. Bauer. The dual role of zonula occludens (ZO) proteins J. Biomed. Biotechnol. p. 402593, 2010. 29.Foster, D. M., & Kellum, J. A. Endotoxic Septic Shock: Diagnosis and Treatment. International journal of molecular sciences. 24(22):16185, 2023. 30.Skrzypczak-Wiercioch A, Sałat K. Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules. 27(17):5481, 2022. 31.Hersoug LG, Moller P, Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev. 17:297-312, 2016. 32.Bohan R , Tianyu X , Tiantian Z , et al. Gut microbiota: a potential manipulator for host adipose tissue and energy metabolism. J Nutr Biochem. 64:206-17, 2019. 33.Massier Lucas , Blüher Matthias , Kovacs Peter , Chakaroun Rima M. Impaired Intestinal Barrier and Tissue Bacteria: Pathomechanisms for Metabolic Diseases. Frontiers in Endocrinology. 12:1664-2392, 2021. 34.Luissint AC, Parkos CA, Nusrat A. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology. 151(4):616-632, 2016. 35.Massier Lucas , Blüher Matthias , Kovacs Peter , Chakaroun Rima M. Impaired Intestinal Barrier and Tissue Bacteria: Pathomechanisms for Metabolic Diseases. Frontiers in Endocrinology. 12:1664-2392, 2021. 36.Suriano F, Vieira-Silva S, Falony G, et al. Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome. 9(1):147, 2021. 37.Wang B, Chandrasekera PC, Pippin JJ. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr Diabetes Rev. 10:131–45, 2014. 38.Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palu G, et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointestinal Liver Physiol. 292:G518–25, 2007. 39.Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 57:1470–81, 2008. 40.Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes. 56:1761–72, 2007. 41.Massier L, Blüher M, Kovacs P, Chakaroun RM. Impaired Intestinal Barrier and Tissue Bacteria: Pathomechanisms for Metabolic Diseases. Front Endocrinol. 12:616506, 2021. 42.Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice. Diabetes. 57:1470–81, 2008. 43.Kim K-A, Gu W, Lee I-A, Joh E-H, Kim D-H. High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway. PloS One. 7:e47713, 2012. 44.Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, et al. Obesity-Associated Gut Microbiota Is Enriched in Lactobacillus Reuteri and Depleted in Bifidobacterium Animalis and Methanobrevibacter Smithii. Int J Obes. (2012) 36:817–25, 2005. 45.Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, et al. Changes in Gut Microbiota in Rats Fed a High Fat Diet Correlate With Obesity-Associated Metabolic Parameters. PloS One. 10:e0126931, 2015. 46.Mu Q, Kirby J, Reilly CM, Luo XM. Leaky Gut As a Danger Signal for Autoimmune Diseases. Front Immunol. 8:598, 2017. 47.Ying-Cheng Lin, Ta-Jen Wu, Horng-Yih Ou. Fructose and Metabolic Syndrome. Journal of Internal Medicine of Taiwan. 25(6), 2014. 48.Lodge. M., Dykes. R., Kennedy. A. Regulation of Fructose Metabolism in Nonalcoholic Fatty Liver Disease. Biomolecules. 14:845, 2024. 49.Jang C., Hui S., Lu W., Cowan A.J., Morscher R.J., Lee G., Liu W., Tesz G.J., Birnbaum M.J., Rabinowitz J.D. The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids. Cell Metab. 27:351–361, 2018. 50.Merino, B., Fernández-Díaz, C. M., Cózar-Castellano, I., & Perdomo, G.. Intestinal Fructose and Glucose Metabolism in Health and Disease. Nutrients. 12(1):94, 2019. 51.Khitan, Z., & Kim, D. H. Fructose: a key factor in the development of metabolic syndrome and hypertension. Journal of nutrition and metabolism. 2013:682673, 2013. 52.Bhanot S, McNeill J H, Bryer-Ash M. Vanadyl sulfate prevents fructose-induced hyperinsulinemia and hypertension in rats. Hypertension. 23(3): 308 – 312, 1994. 53.Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ. A causal role for uric acid in fructose-induced metabolic syndrome. American journal of physiology. 290(3): 625-631, 2006. 54.Tobey T.A., Mondon C.E., Zavaroni I., Reaven G.M. Mechanism of insulin resistance in fructose-fed rats, Metabolism. 31(6): 608-612, 1982. 55.Ivana Zavaroni, Susan Sander, Sally Scott, Gerald M. Reaven. Effect of fructose feeding on insulin secretion and insulin action in the rat. Metabolism. 29(10): 970-973, 1980. 56.Carlos Magno M.R. Barros, Rosane Q. Lessa, Mauricio P. Grechi, Tanial L.M. Mouço, Maria das Graças C. Souza, Nicolas Wiernsperger, Eliete Bouskela. Substitution of drinking water by fructose solution induces hyperinsulinemia and hyperglycemia in hamsters. Clinics. 62(3): 327-334, 2007. 57.Wallace, T. M., Levy, J. C., & Matthews, D. R. Use and abuse of HOMA modeling. Diabetes care. 27(6): 1487–1495, 2004. 58.Srinivasan, B., Kolli, A. R., Esch, M. B., Abaci, H. E., Shuler, M. L., Hickman, J. J. TEER measurement techniques for in vitro barrier model systems. Journal of laboratory automation, 20(2): 107–126, 2015. 59.Doridot, L., Hannou, S. A., Krawczyk, S. A., Tong, W., Kim, M. S., McElroy, G. S., Fowler, A. J., Astapova, I. I., & Herman, M. A. A Systems Approach Dissociates Fructose-Induced Liver Triglyceride from Hypertriglyceridemia and Hyperinsulinemia in Male Mice. Nutrients, 13(10): 3642, 2021. 60.Kawabata, K., Kanmura, S., Morinaga, Y., Tanaka, A., Makino, T., Fujita, T., Arima, S., Sasaki, F., Nasu, Y., Tanoue, S., Hashimoto, S., Ido, A. A high‑fructose diet induces epithelial barrier dysfunction and exacerbates the severity of dextran sulfate sodium‑induced colitis. International Journal of Molecular Medicine. 43(3):1487-1496, 2019. 61.Huanlong Qin, Zhiguang Gao. Research progress on the role of intestinal epithelial cell tight junctions in intestinal barrier. World Chinese Journal of Digestology. 13(4): 443-447, 2005.
|