跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 10:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅靖淳
研究生(外文):Luo, Jing-Chun
論文名稱:ZIF衍生碳材承載高熵合金MgCoNiCuZn/SiO2應用於對硝基苯酚加氫觸媒性能之研究
論文名稱(外文):High Entropy Alloy MgCoNiCuZn/SiO2 Derived from ZIF as catalyst for P-nitrophenol Hydrogenation
指導教授:王誠佑
指導教授(外文):Wang, Cheng-Yu
口試委員:王誠佑鍾博文康敦彥
口試委員(外文):Wand, Cheng-YuCedric Po-Wen ChungDun-Yen Kang
口試日期:2024-02-01
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:材料科學與工程學系奈米科技
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:164
中文關鍵詞:高熵合金奈米顆粒四乙氧基矽烷表面改性對硝基苯酚氫化反應金屬有機骨架
外文關鍵詞:High-entropy alloy nanoparticlestetraethoxysilanesurface modificatiop-nitrophenolhydrogenation catalysismetal-organic frameworks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高熵合金 (High-entropy alloys, HEAs) 奈米顆粒 (NPs) 在觸媒反應領域的應用已成為引人注目的研究課題。由於多元元素組成,HEAs擁有均勻晶體結構,並在觸媒反應中表現卓越,但在觸媒中仍面臨挑戰。本研究以水熱法合成沸石咪唑酯骨架(ZIFs)前驅體,隨後透過氫氣還原成功合成鎂鈷鎳銅鋅(MgCoNiCuZn)高熵合金奈米顆粒。其中,透過不同比例的四乙氧基矽烷 (TEOS) 探討材料表面的親水性,並調整煅燒溫度來找尋形成HEAs的最佳參數(HE-ZDC/2S_300),有趣的是,透過TEOS改性的材料不僅能夠增加表面親水性,且經煅燒後的SiO2能夠有效防止金屬顆粒團聚及相分離發生,因此提高在催化對硝基苯酚氫化成對氨基苯酚方面的觸媒活性。
對硝基苯酚是一種有毒物質,對皮膚、呼吸道刺激,嚴重可能致癌。對硝基苯酚氫化是透過催化劑和氫氣轉為毒性較低的對氨基苯酚,因反應溫和、高選擇性、高產率,因此是一種常見的手法。值得注意的是,改性碳化材料HE-ZDC/2S_300 (300 h-1)的週期轉換效率 (TOF) 比未改性碳化材料HE-ZDC_300 (93 h-1) 具有更高的催化效率。
The application of high entropy alloys nanoparticles in the catalytic reaction has become a remarkable research topic. Due to their composition of diverse elements, HEAs possess a uniform crystal structure and exhibit exceptional performance in catalytic reactions. However, they face challenges in catalysis. This study used zeolitic imidazolate frameworks (ZIFs) produced by hydrothermal method as precursors to synthesize MgCoNiCuZn HEAs NPs through high-temperature reduction in hydrogen. Varying tetraethoxysilane (TEOS) ratios improved surface hydrophilicity, optimizing HEAs formation (HE-ZDC/2S_300) via calcination. TEOS modification can enhanced surface hydrophilicity, and calcined SiO2 can also prevented metal particle aggregation and phase separation, boosting catalytic activity in p-nitrophenol hydrogenation. Nitrophenol is toxic, irritating skin and respiratory tract, potentially causing cancer. Hydrogenation using catalysts converts it into less toxic aminophenol, known for mild conditions, high selectivity, and yield. It's worth noting that the modified material HE-ZDC/2S_300 exhibited significantly better catalysis efficiency with a turnover frequency (TOF) of 300 h-1 compared to the unmodified material HE-ZDC_300 of 93 h-1.
摘要-----IV
ABSTRACT-----V
CONTENT-----VI
LIST OF FIGURES-----IX
LIST OF TABLES-----XVII
CHAPTER 1 INTRODUCTION-----1
1-1 BACKGROUND-----1
1-2 HIGH-ENTROPY ALLOYS (HEAS)-----2
1-3 METAL-ORGANIC FRAMEWORKS (MOFS)-----3
CHAPTER 2 LITERATURE REVIEW-----4
2-1 HIGH-ENTROPY NANOPARTICLES (HE-NPS) CATALYST-----4
2-1-1 High-Entropy Alloys and Catalysis-----4
2-1-2 Synthesis of HEA NPs-----9
2-2 METAL-ORGANIC FRAMEWORKS (MOFS)-----16
2-2-1 MOFs and MDCs-----16
2-2-2 Multi-metallic MOFs-----17
2-2-3 Synthesis of MOF-derived HEA-----21
2-3 TEOS SURFACE-MODIFICATION-----25
2-3-1 Silica gel synthesis from TEOS hydrolysis-----25
2-3-2 SiO2 modification-----27
2-4 HYDROGENATION OF P-NITROPHENOL-----31
2-4-1 p-nitrophenol to p-aminophenol catalysis-----31
2-4-2 Catalytic mechanism-----43
2-4 HYPOTHESIS-----49
CHAPTER 3 EXPERIMENTAL METHODS-----50
3-1 CHEMICALS AND REAGENTS-----50
3-2 ZIF SYNTHESIS-----51
3-2-1 High entropy ZIF-----51
3-2-2 Surface-modified high entropy ZIF-----51
3-3 ZIF-DERIVED CARBON SYNTHESIS-----52
3-4 CHARACTERIZATION-----53
3-4-1 Powder X-ray diffraction-----53
3-4-2 High resolution powder X-ray diffraction-----54
3-4-3 Nitrogen adsorption-desorption isotherm-----54
3-4-4 Fourier-transform infrared spectroscopy-----55
3-4-5 Hydrophily-----55
3-4-6 Small/Wide angle X-ray scattering-----55
3-4-7 Transmission electron microscope-----56
3-4-7 Atomic absorption spectroscopy-----56
3-4-8 Thermogravimetric analysis-----57
3-4-9 Hydrogen temperature programmed reduction-----57
3-4-10 X-ray photoelectron spectroscopy-----58
3-4-11 X-ray absorption spectroscopy-----58
3-5 CATALYSIS OF PNP TO PAP HYDROGENATION-----59
3-5-1 Ultraviolet-visible spectroscopy-----59
3-5-2 The first cycle-----60
3-5-3 Cycle test-----61
3-5-4 Blank test-----61
3-5-5 Adsorption constant of PNP-----61
3-5-6 Adsorption constant of NaBH4-----63
CHAPTER 4 RESULTS AND DISCUSSION-----68
4-1 MATERIAL CHARACTERIZATION-----68
4-1-1 ZIF-----68
4-1-2 ZIF-derived carbon-----85
4-2 PNP HYDROGENATION-----121
4-2-1 Blank test-----121
4-2-2 Performance-----122
4-2-3 Activation energy-----133
4-2-4 Cycle test-----137
4-2-3 Mechanism-----140
4-2-4 Turnover frequency-----145
CHAPTER 5 CONCLUSIONS-----148
REFERENCES-----149
1.Quality Criteria for Water. United States Environmental Protection Agency, Washington D.C., U.S., (1976)
2.Toxicological Profile for Nitrophenols: 2-Nitrophenol, 4-Nitrophenol. Agency for Toxic Substances and Diseases Registry, U.S., (1992)
3.Yeh, J.-W. et al. Nanostructured High-entropy alloys with multiple principal elements: Novel Alloy Design Concepts and outcomes. Advanced Engineering Materials 6, 299–303 (2004).
4.Gao, M. C. High-entropy alloys fundamentals and applications. Springer (2016)
5.Introduction to Metal–Organic Frameworks. Chemical Reviews 112 (2), 673 – 674, (2012).
6.Indra, A., Song, T. & Paik, U. Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage. Advanced Materials 30, 1–25 (2018).
7.Ma, X., Chai, Y., Li, P. & Wang, B. Metal-Organic Framework Films and Their Potential Applications in Environmental Pollution Control. Acc Chem Res 52, 1461–1470 (2019).
8.Luo, H. et al. Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting. Chemical Engineering Journal 383 (2020).
9.Kornienko, N. et al. Metal-Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide. J Am Chem Soc 137, 14129–14135 (2015).
10.Ramyashree, M. S., Shanmuga Priya, S., Freudenberg, N. C., Sudhakar, K. & Tahir, M. Metal-organic framework-based photocatalysts for carbon dioxide reduction to methanol: A review on progress and application. Journal of CO2 Utilization 43 (2021).
11.Fu, S., Zhu, C., Song, J., Du, D. & Lin, Y. Metal-Organic Framework-Derived Non-Precious Metal Nanocatalysts for Oxygen Reduction Reaction. Advanced Energy Materials 7 (2017).
12.Yeh, J.-W. Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759–1771 (2013).
13.Lee, C. et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy. SSRN Electronic Journal (2020).
14.Egami, T., Ojha, M., Khorgolkhuu, O., Nicholson, D. M. & Stocks, G. M. Local electronic effects and irradiation resistance in high-entropy alloys. JOM 67, 2345–2349 (2015).
15.Oh, H. S. et al. Engineering atomic-level complexity in high-entropy and complex concentrated alloys. Nature Communications 10, (2019).
16.Yen, C.-C. et al. Lattice distortion effect on elastic anisotropy of high entropy alloys. Journal of Alloys and Compounds 818, 152876 (2020).
17.Park, C., Lee, H., Lee, N., Ahn, B. & Lee, J. Upcycling of abandoned banner via thermocatalytic process over a MNFECONICU high-entropy alloy catalyst. Journal of Hazardous Materials 440, 129825 (2022).
18.Zhang, T. et al. Strain-engineering-regulated AL0.6CRFE2NI2 high entropy alloy enhances electrocatalytic water oxidation. Journal of Alloys and Compounds 945, 169319 (2023).
19.Mori, K. et al. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nature Communications 12, (2021).
20.Yuan, S. et al. Ultrathin wavy nanowires of high-entropy alloy as cocktail solution in methanol oxidation reaction. Progress in Natural Science: Materials International 33, 225–231 (2023).
21.Wang, L. et al. Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage. Chemical Engineering Journal 465, 142766 (2023).
22.Al Zoubi, W., Putri, R. A., Abukhadra, M. R. & Ko, Y. G. Recent experimental and theoretical advances in the design and science of high-entropy alloy nanoparticles. Nano Energy 110, 108362 (2023).
23.Liu, W. H., Wu, Y., He, J. Y., Nieh, T. G. & Lu, Z. P. Grain growth and the hall–petch relationship in a high-entropy fecrnicomn alloy. Scripta Materialia 68, 526–529 (2013).
24.Darut, G. et al. State of the art of particle emissions in thermal spraying and other high energy processes based on metal powders. Journal of Cleaner Production 303, 126952 (2021).
25.Kunce, I., Polanski, M. & Bystrzycki, J. Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using laser engineered net shaping (lens). International Journal of Hydrogen Energy 38, 12180–12189 (2013).
26.Hu, C. et al. Enhanced thermal and electrical properties by ag nanoparticles decorated go-CNT nanostructures in Peek Composites. Composites Science and Technology 218, 109201 (2022).
27.Fujieda, T. et al. First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as Engineering Materials. Materials Letters 159, 12–15 (2015).
28.Dorokhin, M. V. et al. New functional material: Spark Plasma Sintered Si/SiO2 nanoparticles – fabrication and properties. RSC Advances 9, 16746–16753 (2019).
29.Suryanarayana, C. Synthesis of nanocomposites by mechanical alloying. Journal of Alloys and Compounds 509, (2011).
30.Cao, K., Cai, J., Shan, B. & Chen, R. Surface functionalization on nanoparticles via atomic layer deposition. Science Bulletin 65, 678–688 (2020).
31.Kim, D.-S. & Hwang, N.-M. Synthesis of nanostructures using charged nanoparticles spontaneously generated in the gas phase during chemical vapor deposition. Journal of Physics D: Applied Physics 51, 463002 (2018).
32.Fazio, E. et al. Nanoparticles engineering by pulsed laser ablation in liquids: Concepts and applications. Nanomaterials 10, 2317 (2020).
33.Sergievskaya, A. et al. Insights on the formation of nanoparticles prepared by magnetron sputtering onto liquids: Gold sputtered onto castor oil as a case study. Frontiers in Nanotechnology 3, (2021).
34.Yang, Y. et al. Aerosol synthesis of high entropy alloy nanoparticles. Langmuir 36, 1985–1992 (2020).
35.Gao, S. et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast-moving bed pyrolysis. Nature Communications 11, (2020).
36.Qiao, H. et al. Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano 15, 14928–14937 (2021).
37.Feng, D., Dong, Y., Nie, P., Zhang, L. & Qiao, Z.-A. CoNiCuMgZn high entropy alloy nanoparticles embedded onto graphene sheets via anchoring and alloying strategy as efficient electrocatalysts for hydrogen evolution reaction. Chemical Engineering Journal 430, 132883 (2022).
38.Cai, G., Yan, P., Zhang, L., Zhou, H.-C. & Jiang, H.-L. Metal–organic framework-based hierarchically porous materials: Synthesis and applications. Chemical Reviews 121, 12278–12326 (2021).
39.Zhou, H.-C. “Joe” & Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415–5418 (2014).
40.Shen, K., Chen, X., Chen, J. & Li, Y. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catalysis 6, 5887–5903 (2016).
41.He, Y. et al. Metal-organic frameworks as a good platform for the fabrication of multi-metal nanomaterials: Design strategies, electrocatalytic applications and prospective. Advances in Colloid and Interface Science 304, 102668 (2022).
42.Macedo Andrade, A. et al. MOF-derived Co/Cu-embedded N-doped carbon for trifunctional ORR/OER/her catalysis in Alkaline Media. Dalton Transactions 50, 5473–5482 (2021).
43.Xu, W. et al. Entropy‐driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 Fixation. Angewandte Chemie 131, 5072–5076 (2019).
44.Rajamanickam, P. et al. Metastable intermetallic compound Zn3Co alloying from porous coordination polymer pyrolysis. Journal of Alloys and Compounds 968, 172088 (2023).
45.Wang, S. et al. High entropy alloy/C nanoparticles derived from polymetallic MOF as promising electrocatalysts for alkaline oxygen evolution reaction. Chemical Engineering Journal 429, 132410 (2022).
46.Liu, S. et al. Catalytic transfer hydrogenation of furfural via metal-organic framework-derived high entropy alloy catalysts at room pressure. Fuel Processing Technology 252, 107976 (2023).
47.Duran, A., Serna, C., Fornes, V. & Fernandez Navarro, J. M. Structural considerations about SiO2 glasses prepared by sol-gel. Journal of Non-Crystalline Solids 82, 69–77 (1986).
48.Boonstra, A. H. & Bernards, T. N. M. The dependence of the gelation time on the hydrolysis time in a two-step SiO2 sol-gel process. Journal of Non-Crystalline Solids 105, 207–213 (1988).
49.Azlina, H. N., Hasnidawani, J. N., Norita, H. & Surip, S. N. Synthesis of SiO2 nanostructures using sol-gel method. Acta Physica Polonica A 129, 842–844 (2016).
50.Yang, X. et al. Controlled hydrophilic/hydrophobic property of silica films by manipulating the hydrolysis and condensation of tetraethoxysilane. Applied Surface Science 376, 1–9 (2016).
51.Hu, Y. et al. Size-controlled synthesis of highly stable and active Pd@SiO2 core–shell nanocatalysts for hydrogenation of nitrobenzene. The Journal of Physical Chemistry C 117, 8974–8982 (2013).
52.Mondal, S., Samanta, A., Dhar, B. B. & Devi, R. N. Encapsulation of ultra-small metal clusters in silica: Evolution of the concept of nanoreactors and the case of Ag–Pd@SiO2 Alloy Catalyst. Catalysis Today 251, 114–120 (2015).
53.Sahiner, N. & Yasar, A. O. A new application for colloidal silica particles: Natural, environmentally friendly, low-cost, and reusable catalyst material for H2 production from NaBH4 methanolysis. Industrial & Engineering Chemistry Research 55, 11245–11252 (2016).
54.Cyganowski, P. Fully recyclable gold-based nanocomposite catalysts with enhanced reusability for catalytic hydrogenation of P-nitrophenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects 612, 125995 (2021).
55.Vaidya, M. J., Kulkarni, S. M. & Chaudhari, R. V. Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol. Organic Process Research & Development 7, 202–208 (2003).
56.Gu, S. et al. Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. The Journal of Physical Chemistry C 118, 18618–18625 (2014).
57.Maleki, M. H., Shirani, M. A. & Dinari, M. Facile synthesis of green and efficient copper-based magnetically recoverable nanocatalyst for the reduction of nitrophenol derivatives. J Mol Liq 365, (2022).
58.Din, M. I. et al. Nanocatalytic assemblies for catalytic reduction of nitrophenols: A critical review. Critical Reviews in Analytical Chemistry 50, 322–338 (2019).
59.Pozun, Z. D. et al. A systematic investigation of p-nitrophenol reduction by bimetallic Dendrimer encapsulated nanoparticles. The Journal of Physical Chemistry C 117, 7598–7604 (2013).
60.Gu, S. et al. Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. The Journal of Physical Chemistry C 118, 18618-18625 (2014).
61.Liu, J. et al. Silver/graphene nanocomposites as catalysts for the reduction of p‐nitrophenol to p‐aminophenol: Materials preparation and reaction kinetics studies. The Canadian Journal of Chemical Engineering 95, 1297–1304 (2017).
62.Hasan, Z., Cho, D.-W., Chon, C.-M., Yoon, K. & Song, H. Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks. Chemical Engineering Journal 298, 183–190 (2016).
63.Zhang, S. et al. Mineral-modulated Co catalyst with enhanced adsorption and dissociation of BH4− for hydrogenation of p-nitrophenol to p-aminophenol. Chemosphere 291, 132871 (2022).
64.Movahed, S. K., Jafari, P. & Mallakpour, S. Ruthenium nickel bimetallic nanoparticles embedded in nitrogen-doped carbon mesoporous spheres as a superior catalyst for the hydrogenation of toxic nitroarenes. Journal of Environmental Chemical Engineering 11, 110426 (2023).
65.Wang, S. et al. Stable Cu catalysts supported by two‐dimensional SiO2 with strong metal–support interaction. Advanced Science 9, (2022).
66.Kobayashi, Y., Suzuki, D., Yokoyama, S. & Shoji, R. Molten salt synthesis of high-entropy alloy AlCoCrFeNiV nanoparticles for the catalytic hydrogenation of p-nitrophenol by NaBH4. International Journal of Hydrogen Energy 47, 3722–3732 (2022).
67.Lv, Q. et al. Smart crystalline framework materials with a triazole carboxylic acid ligand: fluorescence sensing and catalytic reduction of PNP. Dalton Trans. 52. 17201-17212 (2023).
68.Hasan, Z., Cho, D.-W., Chon, C.-M., Yoon, K. & Song, H. Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks. Chemical Engineering Journal 298, 183–190 (2016).
69.Movahed, S. K., Jafari, P. & Mallakpour, S. Ruthenium nickel bimetallic nanoparticles embedded in nitrogen-doped carbon mesoporous spheres as a superior catalyst for the hydrogenation of toxic nitroarenes. Journal of Environmental Chemical Engineering 11, 110426 (2023).
70.Singh, V. K., Kumar, K., Das, A., Tiwari, R. & Krishnamoorthi, S. Ameliorated microgel for bimetallic AG/Cuo nanoparticles and their expeditious catalytic applications. Iranian Polymer Journal 32, 687–701 (2023).
71.Xie, X. et al. Cellulose derived nitrogen and phosphorus Co-doped carbon-based catalysts for catalytic reduction of p-nitrophenol. Journal of Colloid and Interface Science 571, 100–108 (2020).
72.An, P. et al. A facile method to synthesize water-soluble Pd8 nanoclusters unraveling the catalytic mechanism of p-nitrophenol to p-aminophenol. Nano Res 12, 2589–2596 (2019).
73.Peng, H. et al. Large-scale and facile synthesis of a porous high-entropy alloy CrMnFeCoNi as an efficient catalyst. J Mater Chem A Mater 8, 18318–18326 (2020).
74.Huang, L., Zhang, H., He, Z., Chen, J. & Song, S. In situ formation of nitrogen-doped carbon-wrapped Co3O4 enabling highly efficient and stable catalytic reduction of p-nitrophenol. Chemical Communications 56, 770–773 (2020).
75.Huang, T. et al. Catalytic hydrogenation of p-nitrophenol using a metal-free catalyst of porous crimped graphitic carbon nitride. Appl Surf Sci 480, 888–895 (2019).
76.Keith J. L. and John H. M. Physical Chemistry. (Benjamin-Cummings, 1982).
77.Hashimi, A. S. et al. Copper nanowires as highly efficient and recyclable catalyst for rapid hydrogen generation from hydrolysis of sodium borohydride. Nanomaterials 10, 1153 (2020).
78.Yang, J., Fan, W. & Bell, C.-M. Effect of calcination atmosphere on microstructure and H2/CO2 separation of palladium-doped silica membranes. Separation and Purification Technology 210, 659–669 (2019).
79.Chen, Y.-H. & Pan, C.-Y. Effect of various Co–B catalyst synthesis conditions on catalyst surface morphology and NaBH4 hydrolysis reaction kinetic parameters. International Journal of Hydrogen Energy 39, 1648–1663 (2014).
80.Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).
81.P. S. Utama, P. Setia, R. Yamsaensung, and C. Sangwichien. "Silica gel derived from palm oil mill fly ash." Songklanakarin Journal of Science & Technology 40.1 (2018).
82.Chen, Y. et al. Preparation of SiO2 immobilized Co-based catalysts from ZiF-67 and the enhancement effect for Fischer-Tropsch synthesis. Applied Catalysis B: Environmental 289, 120027 (2021).
83.Hu, X., Yan, X., Zhou, M. & Komarneni, S. One-step synthesis of nanostructured mesoporous ZiF-8/silica composites. Microporous and Mesoporous Materials 219, 311–316 (2016).
84."Infrared Spectroscopy Absorption Table," ed, (2020).
85.Yan, L. & Stucki, J. W. Effects of structural FE oxidation state on the coupling of interlayer water and structural Si−O stretching vibrations in Montmorillonite. Langmuir 15, 4648–4657 (1999).
86.Yan, L., Roth, C. B. & Low, P. F. Changes in the Si−O vibrations of smectite layers accompanying the sorption of Interlayer Water. Langmuir 12, 4421–4429 (1996).
87.Adamczyk, A. & Rokita, M. The structural studies of AG containing TiO2–SiO2 gels and thin films deposited on Steel. Journal of Molecular Structure 1114, 171–180 (2016).
88.Peña-Alonso, R., Rubio, F., Rubio, J. & Oteo, J. L. Study of the hydrolysis and condensation of γ-aminopropyltriethoxysilane by FT-IR spectroscopy. Journal of Materials Science 42, 595–603 (2006).
89.Mansur, H. S., Oréfice, R. L. & Mansur, A. A. P. Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FT-IR spectroscopy. Polymer 45, 7193–7202 (2004).
90.Gui-Long, X. et al. Preparation and characterization of raspberry-like SiO2 particles by the sol-gel method. Nanomaterials and Nanotechnology 1, 21 (2011).
91.Zhang, M. et al. Carbon supported PdNi alloy nanoparticles on SiO2 nanocages with enhanced catalytic performance. Inorganic Chemistry Frontiers 7, 3081–3091 (2020).
92.Wang, S. et al. Stable cu catalysts supported by two‐dimensional SiO2 with strong metal–support interaction. Advanced Science 9, (2022).
93.Montes, M. et al. Influence of metal-support interactions on the dispersion, distribution, reducibility and catalytic activity of Ni/SiO2 catalysts. Applied Catalysis 12, 309–330 (1984).
94.Movahed, S. K., Jafari, P. & Mallakpour, S. Ruthenium nickel bimetallic nanoparticles embedded in nitrogen-doped carbon mesoporous spheres as a superior catalyst for the hydrogenation of toxic nitroarenes. Journal of Environmental Chemical Engineering 11, 110426 (2023).
95.Celik, H. & Aksoy İ. Effects of Deformation on Microstructure of Cu-Zn-Ni Alloy. Gazi University Journal of Science 25, 337–342 (2012).
96.Kang, C. et al. Mesoporous SiO2-modified nanocrystalline TiO2 with high anatase thermal stability and large surface area as efficient photocatalyst. The Journal of Physical Chemistry C 113, 1006–1013 (2008).
97.Ayu Lestari, R. et al. Functionalization of Si-C using TEOS (tetra ethyl ortho silica) as precursor and organic catalyst. E3S Web of Conferences 148, 07008 (2020).
98.Mawaddah, Y. et al. FT-IR studies of the TEOS/TEVS xerogel structure using rapid thermal processing method. Konversi 9, (2020).
99.Li, B., Weng, W., Zhang, Q., Wang, Z. & Wan, H. Sinter‐resistant Pd/SiO2 Nanocatalyst prepared by impregnation method. ChemCatChem 3, 1277–1280 (2011).
100.Wu, T. et al. Phyllosilicate evolved hierarchical Ni- and Cu–Ni/SiO2 nanocomposites for methane dry reforming catalysis. Applied Catalysis A: General 503, 94–102 (2015).
101.Raza, H. et al. High‐entropy stabilized oxides derived via a low‐temperature template route for High‐performance lithium‐sulfur batteries. EcoMat 5, (2023).
102.Lv, Y., Lang, X., Zhang, Q., Liu, W. & Liu, Y. Study on corrosion behavior of (CuZnMnNi)100−xsnx high-entropy brass alloy in 5 WT% NaCl solution. Journal of Alloys and Compounds 921, 166051 (2022).
103.Darrah Thomas, T. & Weightman, P. Valence electronic structure of AuZn and AuMg alloys derived from a new way of analyzing auger-parameter shifts. Physical Review B 33, 5406–5413 (1986).
104.Luanwuthi, S., Krittayavathananon, A., Srimuk, P. & Sawangphruk, M. In situ synthesis of permselective zeolitic imidazolate framework 8/graphene oxide composites: Rotating disk electrode and Langmuir adsorption isotherm. RSC Advances 5, 46617–46623 (2015).
105.Wang, T. et al. Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chemical Science 11, 6670–6681 (2020).
106.Naik, B., Hazra, S., Prasad, V. S. & Ghosh, N. N. Synthesis of ag nanoparticles within the pores of SBA-15: An efficient catalyst for reduction of 4-Nitrophenol. Catalysis Communications 12, 1104–1108 (2011).
107.Sahiner, N. & Demirci, S. The use of M@P(4‐VP) and M@p (VI) (M:Co, Ni, Cu) cryogel catalysts as reactor in a glass column in the reduction of p‐nitrophenol to p‐aminophenol under gravity. Asia-Pacific Journal of Chemical Engineering 14, (2019).
108.Kansal, S. et al. Superior-catalytic performance of Ni–Co layered double hydroxide nanosheets for the reduction of P-Nitrophenol. International Journal of Hydrogen Energy 48, 21372–21382 (2023).
109.Zhang, D., Chen, L. & Ge, G. A green approach for efficient p-nitrophenol hydrogenation catalyzed by a Pd-based nanocatalyst. Catalysis Communications 66, 95–99 (2015).
110.Zhang, Z. et al. A highly reactive and magnetic recyclable catalytic system based on AuPt nanoalloys supported on ellipsoidal Fe@SiO2. Journal of Materials Chemistry A 3, 4642–4651 (2015).
111.Sohni, S. et al. Room temperature preparation of lignocellulosic biomass supported heterostructure (Cu+Co@OPF) as highly efficient multifunctional nanocatalyst using wetness co-impregnation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 549, 184–195 (2018).
112.Yeh, Tsai-Ching. Catalytic performance study of multimetallic ZIF-derived ZnCoMgNiCu high-entropy alloy nanoparticles for p-nitrophenol to p-aminophenol hydrogenation. Master's Thesis, Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Nano Science and Technology Ph.D. Program.
113.Roy, D., Neogi, S. & De, S. Highly efficient reduction of P-nitrophenol by sodium borohydride over Binary Zif-67/G-C3N4 heterojunction catalyst. Journal of Environmental Chemical Engineering 9, 106677 (2021).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊