|
[1] A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy Environ. Sci. 2(5) (2009). [2] X. Zhang, L.D. Zhao, Thermoelectric materials: Energy conversion between heat and electricity, J. Materiomics 1(2) (2015) 92-105. [3] Z. Bu, X. Zhang, B. Shan, J. Tang, H. Liu, Z.Chen, S. Lin, W. Li, Y. Pei, Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys, Sci. Adv. 7 (2021) eabf2738. [4] Y.F. Tsai, M.Y. Ho, P.C. Wei, H.J. Wu, Hierarchical twinning and light impurity doping enable high-performance GeTe thermoelectrics, Acta Mater. 222 (2022). [5] W.D. Liu, D.Z. Wang, Q. Liu, W.X. Zhou, Z. Shao, Z.G. Chen, High‐Performance GeTe‐Based Thermoelectrics: from Materials to Devices, Adv. Energy Mater. 10(19) (2020). [6] M. Hong, Z.G. Chen, L. Yang, Y.C. Zou, M.S. Dargusch, H. Wang, J. Zou, Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping, Adv. Mater. 30(11) (2018). [7] Y.F. Tsai, P.C. Wei, L. Chang, K.K. Wang, C.C. Yang, Y.C. Lai, C.R. Hsing, C.M. Wei, J. He, G.J. Snyder, H.J. Wu, Compositional fluctuations locked by athermal transformation yielding high thermoelectric performance in GeTe, Adv. Mater. 33 (2021) 2005612. [8] J. Li, X. Zhang, Z. Chen, S. Lin, W. Li, J. Shen, I.T. Witting, A. Faghaninia, Y. Chen, A. Jain, L. Chen, G.J. Snyder, Y. Pei, Low-symmetry rhombohedral GeTe thermoelectrics, Joule 2(5) (2018) 976-987. [9] S. Perumal, M. Samanta, T. Ghosh, U.S. Shenoy, A.K. Bohra, S. Bhattacharya, A. Singh, U.V. Waghmare, K. Biswas, Realization of High Thermoelectric Figure of Merit in GeTe by Complementary Co-doping of Bi and In, Joule 3(10) (2019) 2565-2580. [10] X. Zhang, Z. Bu, S. Lin, Z. Chen, W. Li, Y. Pei, GeTe thermoelectrics, Joule 4(5) (2020) 986-1003. [11] Y. Jiang, J. Dong, H.L. Zhuang, J. Yu, B. Su, H. Li, J. Pei, F.H. Sun, M. Zhou, H. Hu, J.W. Li, Z. Han, B.P. Zhang, T. Mori, J.F. Li, Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials, Nat. Commun. 13(1) (2022) 6087. [12] K. Jeong, S. Park, D. Park, M. Ahn, J. Han, W. Yang, H.S. Jeong, M.H. Cho, Evolution of crystal structures in GeTe during phase transition, Sci Rep 7(1) (2017) 955. [13] G. J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008). [14] T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Compromise and Synergy in High-Efficiency Thermoelectric Materials, Adv. Mater. 29(14) (2017). [15] S.K. Bux, J.P. Fleurial, R.B. Kaner, Nanostructured materials for thermoelectric applications, Chem. Commun. 46(44) (2010) 8311-24. [16] K.S. Bayikadi, R. Sankar, C.T. Wu, C. Xia, Y. Chen, L.C. Chen, K.H. Chen, F.C. Chou, Enhanced thermoelectric performance of GeTe through in situ microdomain and Ge-vacancy control, J. Mater. Chem. A 7(25) (2019) 15181-15189. [17] R. Sankar, D.P. Wong, C.S. Chi, W.L. Chien, J.S. Hwang, F.C. Chou, L.C. Chen, K.H. Chen, Enhanced thermoelectric performance of GeTe-rich germanium antimony tellurides through the control of composition and structure, CrystEngComm 17(18) (2015) 3440-3445. [18] J. Dong, F.H. Sun, H. Tang, J. Pei, H.L. Zhuang, H.H. Hu, B.P. Zhang, Y. Pan, J.F. Li, Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance, Energy Environ. Sci. 12(4) (2019) 1396-1403. [19] Z. Soleimani, S. Zoras, B. Ceranic, S. Shahzad, Y. Cui, A review on recent developments of thermoelectric materials for room-temperature applications, Sustain. Energy Technol. Assess. 37 (2020). [20] B. Legendre, Contribution à l'étude du diagramme d'équilibre des phases du système Ge-Te autour de GeTe1+x, C. R. Acad. Se. Paris (1977). [21] L. Baldé, B. Legendre, A.M.E. Balkhi, Etude du diagramme d'équilibre entre phases du système ternaire germanium-étain-tellure, J. Alloys Compd. 216 (1995). [22] A. Schlieper, Y. Feutelais, S.G. Fries, B. Legendre, R. Blachnik, Thermodynamic evaluation of the germanium-tellurium system, Calphad 23 (1999). [23] H. Okamoto, Ge-Te (Germanium-Tellurium), J. Ph. Equilibria 21 (2000). [24] J. He, T.M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward, Science 357(6358) (2017). [25] Y. Shi, C. Sturm, H. Kleinke, Chalcogenides as thermoelectric materials, J. Solid State Chem. 270 (2019) 273-279. [26] H.J. Wu, W.T. Yen, High thermoelectric performance in Cu-doped Bi2Te3 with carrier-type transition, Acta Mater. 157 (2018) 33-41. [27] I.T. Witting, T.C. Chasapis, F. Ricci, M. Peters, N.A. Heinz, G. Hautier, G.J. Snyder, The Thermoelectric Properties of Bismuth Telluride, Adv. Electron. Mater. 5 (2019) 1800904. [28] D. Kong, W. Zhu, Z. Guo, Y. Deng, High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting, Energy 175 (2019) 292-299. [29] H.J. Wu, P.C. Wei, H.Y. Su, K.K. Wang, W.T. Yen, I.L. Jen, J. He, Designing Environmentally Friendly High-zT Zn4Sb3 via Thermodynamic Routes, ACS Appl. Energy Mater. 2 (2019) 7564-7571. [30] E.S. Toberer, P. Rauwel, S. Gariel, J. Taftø, G.J. Snyder, Composition and the thermoelectric performance of -Zn4Sb3, J. Mater. Chem. 20 (2010) 9877-9885. [31] Y. Xiao, H. Wu, H. Shi, L. Xu, Y. Zhu, Y. Qin, G. Peng, Y. Zhang, Z.H. Ge, X. Ding, L.D. Zhao, High‐Ranged ZT Value Promotes Thermoelectric Cooling and Power Generation in n‐Type PbTe, Adv. Energy Mater. 12(16) (2022). [32] C.C. Li, F. Drymiotis, L.L. Liao, H.T. Hung, J.H. Ke, C.K. Liu, C.R. Kao, G.J. Snyder, Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials, J. Mater. Chem. C 3(40) (2015) 10590-10596. [33] Y. Xiao, L.D. Zhao, Charge and phonon transport in PbTe-based thermoelectric materials, npj Quantum Mater. 3 (2018) 55. [34] S.Y. Back, J.H. Yun, H.K. Cho, S. Byeon, H. Jin, J.S. Rhyee, High thermoelectric performance by chemical potential tuning and lattice anharmonicity in GeTe1-xIx compounds, Inorg. Chem. Front. 8(5) (2021) 1205-1214. [35] X. Qi, Y. Yu, X. Xu, J. Wang, F. Zhang, B. Zhu, J. He, X. Chao, Z. Yang, D. Wu, Enhanced thermoelectric performance in GeTe-Sb2Te3 pseudo-binary via lattice symmetry regulation and microstructure stabilization, Mater. Today Phys. 21 (2021). [36] J.F. Li, W.S. Liu, L.D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials, NPG Asia Mater. 2(4) (2010) 152-158. [37] Z. Guo, G. Wu, X. Tan, R. Wang, Z. Zhang, G. Wu, Q. Zhang, J. Wu, G.Q. Liu, J. Jiang, Enhanced thermoelectric performance in GeTe by synergy of midgap state and band convergence, Adv. Funct. Mater. (2022). [38] T. Oku, H. Funashima, S. Kawaguchi, Y. Kubota, A. Kosuga, Superior room-temperature power factor in GeTe systems via multiple valence band convergence to a narrow energy range, Mater. Today Phys. 20 (2021). [39] Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics, Nature 473(7345) (2011) 66-9. [40] P.C. Wei, C.N. Liao, H.J. Wu, D. Yang, J. He, G.V. Biesold-McGee, S. Liang, W.T. Yen, X. Tang, J.W. Yeh, Z. Lin, J.H. He, Thermodynamic Routes to Ultralow Thermal Conductivity and High Thermoelectric Performance, Adv. Mater. 32(12) (2020) e1906457. [41] P.Y. Deng, W.T. Yen, Y.F. Tsai, I.L. Jen, B.C. Chen, H.J. Wu, Eliciting high‐performance thermoelectric materials via phase diagram engineering: A review, Adv. Energy Sustainability Res. 2(9) (2021). [42] H.J. Wu, B.Y. Chen, H.Y. Cheng, The p-n conduction type transition in Ge-incorporated Bi2Te3 thermoelectric materials, Acta Mater. 122 (2017) 120-129. [43] S. Perumal, S. Roychowdhury, K. Biswas, High performance thermoelectric materials and devices based on GeTe, J. Mater. Chem. C 4(32) (2016) 7520-7536. [44] H.S. Lee, B.S. Kim, C.W. Cho, M.W. Oh, B.K. Min, S.D. Park, H.W. Lee, Herringbone structure in GeTe-based thermoelectric materials, Acta Mater. 91 (2015) 83-90. [45] J. Li, Y. Xie, C. Zhang, K. Ma, F. Liu, W. Ao, Y. Li, C. Zhang, Stacking Fault-Induced Minimized Lattice Thermal Conductivity in the High-Performance GeTe-Based Thermoelectric Materials upon Bi2Te3 Alloying, ACS Appl. Mater. Interfaces. 11(22) (2019) 20064-20072. [46] X. Xu, L. Xie, Q. Lou, D. Wu, J. He, Boosting the thermoelectric performance of pseudo-layered Sb2Te3(GeTe)n via vacancy engineering, Adv. Sci. 5(12) (2018) 1801514. [47] J. Li, X. Zhang, X. Wang, Z. Bu, L. Zheng, B. Zhou, F. Xiong, Y. Chen, Y. Pei, High-performance GeTe thermoelectrics in both rhombohedral and cubic phases, J. Am. Chem. Soc. 140(47) (2018) 16190-16197. [48] M. Hong, Y. Wang, T. Feng, Q. Sun, S. Xu, S. Matsumura, S.T. Pantelides, J. Zou, Z.G. Chen, Strong phonon-phonon interactions securing extraordinary thermoelectric Ge1-xSbxTe with Zn-alloying-induced band alignment, J. Am. Chem. Soc. 141(4) (2019) 1742-1748. [49] T. Xing, Q. Song, P. Qiu, Q. Zhang, X. Xia, J. Liao, R. Liu, H. Huang, J. Yang, S. Bai, D. Ren, X. Shi, L. Chen, Superior performance and high service stability for GeTe-based thermoelectric compounds, Natl. Sci. Rev. 6(5) (2019) 944-954. [50] K.S. Bayikadi, C.T. Wu, L.C. Chen, K.H. Chen, F.C. Chou, R. Sankar, Synergistic optimization of thermoelectric performance of Sb doped GeTe with a strained domain and domain boundaries, J. Mater. Chem. A 8(10) (2020) 5332-5341. [51] H. Jeong, S.K. Kihoi, H. Kim, H.S. Lee, High seebeck coefficient and low thermal conductivity in Bi and In co-doped GeTe thermoelectric material, J. Mater. Res. Technol. 15 (2021) 6312-6318. [52] D. Wu, L. Xie, X. Xu, J. He, High thermoelectric performance achieved in GeTe-Bi2Te3 pseudo‐binary via van der Waals gap‐induced hierarchical ferroelectric domain structure, Adv. Funct. Mater. 29(18) (2019). [53] L. Weintraub, J. Davidow, J. Tunbridge, R. Dixon, M.J. Reece, H. Ning, I. Agote, Y. Gelbstein, Investigation of the Microstructural and Thermoelectric Properties of the(GeTe)0.95(Bi2Te3)0.05 Composition for Thermoelectric Power Generation Applications, J. Nanomater. 2014 (2014) 1-7. [54] D. Wu, L.D. Zhao, S. Hao, Q. Jiang, F. Zheng, J.W. Doak, H. Wu, H. Chi, Y. Gelbstein, C. Uher, C. Wolverton, M. Kanatzidis, J. He, Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping, J. Am. Chem. Soc. 136(32) (2014) 11412-9. [55] D. Wu, L. Xie, X. Chao, Z. Yang, J. He, Step-up thermoelectric performance realized in Bi2Te3 alloyed GeTe via carrier concentration and microstructure modulations, ACS Appl. Energy Mater. 2(3) (2019) 1616-1622. [56] N. Jia, J. Cao, X.Y. Tan, J. Zheng, S.W. Chien, L. Yang, K.H. Chen, H.K. Ng, S.S. Faye Duran, H. Liu, C.K. Ivan Tan, Z. Li, J. Xu, J. Wu, Q. Yan, A. Suwardi, Suppressing Ge-vacancies to achieve high single-leg efficiency in GeTe with an ultra-high room temperature power factor, J. Mater. Chem. A 9(41) (2021) 23335-23344. [57] B.C. Chen, K.K. Wang, H.J. Wu, Localized crystal imperfections coupled with phase diagram engineering yield high-performance rhombohedral GeTe thermoelectrics, Mater. Today Phys. 22 (2022). [58] C.H. Lin, W.T. Yen, Y.F. Tsai, H.J. Wu, Unravelling p–n Conduction Transition in High Thermoelectric Figure of Merit Gallium-Doped Bi2Te3 via Phase Diagram Engineering, ACS Appl. Energy Mater. 3(2) (2020) 1311-1318. [59] L. Li, Y. Liu, J. Dai, A. Hong, M. Zeng, Z. Yan, J. Xu, D. Zhang, D. Shan, S. Liu, Z. Ren, J.M. Liu, High thermoelectric performance of superionic argyrodite compound Ag8SnSe6, J. Mater. Chem. C. 4 (2016) 5806-5813. [60] S. Lin, W. Li, Y. Pei, Thermally insulative thermoelectric argyrodites, Mater. Today 48 (2021) 198-213. [61] J.Y. Liu, L. Chen, L.M. Wu, Ag9GaSe6: high-pressure-induced Ag migration causes thermoelectric performance irreproducibility and elimination of such instability, Nat. Commun. 13 (2022) 2966. [62] J. Wang, K. Zhuo, J. Gao, U. Landman, M.Y. Chou, Mechanism for anisotropic diffusion of liquid-like Cu atoms in hexagonal -Cu2S, Phys. Rev. Mater. 5 (2021) 073603. [63] Y. Yao, B.P. Zhang, J. Pei, Y.C. Liu, J.F. Li, Thermoelectric performance enhancement of Cu2S by Se doping leading to a simultaneous power factor increase and thermal conductivity reduction, J. Mater. Chem. C. 5 (2017) 7845-7852. [64] P. Nieroda, J. Leszczyński, A. Mikuła, K. Mars, M.J. Kruszewski, A. Koleżyński, Thermoelectric properties of Cu2S obtained by high temperature synthesis and sintered by IHP method, Ceram. Int. 46 (2020) 25460-25466. [65] H. Kim, S. Ballikaya, H. Chi, J.P. Ahn, K. Ahn, C. Uher, M. Kaviany, Ultralow thermal conductivity of -Cu2Se by atomic fluidity and structure distortion, Acta Mater. 86 (2015) 247-253. [66] P.Y. Deng, K.K. Wang, H.Y. Sung, W.W. Wu, H.J. Wu, Liquid-like copper chalcogenide modulates electron donors in high-performance n-type PbTe thermoelectrics, Cell Rep Phys Sci. 4(6) (2023). [67] B.K. Heep, K.S. Weldert, Y. Krysiak, T.W. Day, W.G. Zeier, U. Kolb, G.J. Snyder, W. Tremel, High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag8SiSe6, Chem. Mater. 29 (2017) 4833-4839. [68] F. Reissig, B. Heep, M. Panthofer, M. Wood, S. Anand, G.J. Snyder, W. Tremel, Effect of anion substitution on the structural and transport properties of argyrodites Cu7PSe6-xSx, Dalton Trans. 48 (2019) 15822-15829. [69] K.S. Weldert, W.G. Zeier, T.W. Day, M. Panthofer, G.J. Snyder, W. Tremel, Thermoelectric transport in Cu7PSe6 with high copper ionic mobility, J. Am. Chem. Soc. 136 (2014) 12035-12040. [70] Y.F. Tsai, C.L. Stern, B.C. Chen, G.J. Snyder, H.J. Wu, A Cu-based Cu8-xGe(S, Te)6 argyrodite: its widespan cubic-phase region and ultralow lattice thermal conductivity, J. Mater. Chem. A 11(20) (2023) 10532-10537. [71] M. Moroz, P. Demchenko, M. Prohorenko, L. Soliak, S. Prohorenko, O. Reshetnyak, Thermodynamically stable phases of the Ag9GaSe6-Ag8GeSe6 system at T < 600 K and their physico-chemical properties, Ukr. chem. j. 88 (2022) 25-36. [72] G.M. Sheldrick, SHELXT - integrated space-group and crystal-structure determination, Acta Crystallogr. A: Found. Adv. 71 (2015) 3-8. [73] G.M. Sheldrick, A short history of SHELX, Acta Crystallogr. A: Found. Adv. 64 (2008) 112-22. [74] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Crystallogr. 42 (2009) 339-341. [75] H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement, APL Mater. 3 (2015) 041506. [76] Y. Xiao, H. Wu, W. Li, M. Yin, Y. Pei, Y. Zhang, L. Fu, Y. Chen, S.J. Pennycook, L. Huang, J. He, L.D. Zhao, Remarkable Roles of Cu To Synergistically Optimize Phonon and Carrier Transport in n-Type PbTe-Cu2Te, J. Am. Chem. Soc. 139(51) (2017) 18732-18738. [77] T.H. An, Y.S. Lim, M.J. Park, J.Y. Tak, S. Lee, H.K. Cho, J.Y. Cho, C. Park, W.S. Seo, Composition-dependent charge transport and temperature-dependent density of state effective mass interpreted by temperature-normalized Pisarenko plot in Bi2-xSbxTe3 compounds, APL Materials 4(10) (2016). [78] L. Yue, T. Fang, S. Zheng, W. Cui, Y. Wu, S. Chang, L. Wang, P. Bai, H. Zhao, Cu/Sb Codoping for Tuning Carrier Concentration and Thermoelectric Performance of GeTe-Based Alloys with Ultralow Lattice Thermal Conductivity, ACS Appl. Energy Mater. 2(4) (2019) 2596-2603. [79] L. Xie, Y. Chen, R. Liu, E. Song, T. Xing, T. Deng, Q. Song, J. Liu, R.K. Zheng, X. Gao, S. Bai, L. Chen, Stacking faults modulation for scattering optimization in GeTe-based thermoelectric materials, Nano Energy 68 (2020). [80] D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study, Materials Chemistry and Physics 239 (2020). [81] J. Li, X. Zhang, S. Lin, Z. Chen, Y. Pei, Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying, Chem. Mater. 29(2) (2016) 605-611. [82] P. Zalden, K.S. Siegert, S. Rols, H.E. Fischer, F. Schlich, T. Hu, M. Wuttig, Specific Heat of (GeTe)x(Sb2Te3)1-x Phase-Change Materials: The Impact of Disorder and Anharmonicity, Chem. Mater. 26(7) (2014) 2307-2312. [83] T. Schroder, T. Rosenthal, N. Giesbrecht, M. Nentwig, S. Maier, H. Wang, G.J. Snyder, O. Oeckler, Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials induced by phase transitions associated with vacancy ordering, Inorg Chem 53(14) (2014) 7722-9. [84] X. Zhang, J. Li, X. Wang, Z. Chen, J. Mao, Y. Chen, Y. Pei, Vacancy manipulation for thermoelectric enhancements in GeTe alloys, J. Am. Chem. Soc. 140(46) (2018) 15883-15888. [85] E.M. Levin, Effects of Ge substitution in GeTe by Ag or Sb on the Seebeck coefficient and carrier concentration derived from 125Te NMR, Phys. Rev. B 93(4) (2016). [86] M. Snykers, P. Delavignette, S. Amelinckx, The domain structure of GeTe as observed by electron microscopy, Mater. Res. Bull. 7 (1972) 831-839. [87] S.H. Yang, T.J. Zhu, T. Sun, J. He, S.N. Zhang, X.B. Zhao, Nanostructures in high-performance (GeTe)x(AgSbTe2)100-x thermoelectric materials, Nanotechnology 19(24) (2008) 245707. [88] P.C. Wei, C.X. Cai, C.R. Hsing, C.M. Wei, S.H. Yu, H.J. Wu, C.L. Chen, D.H. Wei, D.L. Nguyen, M.M.C. Chou, Y.Y. Chen, Enhancing thermoelectric performance by Fermi level tuning and thermal conductivity degradation in (Ge1-xBix)Te crystals, Sci. Rep. 9(1) (2019) 8616. [89] Y.X. Cheng, L. Zhu, G. Wang, J. Zhou, S.R. Elliott, Z. Sun, Vacancy formation energy and its connection with bonding environment in solid: A high-throughput calculation and machine learning study, Comput. Mater. Sci. 183 (2020). [90] S. Shimano, Y. Tokura, Y. Taguchi, Carrier density control and enhanced thermoelectric performance of Bi and Cu co-doped GeTe, APL Materials 5(5) (2017). [91] Z. Bu, W. Li, J. Li, X. Zhang, J. Mao, Y. Chen, Y. Pei, Dilute Cu2Te-alloying enables extraordinary performance of R-GeTe thermoelectrics, Mater. Today Phys. 9 (2019). [92] M. Peigney, On the energy-minimizing strains in martensitic microstructures—Part 2: Geometrically linear theory, J. Mech. Phys. Solids. 61(6) (2013) 1511-1530. [93] K. Bhattacharya, Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, Oxford University Press2004. [94] N.T. Tsou, C.H. Chen, C.S. Chen, S.K. Wu, Classification and analysis of trigonal martensite laminate twins in shape memory alloys, Acta Mater. 89 (2015) 193-204. [95] B. Legendre, C. Hancheng, Phase diagram of the ternary system Ge-Sb-Te. I. The subternary GeTe-Sb,Te,-Te, Thermochim. Acta. 78 (1984) 141-157. [96] M. Petersmann, T. Antretter, G. Cailletaud, A. Sannikov, U. Ehlenbröker, F.D. Fischer, Unification of the non-linear geometric transformation theory of martensite and crystal plasticity - Application to dislocated lath martensite in steels, Int. J. Plast. 119 (2019) 140-155. [97] J.H. Choi, K.D. Na, S.C. Lee, C.S. Hwang, First-principles study on the formation of a vacancy in Ge under biaxial compressive strain, Thin Solid Films 518(22) (2010) 6373-6377. [98] H. Bishara, S. Lee, T. Brink, M. Ghidelli, G. Dehm, Understanding Grain Boundary Electrical Resistivity in Cu: The Effect of Boundary Structure, ACS Nano 15(10) (2021) 16607-16615. [99] L.E. Shelimova, S.K. Plachkova, Estimation of the Debye Temperature of IV-VI Semiconductor Compounds and Rhombohedral (GeTe)1-x((Ag2Te)1-y(Sb2Te3)y)x Solid Solutions (y = 0.6), Phys. Status Solidi A 104(2) (1987) 679-685. [100] L. Yang, J.Q. Li, R. Chen, Y. Li, F.S. Liu, W.Q. Ao, Influence of Se Substitution in GeTe on Phase and Thermoelectric Properties, J. Electron. Mater. 45(11) (2016) 5533-5539. [101] Y. Huang, S. Zhi, S. Zhang, W. Yao, W. Ao, C. Zhang, F. Liu, J. Li, L. Hu, Regulating the configurational entropy to improve the thermoelectric properties of (GeTe)1-x(MnZnCdTe3)x Alloys, Materials 15(19) (2022). [102] A. Suwardi, J. Cao, Y. Zhao, J. Wu, S.W. Chien, X.Y. Tan, L. Hu, X. Wang, W. Wang, D. Li, Y. Yin, W.X. Zhou, D.V.M. Repaka, J. Chen, Y. Zheng, Q. Yan, G. Zhang, J. Xu, Achieving high thermoelectric quality factor toward high figure of merit in GeTe, Mater. Today Phys. 14 (2020) 100239. [103] J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science 321 (2008) 554-557. [104] K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit, Science 303(5659) (2004) 818-21. [105] S. Schwarzmüller, D. Souchay, D. Günther, A. Gocke, I. Dovgaliuk, S.A. Miller, G.J. Snyder, O. Oeckler, Argyrodite-Type Cu8GeSe6-xTex (0 ≤ x ≤ 2): Temperature-Dependent Crystal Structure and Thermoelectric Properties, Z. Anorg. Allg. Chem. 644 (2018) 1915-1922. [106] B. Jiang, P. Qiu, E. Eikeland, H. Chen, Q. Song, D. Ren, T. Zhang, J. Yang, B.B. Iversen, X. Shi, L. Chen, Cu8GeSe6-based thermoelectric materials with an argyrodite structure, J. Mater. Chem. C 5 (2017) 943-952. [107] M. Onoda, X.A. Chen, K. Kato, A. Sato, H. Wada, Structure refinement of Cu8GeS6 using x-ray diffraction data from a multiple-twinned crystal, Acta Cryst. 55 (1999) 721-725. [108] Y. Fan, G. Wang, R. Wang, B. Zhang, X. Shen, P. Jiang, X. Zhang, H.S. Gu, X. Lu, X.Y. Zhou, Enhanced thermoelectric properties of p-type argyrodites Cu8GeS6 through Cu vacancy, J. Alloys Compd. 822 (2020) 153665. [109] M.T. Agne, R. Hanus, G.J. Snyder, Minimum thermal conductivity in the context of diffuson-mediated thermal transport, Energy Environ. Sci. 11 (2018) 609-616. [110] R. Hanus, J. George, M. Wood, A. Bonkowski, Y.X. Cheng, D.L. Abernathy, M.E. Manley, G. Hautier, G.J. Snyder, R.P. Hermann, Uncovering design principles for amorphous-like heat conduction using two-channel lattice dynamics, Mater. Today Phys. 18 (2021) 100344. [111] R. Gurunathan, R. Hanus, G.J. Snyder, Alloy scattering of phonons, Mater. Horiz. 7(6) (2020) 1452-1456. [112] P. Sauerschnig, P. Jood, M. Ohta, Challenges and Progress in Contact Development for PbTe‐based Thermoelectrics, ChemNanoMat 9(4) (2023). [113] P. Hidnert, H.S. Krider, Thermal expansion of aluminum and some aluminum alloys, J. Res. Natl. Bur. Stand. 48 (1952). [114] R. Pathak, L. Xie, S. Das, T. Ghosh, A. Bhui, K. Dolui, D. Sanyal, J. He, K. Biswas, Vacancy controlled nanoscale cation ordering leads to high thermoelectric performance, Energy Environ. Sci. 16(7) (2023) 3110-3118.
|