|
(1)Wang, Z. L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312 (5771), 242-246. (2)Wu, Z.; Cheng, T.; Wang, Z. L. Self-powered sensors and systems based on nanogenerators. Sensors 2020, 20 (10), 2925. (3)Yoon, H.-J.; Kim, S.-W. Nanogenerators to power implantable medical systems. Joule 2020, 4 (7), 1398-1407. (4)Xu, C.; Song, Y.; Han, M.; Zhang, H. Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst. Nanoeng. 2021, 7 (1), 25. (5)Li, Y.; Yu, J.; Wei, Y.; Wang, Y.; Feng, Z.; Cheng, L.; Huo, Z.; Lei, Y.; Sun, Q. Recent progress in self-powered wireless sensors and systems based on TENG. Sensors 2023, 23 (3), 1329. (6)Cui, S.; Zhou, L.; Liu, D.; Li, S.; Liu, L.; Chen, S.; Zhao, Z.; Yuan, W.; Wang, Z. L.; Wang, J. Improving performance of triboelectric nanogenerators by dielectric enhancement effect. Matter 2022, 5 (1), 180-193. (7)Wang, C.; Guo, H.; Wang, P.; Li, J.; Sun, Y.; Zhang, D. An advanced strategy to enhance teng output: reducing triboelectric charge decay. Adv. Mater. 2023, 2209895. (8)Pongampai, S.; Pakawanit, P.; Charoonsuk, T.; Vittayakorn, N. Low-cost fabrication of the highly efficient triboelectric nanogenerator by designing a 3D multi-layer origami structure combined with self-charged pumping module. Nano Energy 2021, 90, 106629. (9)El-Mohandes, A. M.; Zheng, R. Active matching circuit to enhance the generated power of triboelectric nanogenerators. Nano Energy 2021, 80, 105588. (10)Park, B.-G.; Lee, C.; Kim, Y.-J.; Park, J.; Kim, H.; Jung, Y.; Ko, J. S.; Kim, S.-W.; Lee, J.-H.; Cho, H. Toxic micro/nano particles removal in water via triboelectric nanogenerator. Nano Energy 2022, 100, 107433. (11)Lu, Z.; Jia, C.; Yang, X.; Zhu, Y.; Sun, F.; Zhao, T.; Zhang, S.; Mao, Y. A flexible TENG based on micro-structure film for speed skating techniques monitoring and biomechanical energy harvesting. Nanomaterials 2022, 12 (9), 1576. (12)Zhang, F.; Li, B.; Zheng, J.; Xu, C. Facile fabrication of micro-nano structured triboelectric nanogenerator with high electric output. Nanoscale Res. Lett. 2015, 10, 1-6. (13)Kaponig, M.; Mölleken, A.; Nienhaus, H.; Möller, R. Dynamics of contact electrification. Sci. Adv. 2021, 7 (22), 7595. (14)McCarty, L. S.; Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 2008, 47 (12), 2188-2207. (15)Zi, Y.; Wu, C.; Ding, W.; Wang, Z. L. Maximized effective energy output of contact‐separation‐triggered triboelectric nanogenerators as limited by air breakdown. Adv. Funct. Mater. 2017, 27 (24), 1700049. (16)Zou, H.; Zhang, Y.; Guo, L.; Wang, P.; He, X.; Dai, G.; Zheng, H.; Chen, C.; Wang, A. C.; Xu, C. Quantifying the triboelectric series. Nat. Commun. 2019, 10 (1), 1427. (17)Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid‐metal electrode for high‐performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25 (24), 3718-3725. (18)Singh, V.; Singh, A.; Kumar, S. Introduction to wireless power transmission. Int. J. Technol. 2014, 8, 1-10. (19)Luo, J.; Wang, Z. L. Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat 2020, 2 (4), e12059. (20)Mathew, A. A.; Vivekanandan, S.; Chandrasekhar, A. Polymer-based composite materials for triboelectric energy harvesting. In engineered polymer nanocomposites for energy harvesting applications, Elsevier, 2022; 181-202. (21)Lin, Z. H.; Cheng, G.; Lee, S.; Pradel, K. C.; Wang, Z. L. Harvesting water drop energy by a sequential contact‐electrification and electrostatic‐induction process. Adv. Mater. 2014, 26 (27), 4690-4696. (22)Yatsuzuka, K.; Mizuno, Y.; Asano, K. Electrification phenomena of pure water droplets dripping and sliding on a polymer surface. J Electrostat. 1994, 32 (2), 157-171. (23)Matsui, M.; Murasaki, N.; Fujibayashi, K.; Bao, P. Y.; Kishimoto, Y. Electrification of pure water flowing down a trough set up with a resin sheet. J Electrostat. 1993, 31 (1), 1-10. (24)Passariello, B.; Barbaro, M.; Quaresima, S.; Casciello, A.; Marabini, A. Determination of mercury by inductively coupled plasma—mass spectrometry. Microchem. J. 1996, 54 (4), 348-354. (25)Roy Barman, S.; Lin, Y.-J.; Lee, K.-M.; Pal, A.; Tiwari, N.; Lee, S.; Lin, Z.-H. Triboelectric nanosensor integrated with robotic platform for self-powered detection of chemical analytes. ACS nano 2023, 17 (3), 2689-2701. (26)Fan, F.-R.; Lin, L.; Zhu, G.; Wu, W.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12 (6), 3109-3114. (27)Wang, S.; Zi, Y.; Zhou, Y. S.; Li, S.; Fan, F.; Lin, L.; Wang, Z. L. Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A. 2016, 4 (10), 3728-3734. (28)Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. 2005, 105 (4), 1103-1170. (29)Vericat, C.; Vela, M.; Benitez, G.; Carro, P.; Salvarezza, R. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev. 2010, 39 (5), 1805-1834. (30)Huheey, J. E. The electronegativity of groups. J. Phys. Chem. 1965, 69 (10), 3284-3291. (31)Huheey, J. E. The electronegativity of multiply bonded groups. J. Phys. Chem. 1966, 70 (7), 2086-2092. (32)Melitz, W.; Shen, J.; Kummel, A. C.; Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 2011, 66 (1), 1-27. (33)Zhou, Y. S.; Wang, S.; Yang, Y.; Zhu, G.; Niu, S.; Lin, Z.-H.; Liu, Y.; Wang, Z. L. Manipulating nanoscale contact electrification by an applied electric field. Nano Lett. 2014, 14 (3), 1567-1572. (34)Mogaki, R.; Hashim, P.; Okuro, K.; Aida, T. Guanidinium-based “molecular glues” for modulation of biomolecular functions. Chem. Soc. Rev. 2017, 46 (21), 6480-6491. (35)Ashraf Kharaz, Y.; Zamboulis, D.; Sanders, K.; Comerford, E.; Clegg, P.; Peffers, M. Comparison between chaotropic and detergent‐based sample preparation workflow in tendon for mass spectrometry analysis. Proteomics 2017, 17 (13-14), 1700018. (36)Kiesewetter, M. K.; Scholten, M. D.; Kirn, N.; Weber, R. L.; Hedrick, J. L.; Waymouth, R. M. Cyclic guanidine organic catalysts: what is magic about triazabicyclodecene? J. Org. Chem. 2009, 74 (24), 9490-9496. (37)Strassl, F.; Grimm‐Lebsanft, B.; Rukser, D.; Biebl, F.; Biednov, M.; Brett, C.; Timmermann, R.; Metz, F.; Hoffmann, A.; Rübhausen, M. Oxygen activation by copper complexes with an aromatic bis (guanidine) ligand. Eur. J. Inorg. 2017, 2017 (27), 3350-3359. (38)Nycz, J. E.; Malecki, G. J. One-step aldehyde group transformation by using guanidine and aminoguanidine: Synthetic, structural and computational studies. J. Mol. Struct. 2014, 1064, 44-49. (39)Schmidt, E. Y.; Tatarinova, I. V.; Protsuk, N. I.; Ushakov, I. A.; Trofimov, B. A. A one-pot synthesis of 2-aminopyrimidines from ketones, arylacetylenes, and guanidine. J. Org. Chem. 2017, 82 (1), 119-125. (40)Al‐Hajjar, F. H.; Sabri, S. S. Reaction of α, β‐unsaturated ketones with guanidine. Substituent effects on the protonation constants of 2‐amino‐4, 6‐diarylpyrimidines. J Heterocycl Chem 1982, 19 (5), 1087-1092. (41)Suhs, T.; König, B. Synthesis of functionalized guanidino amino acids. Chem. Eur. 2006, 12 (31), 8150-8157. (42)Milne, J. C.; Jirousek, M. R.; Bemis, J. E.; Vu, C. B.; Ting, A. Fatty acid guanidine and salicylate guanidine derivatives and their uses. U.S. Pat. 2015. (43)Ujjinamatada, R. K.; Hosmane, R. S. Selective functional group transformation using guanidine: the conversion of an ester group into an amide in vinylogous ester–aldehydes of imidazole. Tetrahedron Lett. 2005, 46 (36), 6005-6009. (44)Chomczynski, P.; Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat. Protoc. 2006, 1 (2), 581-585. (45)Pramanick, D.; Forstova, J.; Pivec, L. 4 M guanidine hydrochloride applied to the isolation of DNA from different sources. FEBS letters 1976, 62 (1), 81-84. (46)Elorriaga, D.; Parra-Cadenas, B.; Antiñolo, A.; Carrillo-Hermosilla, F.; García-Álvarez, J. Combination of air/moisture/ambient temperature compatible organolithium chemistry with sustainable solvents: selective and efficient synthesis of guanidines and amidines. Green Chem. 2022, 24 (2), 800-812. (47)Wang, B.; Dong, T.; Myrlie, A.; Gu, L.; Zhu, H.; Xiong, W.; Maness, P.; Zhou, R.; Yu, J. Photosynthetic production of the nitrogen-rich compound guanidine. Green Chem. 2019, 21 (11), 2928-2937. (48)Gabriele, B.; Della Ca, N.; Mancuso, R.; Veltri, L.; Ziccarelli, I. Amidine‒and guanidine‒based synthetic methods for CO2 capture and utilization. Curr. Opin. Green Sustain. Chem. 2023, 41, 100793. (49)Zhu, G.; Ma, X.; Huang, Q.; Zhao, L.; Zhang, R.; Yang, X.; Wang, S. A high-performance guanidinium-based aqueous biphasic system for green separation of palladium from acid solution. ACS Sustain. Chem. Eng. 2022, 10 (4), 1633-1643. (50)Williams, N. J.; Seipp, C. A.; Brethomé, F. M.; Ma, Y.-Z.; Ivanov, A. S.; Bryantsev, V. S.; Kidder, M. K.; Martin, H. J.; Holguin, E.; Garrabrant, K. A. CO2 capture via crystalline hydrogen-bonded bicarbonate dimers. Chem. 2019, 5 (3), 719-730. (51)Plachá, D.; Muñoz-Bonilla, A.; Škrlová, K.; Echeverria, C.; Chiloeches, A.; Petr, M.; Lafdi, K.; Fernández-García, M. Antibacterial character of cationic polymers attached to carbon-based nanomaterials. Nanomaterials 2020, 10 (6), 1218. (52)Thoma, L. M.; Boles, B. R.; Kuroda, K. Cationic methacrylate polymers as topical antimicrobial agents against Staphylococcus aureus nasal colonization. Biomacromolecules 2014, 15 (8), 2933-2943. (53)Carmona-Ribeiro, A. M.; de Melo Carrasco, L. D. Cationic antimicrobial polymers and their assemblies. Int. J. Mol. 2013, 14 (5), 9906-9946. (54)Zhang, H.-L.; Gao, Y.-B.; Gai, J.-G. Guanidinium-functionalized nanofiltration membranes integrating anti-fouling and antimicrobial effects. J. Mater. Chem. 2018, 6 (15), 6442-6454. (55)Sasaki, D. Y.; Alam, T. M. Solid-state 31P NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels. Chem. Mater. 2000, 12 (5), 1400-1407 (56)Salvio, R. The guanidinium unit in the catalysis of phosphoryl transfer reactions: From molecular spacers to nanostructured supports. Chem. Eur. 2015, 21 (31), 10960-10971. (57)Yatvin, J.; Gao, J.; Locklin, J. Durable defense: robust and varied attachment of non-leaching poly “-onium” bactericidal coatings to reactive and inert surfaces. Chem Comm. 2014, 50 (67), 9433-9442. (58)Trinh, K. T. L.; Lee, N. Y. Recent methods for the viability assessment of bacterial pathogens: Advances, Challenges, and Future Perspectives. Pathogens 2022, 11 (9), 1057. (59)Nitsch, A.; Haralambiev, L.; Einenkel, R.; Muzzio, D. O.; Zygmunt, M. T.; Ekkernkamp, A.; Burchardt, M.; Stope, M. B. Determination of in vitro membrane permeability by analysis of intracellular and extracellular fluorescein signals in renal cells. in vivo 2019, 33 (6), 1767-1771. (60)Breeuwer, P.; Drocourt, J.-L.; Bunschoten, N.; Zwietering, M. H.; Rombouts, F. M.; Abee, T. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl. Environ. Microbiol. 1995, 61 (4), 1614-1619. (61)Kontchou, J. A.; Nocker, A. Optimization of viability qPCR for selective detection of membrane-intact Legionella pneumophila. J. Microbiol. Methods. 2019, 156, 68-76. (62)Leifels, M.; Cheng, D.; Sozzi, E.; Shoults, D. C.; Wuertz, S.; Mongkolsuk, S.; Sirikanchana, K. Capsid integrity quantitative PCR to determine virus infectivity in environmental and food applications–a systematic review. Water Res. 2021, 11, 100080. (63)Allen, D. M.; Einarsson, G. G.; Tunney, M. M.; Bell, S. E. Characterization of bacteria using surface-enhanced Raman spectroscopy (SERS): Influence of microbiological factors on the SERS spectra. Anal. Chem. 2022, 94 (26), 9327-9335. (64)Benešová, M.; Bernatová, S.; Mika, F.; Pokorná, Z.; Ježek, J.; Šiler, M.; Samek, O.; Růžička, F.; Rebrošová, K.; Zemánek, P. SERS-Tags: Selective immobilization and detection of bacteria by strain-specific antibodies and surface-enhanced Raman scattering. Biosensors 2023, 13 (2), 182. (65)Xu, N.; Wang, W.; Chen, F.; Li, W.; Wang, G. ELISA is superior to bacterial culture and agglutination test in the diagnosis of brucellosis in an endemic area in China. BMC Infect. Dis. 2020, 20 (1), 1-7. (66)Viljanen, M. K.; Nurmi, T.; Salminen, A. Enzyme-linked immunosorbent assay (ELISA) with bacterial sonicate antigen for IgM, IgA, and IgG antibodies to Francisella tularensis: comparison with bacterial agglutination test and ELISA with lipopolysaccharide antigen. J. Infect. Dis. 1983, 148 (4), 715-720. (67)Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339 (8), 520-532. (68)Wang, C.; Wang, P.; Chen, J.; Zhu, L.; Zhang, D.; Wan, Y.; Ai, S. Self-powered biosensing system driven by triboelectric nanogenerator for specific detection of Gram-positive bacteria. Nano Energy 2022, 93, 106828. (69)Singh, S.; Moudgil, A.; Mishra, N.; Das, S.; Mishra, P. Vancomycin functionalized WO3 thin film-based impedance sensor for efficient capture and highly selective detection of Gram-positive bacteria. Biosens. Bioelectron. 2019, 136, 23-30. (70)Spychalska, K.; Zając, D.; Baluta, S.; Halicka, K.; Cabaj, J. Functional polymers structures for (Bio) sensing application—A review. Polymers 2020, 12 (5), 1154. (71)Zhang, H.; Chan‐Park, M. B.; Wang, M. Functional polymers and polymer–dye composites for food sensing. Macromol Rapid Commun. 2020, 41 (21), 2000279. (72)Muralikrishna, S.; Kempahanumakkagari, S.; Thippeswamy, R.; Surareungchai, W. Functional polymer materials for environmental monitoring and safety applications. Adv. Funct. Mater. 2022, 177-204. (73)Sarapas, J. M.; Backlund, C. M.; deRonde, B. M.; Minter, L. M.; Tew, G. N. ROMP‐and RAFT‐based guanidinium‐containing polymers as scaffolds for protein mimic synthesis. Chem. Eur. 2017, 23 (28), 6858-6863. (74)Turishchev, S. Y.; Marchenko, D.; Sivakov, V.; Belikov, E.; Chuvenkova, O.; Parinova, E.; Koyuda, D.; Chumakov, R.; Lebedev, A.; Kulikova, T. On the possibility of photoemission electron microscopy for E. coli advanced studies. Results Phys. 2020, 16, 102821. (75)Li, P.; Gao, Y.; Sun, Z.; Chang, D.; Gao, G.; Dong, A. Synthesis, characterization, and bactericidal evaluation of chitosan/guanidine functionalized graphene oxide composites. Molecules 2016, 22 (1), 12. (76)Stypczyńska, A.; Nixon, T.; Mason, N. X-ray radiation of poly-L-arginine hydrochloride and multilayered DNA-coatings. Eur. Phys. J. D. 2014, 68, 1-10. (77)Waite, J. H.; Tanzer, M. L. Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science 1981, 212 (4498), 1038-1040. (78)Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. science 2007, 318 (5849), 426-430. (79)Lee, H.; Scherer, N. F.; Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. 2006, 103 (35), 12999-13003. (80)Huang, Q.; Chen, J.; Liu, M.; Huang, H.; Zhang, X.; Wei, Y. Polydopamine-based functional materials and their applications in energy, environmental, and catalytic fields: State-of-the-art review. Chem. Eng. J. 2020, 387, 124019. (81)Lee, H. A.; Park, E.; Lee, H. Polydopamine and its derivative surface chemistry in material science: a focused review for studies at KAIST. Adv. Mater. 2020, 32 (35), 1907505. (82)Kwon, I. S.; Bettinger, C. J. Polydopamine nanostructures as biomaterials for medical applications. J Mater Chem B. 2018, 6 (43), 6895-6903. (83)Fan, Y.-J.; Pham, M. T.; Huang, C.-J. Development of antimicrobial and antifouling universal coating via rapid deposition of polydopamine and zwitterionization. Langmuir 2018, 35 (5), 1642-1651. (84)Li, J.; Hou, W.; Lin, S.; Wang, L.; Pan, C.; Wu, F.; Liu, J. Polydopamine nanoparticle‐mediated dopaminergic immunoregulation in colitis. Adv. Sci. 2022, 9 (1), 2104006. (85)Yang, Y.-X.; Fang, Y.-Z.; Tian, J.-X.; Xiao, Q.; Kong, X.-J. Fluorescent polydopamine nanoparticles as a nanosensor for the sequential detection of mercury ions and l-ascorbic acid based on a coordination effect and redox reaction. RSC advances 2020, 10 (47), 28164-28170. (86)Wang, Z.; Duan, Y.; Duan, Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release. 2018, 290, 56-74. (87)Wang, W.; Tang, Z.; Zhang, Y.; Wang, Q.; Liang, Z.; Zeng, X. Mussel‐inspired polydopamine: the bridge for targeting drug delivery system and synergistic cancer treatment. Macromol Biosci. 2020, 20 (10), 2000222. (88)Singh, I.; Dhawan, G.; Gupta, S.; Kumar, P. Recent advances in a polydopamine-mediated antimicrobial adhesion system. Front. Microbiol. 2021, 11, 607099. (89)Huang, Z.-H.; Peng, S.-W.; Hsieh, S.-L.; Kirankumar, R.; Huang, P.-F.; Chang, T.-M.; Dwivedi, A. K.; Chen, N.-F.; Wu, H.-M.; Hsieh, S. Polydopamine ultrathin film growth on mica via in-situ polymerization of dopamine with applications for silver-based antimicrobial coatings. Materials 2021, 14 (3), 671.
|