跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡挹芬
研究生(外文):Tsai, Yi-Fen
論文名稱:熱電材料之拓展與創新:鍺碲合金之顯微結構探討、傳導性質優化與相圖建構
論文名稱(外文):Advancing the Frontiers of Thermoelectric Materials: Microstructural Engineering, Thermal and Electronic Transport Property Enhancement, and Phase Diagram Construction of Germanium Telluride (GeTe)-Based Materials
指導教授:吳欣潔吳欣潔引用關係
指導教授(外文):Wu, Hsin-Jay
口試委員:陳信文吳欣潔吳子嘉魏百駿廖建能林士剛鍾采甫鄒年棣魏金明
口試委員(外文):Chen, Sinn-WenWu, Hsin-JayWu, Albert T.Wei, Pai-ChunLiao, Chien-NengLin, Shih-KangChung, Tsai-FuTsou, Nien-TiWei, Ching-Ming
口試日期:2023-12-04
學位類別:博士
校院名稱:國立陽明交通大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:英文
論文頁數:141
中文關鍵詞:熱電材料GeTeGeTe熱電材料相圖微結構工程
外文關鍵詞:ThermoelectricGeTeGeTe-based thermoelectricPhase diagramMicrostructural engineering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Acknowledgement2
AbstractI
摘要III
Table of contentsV
List of figuresVIII
List of tablesXVIII
1.Introduction1
2.Research background1
2.1.Phase diagram4
2.1.1.Germanium-tellurium (Ge-Te) binary phase diagram7
2.2.TE materials9
2.2.1.TE effects10
2.2.2.General TE materials11
2.3.Germanium-tellurium (GeTe) TE material14
2.4.Mixed ion-electron conductors (MIECs)17
3.Experimental methods21
3.1.Material synthesis21
3.1.1.Phase equilibrium alloy21
3.1.2.TE alloy22
3.2.Material characterization25
3.2.1.Metallographic observation25
3.2.2.Crystal identification25
3.3.Properties measurement26
3.4.Theoretical calculation29
4.Results and discussion32
4.1.Ge-Te binary system32
4.1.1.Ge-Te binary phase diagram reconstruction32
4.1.2.Nano-scale microstructure for off-stoichiometric GeTe37
4.1.3.TE properties for binary Ge-Te compounds40
4.1.4.Microstructure evolution for stoichiometric GeTe46
4.1.5.TE properties for two-step cooled stoichiometric GeTe49
4.1.6.Microstructure characterization for two-step cooled GeTe52
4.1.7.Thermal stability and reproducibility for two-step cooled GeTe55
4.2.Elemental-doped GeTe ternary system58
4.2.1.Cu-doped GeTe58
4.2.2.In-doped GeTe73
4.2.3.Sb-doped GeTe86
4.3.Liquid-like compound alloyed GeTe97
4.3.1.Cu2S-GeTe TE alloy97
4.3.2.Cu-based argyrodite Cu8GeS6101
4.3.3.Novel Cu-based argyrodite Cu8-xGeS4.36Te1.64102
4.3.4.TE properties for Novel Cu-based argyrodite Cu8-xGeS4.36Te1.64105
4.4.TE applications111
4.4.1.TE model111
4.4.2.Device assembly113
4.4.3.P-type single-leg efficiency114
5.Conclusion123
6.References126
[1] A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy Environ. Sci. 2(5) (2009).
[2] X. Zhang, L.D. Zhao, Thermoelectric materials: Energy conversion between heat and electricity, J. Materiomics 1(2) (2015) 92-105.
[3] Z. Bu, X. Zhang, B. Shan, J. Tang, H. Liu, Z.Chen, S. Lin, W. Li, Y. Pei, Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys, Sci. Adv. 7 (2021) eabf2738.
[4] Y.F. Tsai, M.Y. Ho, P.C. Wei, H.J. Wu, Hierarchical twinning and light impurity doping enable high-performance GeTe thermoelectrics, Acta Mater. 222 (2022).
[5] W.D. Liu, D.Z. Wang, Q. Liu, W.X. Zhou, Z. Shao, Z.G. Chen, High‐Performance GeTe‐Based Thermoelectrics: from Materials to Devices, Adv. Energy Mater. 10(19) (2020).
[6] M. Hong, Z.G. Chen, L. Yang, Y.C. Zou, M.S. Dargusch, H. Wang, J. Zou, Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping, Adv. Mater. 30(11) (2018).
[7] Y.F. Tsai, P.C. Wei, L. Chang, K.K. Wang, C.C. Yang, Y.C. Lai, C.R. Hsing, C.M. Wei, J. He, G.J. Snyder, H.J. Wu, Compositional fluctuations locked by athermal transformation yielding high thermoelectric performance in GeTe, Adv. Mater. 33 (2021) 2005612.
[8] J. Li, X. Zhang, Z. Chen, S. Lin, W. Li, J. Shen, I.T. Witting, A. Faghaninia, Y. Chen, A. Jain, L. Chen, G.J. Snyder, Y. Pei, Low-symmetry rhombohedral GeTe thermoelectrics, Joule 2(5) (2018) 976-987.
[9] S. Perumal, M. Samanta, T. Ghosh, U.S. Shenoy, A.K. Bohra, S. Bhattacharya, A. Singh, U.V. Waghmare, K. Biswas, Realization of High Thermoelectric Figure of Merit in GeTe by Complementary Co-doping of Bi and In, Joule 3(10) (2019) 2565-2580.
[10] X. Zhang, Z. Bu, S. Lin, Z. Chen, W. Li, Y. Pei, GeTe thermoelectrics, Joule 4(5) (2020) 986-1003.
[11] Y. Jiang, J. Dong, H.L. Zhuang, J. Yu, B. Su, H. Li, J. Pei, F.H. Sun, M. Zhou, H. Hu, J.W. Li, Z. Han, B.P. Zhang, T. Mori, J.F. Li, Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials, Nat. Commun. 13(1) (2022) 6087.
[12] K. Jeong, S. Park, D. Park, M. Ahn, J. Han, W. Yang, H.S. Jeong, M.H. Cho, Evolution of crystal structures in GeTe during phase transition, Sci Rep 7(1) (2017) 955.
[13] G. J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008).
[14] T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Compromise and Synergy in High-Efficiency Thermoelectric Materials, Adv. Mater. 29(14) (2017).
[15] S.K. Bux, J.P. Fleurial, R.B. Kaner, Nanostructured materials for thermoelectric applications, Chem. Commun. 46(44) (2010) 8311-24.
[16] K.S. Bayikadi, R. Sankar, C.T. Wu, C. Xia, Y. Chen, L.C. Chen, K.H. Chen, F.C. Chou, Enhanced thermoelectric performance of GeTe through in situ microdomain and Ge-vacancy control, J. Mater. Chem. A 7(25) (2019) 15181-15189.
[17] R. Sankar, D.P. Wong, C.S. Chi, W.L. Chien, J.S. Hwang, F.C. Chou, L.C. Chen, K.H. Chen, Enhanced thermoelectric performance of GeTe-rich germanium antimony tellurides through the control of composition and structure, CrystEngComm 17(18) (2015) 3440-3445.
[18] J. Dong, F.H. Sun, H. Tang, J. Pei, H.L. Zhuang, H.H. Hu, B.P. Zhang, Y. Pan, J.F. Li, Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance, Energy Environ. Sci. 12(4) (2019) 1396-1403.
[19] Z. Soleimani, S. Zoras, B. Ceranic, S. Shahzad, Y. Cui, A review on recent developments of thermoelectric materials for room-temperature applications, Sustain. Energy Technol. Assess. 37 (2020).
[20] B. Legendre, Contribution à l'étude du diagramme d'équilibre des phases du système Ge-Te autour de GeTe1+x, C. R. Acad. Se. Paris (1977).
[21] L. Baldé, B. Legendre, A.M.E. Balkhi, Etude du diagramme d'équilibre entre phases du système ternaire germanium-étain-tellure, J. Alloys Compd. 216 (1995).
[22] A. Schlieper, Y. Feutelais, S.G. Fries, B. Legendre, R. Blachnik, Thermodynamic evaluation of the germanium-tellurium system, Calphad 23 (1999).
[23] H. Okamoto, Ge-Te (Germanium-Tellurium), J. Ph. Equilibria 21 (2000).
[24] J. He, T.M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward, Science 357(6358) (2017).
[25] Y. Shi, C. Sturm, H. Kleinke, Chalcogenides as thermoelectric materials, J. Solid State Chem. 270 (2019) 273-279.
[26] H.J. Wu, W.T. Yen, High thermoelectric performance in Cu-doped Bi2Te3 with carrier-type transition, Acta Mater. 157 (2018) 33-41.
[27] I.T. Witting, T.C. Chasapis, F. Ricci, M. Peters, N.A. Heinz, G. Hautier, G.J. Snyder, The Thermoelectric Properties of Bismuth Telluride, Adv. Electron. Mater. 5 (2019) 1800904.
[28] D. Kong, W. Zhu, Z. Guo, Y. Deng, High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting, Energy 175 (2019) 292-299.
[29] H.J. Wu, P.C. Wei, H.Y. Su, K.K. Wang, W.T. Yen, I.L. Jen, J. He, Designing Environmentally Friendly High-zT Zn4Sb3 via Thermodynamic Routes, ACS Appl. Energy Mater. 2 (2019) 7564-7571.
[30] E.S. Toberer, P. Rauwel, S. Gariel, J. Taftø, G.J. Snyder, Composition and the thermoelectric performance of -Zn4Sb3, J. Mater. Chem. 20 (2010) 9877-9885.
[31] Y. Xiao, H. Wu, H. Shi, L. Xu, Y. Zhu, Y. Qin, G. Peng, Y. Zhang, Z.H. Ge, X. Ding, L.D. Zhao, High‐Ranged ZT Value Promotes Thermoelectric Cooling and Power Generation in n‐Type PbTe, Adv. Energy Mater. 12(16) (2022).
[32] C.C. Li, F. Drymiotis, L.L. Liao, H.T. Hung, J.H. Ke, C.K. Liu, C.R. Kao, G.J. Snyder, Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials, J. Mater. Chem. C 3(40) (2015) 10590-10596.
[33] Y. Xiao, L.D. Zhao, Charge and phonon transport in PbTe-based thermoelectric materials, npj Quantum Mater. 3 (2018) 55.
[34] S.Y. Back, J.H. Yun, H.K. Cho, S. Byeon, H. Jin, J.S. Rhyee, High thermoelectric performance by chemical potential tuning and lattice anharmonicity in GeTe1-xIx compounds, Inorg. Chem. Front. 8(5) (2021) 1205-1214.
[35] X. Qi, Y. Yu, X. Xu, J. Wang, F. Zhang, B. Zhu, J. He, X. Chao, Z. Yang, D. Wu, Enhanced thermoelectric performance in GeTe-Sb2Te3 pseudo-binary via lattice symmetry regulation and microstructure stabilization, Mater. Today Phys. 21 (2021).
[36] J.F. Li, W.S. Liu, L.D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials, NPG Asia Mater. 2(4) (2010) 152-158.
[37] Z. Guo, G. Wu, X. Tan, R. Wang, Z. Zhang, G. Wu, Q. Zhang, J. Wu, G.Q. Liu, J. Jiang, Enhanced thermoelectric performance in GeTe by synergy of midgap state and band convergence, Adv. Funct. Mater. (2022).
[38] T. Oku, H. Funashima, S. Kawaguchi, Y. Kubota, A. Kosuga, Superior room-temperature power factor in GeTe systems via multiple valence band convergence to a narrow energy range, Mater. Today Phys. 20 (2021).
[39] Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics, Nature 473(7345) (2011) 66-9.
[40] P.C. Wei, C.N. Liao, H.J. Wu, D. Yang, J. He, G.V. Biesold-McGee, S. Liang, W.T. Yen, X. Tang, J.W. Yeh, Z. Lin, J.H. He, Thermodynamic Routes to Ultralow Thermal Conductivity and High Thermoelectric Performance, Adv. Mater. 32(12) (2020) e1906457.
[41] P.Y. Deng, W.T. Yen, Y.F. Tsai, I.L. Jen, B.C. Chen, H.J. Wu, Eliciting high‐performance thermoelectric materials via phase diagram engineering: A review, Adv. Energy Sustainability Res. 2(9) (2021).
[42] H.J. Wu, B.Y. Chen, H.Y. Cheng, The p-n conduction type transition in Ge-incorporated Bi2Te3 thermoelectric materials, Acta Mater. 122 (2017) 120-129.
[43] S. Perumal, S. Roychowdhury, K. Biswas, High performance thermoelectric materials and devices based on GeTe, J. Mater. Chem. C 4(32) (2016) 7520-7536.
[44] H.S. Lee, B.S. Kim, C.W. Cho, M.W. Oh, B.K. Min, S.D. Park, H.W. Lee, Herringbone structure in GeTe-based thermoelectric materials, Acta Mater. 91 (2015) 83-90.
[45] J. Li, Y. Xie, C. Zhang, K. Ma, F. Liu, W. Ao, Y. Li, C. Zhang, Stacking Fault-Induced Minimized Lattice Thermal Conductivity in the High-Performance GeTe-Based Thermoelectric Materials upon Bi2Te3 Alloying, ACS Appl. Mater. Interfaces. 11(22) (2019) 20064-20072.
[46] X. Xu, L. Xie, Q. Lou, D. Wu, J. He, Boosting the thermoelectric performance of pseudo-layered Sb2Te3(GeTe)n via vacancy engineering, Adv. Sci. 5(12) (2018) 1801514.
[47] J. Li, X. Zhang, X. Wang, Z. Bu, L. Zheng, B. Zhou, F. Xiong, Y. Chen, Y. Pei, High-performance GeTe thermoelectrics in both rhombohedral and cubic phases, J. Am. Chem. Soc. 140(47) (2018) 16190-16197.
[48] M. Hong, Y. Wang, T. Feng, Q. Sun, S. Xu, S. Matsumura, S.T. Pantelides, J. Zou, Z.G. Chen, Strong phonon-phonon interactions securing extraordinary thermoelectric Ge1-xSbxTe with Zn-alloying-induced band alignment, J. Am. Chem. Soc. 141(4) (2019) 1742-1748.
[49] T. Xing, Q. Song, P. Qiu, Q. Zhang, X. Xia, J. Liao, R. Liu, H. Huang, J. Yang, S. Bai, D. Ren, X. Shi, L. Chen, Superior performance and high service stability for GeTe-based thermoelectric compounds, Natl. Sci. Rev. 6(5) (2019) 944-954.
[50] K.S. Bayikadi, C.T. Wu, L.C. Chen, K.H. Chen, F.C. Chou, R. Sankar, Synergistic optimization of thermoelectric performance of Sb doped GeTe with a strained domain and domain boundaries, J. Mater. Chem. A 8(10) (2020) 5332-5341.
[51] H. Jeong, S.K. Kihoi, H. Kim, H.S. Lee, High seebeck coefficient and low thermal conductivity in Bi and In co-doped GeTe thermoelectric material, J. Mater. Res. Technol. 15 (2021) 6312-6318.
[52] D. Wu, L. Xie, X. Xu, J. He, High thermoelectric performance achieved in GeTe-Bi2Te3 pseudo‐binary via van der Waals gap‐induced hierarchical ferroelectric domain structure, Adv. Funct. Mater. 29(18) (2019).
[53] L. Weintraub, J. Davidow, J. Tunbridge, R. Dixon, M.J. Reece, H. Ning, I. Agote, Y. Gelbstein, Investigation of the Microstructural and Thermoelectric Properties of the(GeTe)0.95(Bi2Te3)0.05 Composition for Thermoelectric Power Generation Applications, J. Nanomater. 2014 (2014) 1-7.
[54] D. Wu, L.D. Zhao, S. Hao, Q. Jiang, F. Zheng, J.W. Doak, H. Wu, H. Chi, Y. Gelbstein, C. Uher, C. Wolverton, M. Kanatzidis, J. He, Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping, J. Am. Chem. Soc. 136(32) (2014) 11412-9.
[55] D. Wu, L. Xie, X. Chao, Z. Yang, J. He, Step-up thermoelectric performance realized in Bi2Te3 alloyed GeTe via carrier concentration and microstructure modulations, ACS Appl. Energy Mater. 2(3) (2019) 1616-1622.
[56] N. Jia, J. Cao, X.Y. Tan, J. Zheng, S.W. Chien, L. Yang, K.H. Chen, H.K. Ng, S.S. Faye Duran, H. Liu, C.K. Ivan Tan, Z. Li, J. Xu, J. Wu, Q. Yan, A. Suwardi, Suppressing Ge-vacancies to achieve high single-leg efficiency in GeTe with an ultra-high room temperature power factor, J. Mater. Chem. A 9(41) (2021) 23335-23344.
[57] B.C. Chen, K.K. Wang, H.J. Wu, Localized crystal imperfections coupled with phase diagram engineering yield high-performance rhombohedral GeTe thermoelectrics, Mater. Today Phys. 22 (2022).
[58] C.H. Lin, W.T. Yen, Y.F. Tsai, H.J. Wu, Unravelling p–n Conduction Transition in High Thermoelectric Figure of Merit Gallium-Doped Bi2Te3 via Phase Diagram Engineering, ACS Appl. Energy Mater. 3(2) (2020) 1311-1318.
[59] L. Li, Y. Liu, J. Dai, A. Hong, M. Zeng, Z. Yan, J. Xu, D. Zhang, D. Shan, S. Liu, Z. Ren, J.M. Liu, High thermoelectric performance of superionic argyrodite compound Ag8SnSe6, J. Mater. Chem. C. 4 (2016) 5806-5813.
[60] S. Lin, W. Li, Y. Pei, Thermally insulative thermoelectric argyrodites, Mater. Today 48 (2021) 198-213.
[61] J.Y. Liu, L. Chen, L.M. Wu, Ag9GaSe6: high-pressure-induced Ag migration causes thermoelectric performance irreproducibility and elimination of such instability, Nat. Commun. 13 (2022) 2966.
[62] J. Wang, K. Zhuo, J. Gao, U. Landman, M.Y. Chou, Mechanism for anisotropic diffusion of liquid-like Cu atoms in hexagonal -Cu2S, Phys. Rev. Mater. 5 (2021) 073603.
[63] Y. Yao, B.P. Zhang, J. Pei, Y.C. Liu, J.F. Li, Thermoelectric performance enhancement of Cu2S by Se doping leading to a simultaneous power factor increase and thermal conductivity reduction, J. Mater. Chem. C. 5 (2017) 7845-7852.
[64] P. Nieroda, J. Leszczyński, A. Mikuła, K. Mars, M.J. Kruszewski, A. Koleżyński, Thermoelectric properties of Cu2S obtained by high temperature synthesis and sintered by IHP method, Ceram. Int. 46 (2020) 25460-25466.
[65] H. Kim, S. Ballikaya, H. Chi, J.P. Ahn, K. Ahn, C. Uher, M. Kaviany, Ultralow thermal conductivity of -Cu2Se by atomic fluidity and structure distortion, Acta Mater. 86 (2015) 247-253.
[66] P.Y. Deng, K.K. Wang, H.Y. Sung, W.W. Wu, H.J. Wu, Liquid-like copper chalcogenide modulates electron donors in high-performance n-type PbTe thermoelectrics, Cell Rep Phys Sci. 4(6) (2023).
[67] B.K. Heep, K.S. Weldert, Y. Krysiak, T.W. Day, W.G. Zeier, U. Kolb, G.J. Snyder, W. Tremel, High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag8SiSe6, Chem. Mater. 29 (2017) 4833-4839.
[68] F. Reissig, B. Heep, M. Panthofer, M. Wood, S. Anand, G.J. Snyder, W. Tremel, Effect of anion substitution on the structural and transport properties of argyrodites Cu7PSe6-xSx, Dalton Trans. 48 (2019) 15822-15829.
[69] K.S. Weldert, W.G. Zeier, T.W. Day, M. Panthofer, G.J. Snyder, W. Tremel, Thermoelectric transport in Cu7PSe6 with high copper ionic mobility, J. Am. Chem. Soc. 136 (2014) 12035-12040.
[70] Y.F. Tsai, C.L. Stern, B.C. Chen, G.J. Snyder, H.J. Wu, A Cu-based Cu8-xGe(S, Te)6 argyrodite: its widespan cubic-phase region and ultralow lattice thermal conductivity, J. Mater. Chem. A 11(20) (2023) 10532-10537.
[71] M. Moroz, P. Demchenko, M. Prohorenko, L. Soliak, S. Prohorenko, O. Reshetnyak, Thermodynamically stable phases of the Ag9GaSe6-Ag8GeSe6 system at T < 600 K and their physico-chemical properties, Ukr. chem. j. 88 (2022) 25-36.
[72] G.M. Sheldrick, SHELXT - integrated space-group and crystal-structure determination, Acta Crystallogr. A: Found. Adv. 71 (2015) 3-8.
[73] G.M. Sheldrick, A short history of SHELX, Acta Crystallogr. A: Found. Adv. 64 (2008) 112-22.
[74] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Crystallogr. 42 (2009) 339-341.
[75] H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement, APL Mater. 3 (2015) 041506.
[76] Y. Xiao, H. Wu, W. Li, M. Yin, Y. Pei, Y. Zhang, L. Fu, Y. Chen, S.J. Pennycook, L. Huang, J. He, L.D. Zhao, Remarkable Roles of Cu To Synergistically Optimize Phonon and Carrier Transport in n-Type PbTe-Cu2Te, J. Am. Chem. Soc. 139(51) (2017) 18732-18738.
[77] T.H. An, Y.S. Lim, M.J. Park, J.Y. Tak, S. Lee, H.K. Cho, J.Y. Cho, C. Park, W.S. Seo, Composition-dependent charge transport and temperature-dependent density of state effective mass interpreted by temperature-normalized Pisarenko plot in Bi2-xSbxTe3 compounds, APL Materials 4(10) (2016).
[78] L. Yue, T. Fang, S. Zheng, W. Cui, Y. Wu, S. Chang, L. Wang, P. Bai, H. Zhao, Cu/Sb Codoping for Tuning Carrier Concentration and Thermoelectric Performance of GeTe-Based Alloys with Ultralow Lattice Thermal Conductivity, ACS Appl. Energy Mater. 2(4) (2019) 2596-2603.
[79] L. Xie, Y. Chen, R. Liu, E. Song, T. Xing, T. Deng, Q. Song, J. Liu, R.K. Zheng, X. Gao, S. Bai, L. Chen, Stacking faults modulation for scattering optimization in GeTe-based thermoelectric materials, Nano Energy 68 (2020).
[80] D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study, Materials Chemistry and Physics 239 (2020).
[81] J. Li, X. Zhang, S. Lin, Z. Chen, Y. Pei, Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying, Chem. Mater. 29(2) (2016) 605-611.
[82] P. Zalden, K.S. Siegert, S. Rols, H.E. Fischer, F. Schlich, T. Hu, M. Wuttig, Specific Heat of (GeTe)x(Sb2Te3)1-x Phase-Change Materials: The Impact of Disorder and Anharmonicity, Chem. Mater. 26(7) (2014) 2307-2312.
[83] T. Schroder, T. Rosenthal, N. Giesbrecht, M. Nentwig, S. Maier, H. Wang, G.J. Snyder, O. Oeckler, Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials induced by phase transitions associated with vacancy ordering, Inorg Chem 53(14) (2014) 7722-9.
[84] X. Zhang, J. Li, X. Wang, Z. Chen, J. Mao, Y. Chen, Y. Pei, Vacancy manipulation for thermoelectric enhancements in GeTe alloys, J. Am. Chem. Soc. 140(46) (2018) 15883-15888.
[85] E.M. Levin, Effects of Ge substitution in GeTe by Ag or Sb on the Seebeck coefficient and carrier concentration derived from 125Te NMR, Phys. Rev. B 93(4) (2016).
[86] M. Snykers, P. Delavignette, S. Amelinckx, The domain structure of GeTe as observed by electron microscopy, Mater. Res. Bull. 7 (1972) 831-839.
[87] S.H. Yang, T.J. Zhu, T. Sun, J. He, S.N. Zhang, X.B. Zhao, Nanostructures in high-performance (GeTe)x(AgSbTe2)100-x thermoelectric materials, Nanotechnology 19(24) (2008) 245707.
[88] P.C. Wei, C.X. Cai, C.R. Hsing, C.M. Wei, S.H. Yu, H.J. Wu, C.L. Chen, D.H. Wei, D.L. Nguyen, M.M.C. Chou, Y.Y. Chen, Enhancing thermoelectric performance by Fermi level tuning and thermal conductivity degradation in (Ge1-xBix)Te crystals, Sci. Rep. 9(1) (2019) 8616.
[89] Y.X. Cheng, L. Zhu, G. Wang, J. Zhou, S.R. Elliott, Z. Sun, Vacancy formation energy and its connection with bonding environment in solid: A high-throughput calculation and machine learning study, Comput. Mater. Sci. 183 (2020).
[90] S. Shimano, Y. Tokura, Y. Taguchi, Carrier density control and enhanced thermoelectric performance of Bi and Cu co-doped GeTe, APL Materials 5(5) (2017).
[91] Z. Bu, W. Li, J. Li, X. Zhang, J. Mao, Y. Chen, Y. Pei, Dilute Cu2Te-alloying enables extraordinary performance of R-GeTe thermoelectrics, Mater. Today Phys. 9 (2019).
[92] M. Peigney, On the energy-minimizing strains in martensitic microstructures—Part 2: Geometrically linear theory, J. Mech. Phys. Solids. 61(6) (2013) 1511-1530.
[93] K. Bhattacharya, Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, Oxford University Press2004.
[94] N.T. Tsou, C.H. Chen, C.S. Chen, S.K. Wu, Classification and analysis of trigonal martensite laminate twins in shape memory alloys, Acta Mater. 89 (2015) 193-204.
[95] B. Legendre, C. Hancheng, Phase diagram of the ternary system Ge-Sb-Te. I. The subternary GeTe-Sb,Te,-Te, Thermochim. Acta. 78 (1984) 141-157.
[96] M. Petersmann, T. Antretter, G. Cailletaud, A. Sannikov, U. Ehlenbröker, F.D. Fischer, Unification of the non-linear geometric transformation theory of martensite and crystal plasticity - Application to dislocated lath martensite in steels, Int. J. Plast. 119 (2019) 140-155.
[97] J.H. Choi, K.D. Na, S.C. Lee, C.S. Hwang, First-principles study on the formation of a vacancy in Ge under biaxial compressive strain, Thin Solid Films 518(22) (2010) 6373-6377.
[98] H. Bishara, S. Lee, T. Brink, M. Ghidelli, G. Dehm, Understanding Grain Boundary Electrical Resistivity in Cu: The Effect of Boundary Structure, ACS Nano 15(10) (2021) 16607-16615.
[99] L.E. Shelimova, S.K. Plachkova, Estimation of the Debye Temperature of IV-VI Semiconductor Compounds and Rhombohedral (GeTe)1-x((Ag2Te)1-y(Sb2Te3)y)x Solid Solutions (y = 0.6), Phys. Status Solidi A 104(2) (1987) 679-685.
[100] L. Yang, J.Q. Li, R. Chen, Y. Li, F.S. Liu, W.Q. Ao, Influence of Se Substitution in GeTe on Phase and Thermoelectric Properties, J. Electron. Mater. 45(11) (2016) 5533-5539.
[101] Y. Huang, S. Zhi, S. Zhang, W. Yao, W. Ao, C. Zhang, F. Liu, J. Li, L. Hu, Regulating the configurational entropy to improve the thermoelectric properties of (GeTe)1-x(MnZnCdTe3)x Alloys, Materials 15(19) (2022).
[102] A. Suwardi, J. Cao, Y. Zhao, J. Wu, S.W. Chien, X.Y. Tan, L. Hu, X. Wang, W. Wang, D. Li, Y. Yin, W.X. Zhou, D.V.M. Repaka, J. Chen, Y. Zheng, Q. Yan, G. Zhang, J. Xu, Achieving high thermoelectric quality factor toward high figure of merit in GeTe, Mater. Today Phys. 14 (2020) 100239.
[103] J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science 321 (2008) 554-557.
[104] K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit, Science 303(5659) (2004) 818-21.
[105] S. Schwarzmüller, D. Souchay, D. Günther, A. Gocke, I. Dovgaliuk, S.A. Miller, G.J. Snyder, O. Oeckler, Argyrodite-Type Cu8GeSe6-xTex (0 ≤ x ≤ 2): Temperature-Dependent Crystal Structure and Thermoelectric Properties, Z. Anorg. Allg. Chem. 644 (2018) 1915-1922.
[106] B. Jiang, P. Qiu, E. Eikeland, H. Chen, Q. Song, D. Ren, T. Zhang, J. Yang, B.B. Iversen, X. Shi, L. Chen, Cu8GeSe6-based thermoelectric materials with an argyrodite structure, J. Mater. Chem. C 5 (2017) 943-952.
[107] M. Onoda, X.A. Chen, K. Kato, A. Sato, H. Wada, Structure refinement of Cu8GeS6 using x-ray diffraction data from a multiple-twinned crystal, Acta Cryst. 55 (1999) 721-725.
[108] Y. Fan, G. Wang, R. Wang, B. Zhang, X. Shen, P. Jiang, X. Zhang, H.S. Gu, X. Lu, X.Y. Zhou, Enhanced thermoelectric properties of p-type argyrodites Cu8GeS6 through Cu vacancy, J. Alloys Compd. 822 (2020) 153665.
[109] M.T. Agne, R. Hanus, G.J. Snyder, Minimum thermal conductivity in the context of diffuson-mediated thermal transport, Energy Environ. Sci. 11 (2018) 609-616.
[110] R. Hanus, J. George, M. Wood, A. Bonkowski, Y.X. Cheng, D.L. Abernathy, M.E. Manley, G. Hautier, G.J. Snyder, R.P. Hermann, Uncovering design principles for amorphous-like heat conduction using two-channel lattice dynamics, Mater. Today Phys. 18 (2021) 100344.
[111] R. Gurunathan, R. Hanus, G.J. Snyder, Alloy scattering of phonons, Mater. Horiz. 7(6) (2020) 1452-1456.
[112] P. Sauerschnig, P. Jood, M. Ohta, Challenges and Progress in Contact Development for PbTe‐based Thermoelectrics, ChemNanoMat 9(4) (2023).
[113] P. Hidnert, H.S. Krider, Thermal expansion of aluminum and some aluminum alloys, J. Res. Natl. Bur. Stand. 48 (1952).
[114] R. Pathak, L. Xie, S. Das, T. Ghosh, A. Bhui, K. Dolui, D. Sanyal, J. He, K. Biswas, Vacancy controlled nanoscale cation ordering leads to high thermoelectric performance, Energy Environ. Sci. 16(7) (2023) 3110-3118.
電子全文 電子全文(網際網路公開日期:20281215)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 高熱電優值中溫型Sb摻雜GeTe:其相圖及相變化行為之探討
2. 在納米尺度系統中的電阻切換:考慮到鐵電隧道結和二維聚酞菁單層
3. 使用氮氧化矽/氮氧化鋁介電層之高壓氮化鎵功率電晶體三維整合氧化銦鎵鋅薄膜電晶體疊接組態其技術開發與可靠度分析
4. 利用TCAD模擬軟體探討提升砷化鎵高速電子遷移率電晶體高頻特性之方法
5. 探討高功率p型氮化鎵高電子遷移率場效電晶體特性分析及可靠度研究在不同鎂濃度參雜於p型氮化鎵、氮化鋁蝕刻終止層及不同元素參雜於緩衝層之影響
6. 應用於毫米波之收發器系統開發
7. CMOS相容之大範圍微機電派拉尼真空計之開發
8. γ射線照射對CVD生長的WS2和ReS2的結構、形態和憶阻特性的影響
9. 可應用於高效率功率電子之寬能隙(氮化鎵和氧化鎵)功率半導體元件特性和可靠度探討
10. 矽/二氧化矽基板類鑽石碳膜上生長超大型結晶狀石墨區塊之研究
11. 基於16奈米FinFET實現具可變區塊之高能效數位式記憶體浮點數內運算電路設計
12. 利用乾膜光阻製程技術開發高解析微流體液滴生成晶片應用於單細胞分子檢測
13. 使用高流量潮濕加熱鼻導管與非侵襲性陽壓呼吸器於長期使用呼吸器病人預防再插管的效益比較
14. 以貝氏最佳化選擇離線強化學習的動態模型
15. 以整合學習檢測具有概念飄移問題的惡意網域