跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佶廷
研究生(外文):Chen, Chi-Ting
論文名稱:開發胍官能化高分子介電層材料及摩擦奈米發電機用於細菌感測
論文名稱(外文):Guanidinium Functionalized Polymer Dielectrics and Triboelectric Nanogenerator for Bacteria Sensing
指導教授:張佳智
指導教授(外文):Chang, Chia-Chih
口試委員:李耀坤林宗宏周志明
口試委員(外文):Li, Yaw-KuenLin, Zong-HongChou, Chih-Ming
口試日期:2023-08-02
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:應用化學系分子科學
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:中文
論文頁數:61
中文關鍵詞:開環移位聚合胍高分子摩擦奈米發電機摩擦奈米感器大腸桿菌肺炎鏈球菌
外文關鍵詞:ROMPguanidinium polymer (Gdm)triboelectric nanogenerators (TENGs)triboelectric nanosensors (TENSs)Escherichia coli (E. coli)Streptococcus pneumoniae (S. pneumoniae)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要ii
英文摘要iii
目錄iv
圖目錄vii
附圖目錄xi
第一章 摩擦奈米發電機緒論1
1.1 前言1
1.2 摩擦起電效應2
1.3 靜電場誘導效應4
1.4 摩擦奈米發電機的工作原理4
1.5 摩擦奈米發電機的種類5
1.6 固液摩擦系統6
1.7 摩擦奈米感測器7
1.8 表面官能基修飾對摩擦奈米發電機的影響8
1.9 表面官能基修飾的選擇-胍分子10
第二章 研究動機12
第三章 實驗部分15
3.1 薄膜製作15
3.1.1 X-2Gdm TENG薄膜元件製作15
3.1.2 X-2Gdm TENS薄膜元件製作15
3.1.3 PDA/2Gdm薄膜製成16
3.1.4 TENG層結構及系統架設16
3.1.5 TENS結構及系統架設17
3.2 實驗試藥以及量測儀器資訊18
3.2.1 實驗試藥18
3.2.2 細菌死活檢測試劑 (Live/Dead Bacterial Viability Kit)18
3.2.3 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR)18
3.2.4 凝膠滲透層析儀 (Gel Permeation Chromatography, GPC)18
3.2.5 力學膜厚儀 (Stylus Surface Profiler)19
3.2.6 光學膜厚儀 (Optical film thickness gauge)19
3.2.7 開爾文探針力顯微鏡 (Kelvin Probe Force Microscope, KPFM)19
3.2.8 X射線光電子能譜儀 (X-ray Photoelectron Spectrometer, XPS)19
3.2.9 旋轉塗佈機 (Spin Coater)19
3.2.10紫外-可見光光譜儀 (Ultraviolet-Visible Spectroscopy, UV-Vis)20
3.2.11 螢光顯微鏡 (Fluorescence microscope)20
3.2.12 掃描電子顯微鏡 (Scanning Electron Microscope, SEM)20
3.2.13 3D迴轉式震盪器 (3D Micro Shaker)20
第四章 X-2Gdm TENG 結果與討論21
4.1 細菌培養程序21
4.2 2Gdm高分子殺菌效果測試21
4.3 ITO/PET基材殺菌效果測試22
4.4 X-2Gdm薄膜浸泡PBS溶液對TENG輸出的影響22
4.5浸泡E. coli和S. pneumoniae懸浮液時間長短對TENG輸出的影響23
4.6 E. coli和S. pneumoniae懸浮液濃度對TENG輸出的影響25
4.7 X-2Gdm在LB環境下吸附E. coli和S. pneumoniae對TENG輸出的影響26
4.8 X-2Gdm對E. coli和S. pneumoniae的表面電位量測27
4.9 E. coli和S. pneumoniae吸附後的死活細菌染色實驗28
4.10於LB中S. pneumoniae與E. coli吸附後的死活細菌檢測31
4.11 XPS元素分析X-2Gdm與E. coli和S. pneumoniae32
第五章 X-2Gdm TENS 結果與討論34
5.1 E. coli和S. pneumoniae懸浮液濃度對TENS輸出的影響34
5.2 X-2Gdm在LB環境下吸附細菌對TENS輸出的影響34
5.3 SEM表面分析X-2Gdm薄膜吸附E. coli和S. pneumoniae35
第六章 以共沉積法形成抗菌薄膜36
6.1 多巴胺(Dopamine)研究動機36
6.2 PDA與2Gdm共沉積的反應原理36
6.3 2Gdm濃度對PDA/2Gdm薄膜厚度的影響38
6.4 PDA/2Gdm薄膜對GFP E. coli的吸附與殺菌效果39
6.5 XPS元素分析鑑定PDA/2Gdm薄膜42
第七章 結論43
第八章 參考文獻44
第九章 附錄54
9.1 2Gdm高分子合成步驟54
9.2 NMR圖譜57
(1)Wang, Z. L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312 (5771), 242-246.
(2)Wu, Z.; Cheng, T.; Wang, Z. L. Self-powered sensors and systems based on nanogenerators. Sensors 2020, 20 (10), 2925.
(3)Yoon, H.-J.; Kim, S.-W. Nanogenerators to power implantable medical systems. Joule 2020, 4 (7), 1398-1407.
(4)Xu, C.; Song, Y.; Han, M.; Zhang, H. Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst. Nanoeng. 2021, 7 (1), 25.
(5)Li, Y.; Yu, J.; Wei, Y.; Wang, Y.; Feng, Z.; Cheng, L.; Huo, Z.; Lei, Y.; Sun, Q. Recent progress in self-powered wireless sensors and systems based on TENG. Sensors 2023, 23 (3), 1329.
(6)Cui, S.; Zhou, L.; Liu, D.; Li, S.; Liu, L.; Chen, S.; Zhao, Z.; Yuan, W.; Wang, Z. L.; Wang, J. Improving performance of triboelectric nanogenerators by dielectric enhancement effect. Matter 2022, 5 (1), 180-193.
(7)Wang, C.; Guo, H.; Wang, P.; Li, J.; Sun, Y.; Zhang, D. An advanced strategy to enhance teng output: reducing triboelectric charge decay. Adv. Mater. 2023, 2209895.
(8)Pongampai, S.; Pakawanit, P.; Charoonsuk, T.; Vittayakorn, N. Low-cost fabrication of the highly efficient triboelectric nanogenerator by designing a 3D multi-layer origami structure combined with self-charged pumping module. Nano Energy 2021, 90, 106629.
(9)El-Mohandes, A. M.; Zheng, R. Active matching circuit to enhance the generated power of triboelectric nanogenerators. Nano Energy 2021, 80, 105588.
(10)Park, B.-G.; Lee, C.; Kim, Y.-J.; Park, J.; Kim, H.; Jung, Y.; Ko, J. S.; Kim, S.-W.; Lee, J.-H.; Cho, H. Toxic micro/nano particles removal in water via triboelectric nanogenerator. Nano Energy 2022, 100, 107433.
(11)Lu, Z.; Jia, C.; Yang, X.; Zhu, Y.; Sun, F.; Zhao, T.; Zhang, S.; Mao, Y. A flexible TENG based on micro-structure film for speed skating techniques monitoring and biomechanical energy harvesting. Nanomaterials 2022, 12 (9), 1576.
(12)Zhang, F.; Li, B.; Zheng, J.; Xu, C. Facile fabrication of micro-nano structured triboelectric nanogenerator with high electric output. Nanoscale Res. Lett. 2015, 10, 1-6.
(13)Kaponig, M.; Mölleken, A.; Nienhaus, H.; Möller, R. Dynamics of contact electrification. Sci. Adv. 2021, 7 (22), 7595.
(14)McCarty, L. S.; Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 2008, 47 (12), 2188-2207.
(15)Zi, Y.; Wu, C.; Ding, W.; Wang, Z. L. Maximized effective energy output of contact‐separation‐triggered triboelectric nanogenerators as limited by air breakdown. Adv. Funct. Mater. 2017, 27 (24), 1700049.
(16)Zou, H.; Zhang, Y.; Guo, L.; Wang, P.; He, X.; Dai, G.; Zheng, H.; Chen, C.; Wang, A. C.; Xu, C. Quantifying the triboelectric series. Nat. Commun. 2019, 10 (1), 1427.
(17)Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid‐metal electrode for high‐performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25 (24), 3718-3725.
(18)Singh, V.; Singh, A.; Kumar, S. Introduction to wireless power transmission. Int. J. Technol. 2014, 8, 1-10.
(19)Luo, J.; Wang, Z. L. Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat 2020, 2 (4), e12059.
(20)Mathew, A. A.; Vivekanandan, S.; Chandrasekhar, A. Polymer-based composite materials for triboelectric energy harvesting. In engineered polymer nanocomposites for energy harvesting applications, Elsevier, 2022; 181-202.
(21)Lin, Z. H.; Cheng, G.; Lee, S.; Pradel, K. C.; Wang, Z. L. Harvesting water drop energy by a sequential contact‐electrification and electrostatic‐induction process. Adv. Mater. 2014, 26 (27), 4690-4696.
(22)Yatsuzuka, K.; Mizuno, Y.; Asano, K. Electrification phenomena of pure water droplets dripping and sliding on a polymer surface. J Electrostat. 1994, 32 (2), 157-171.
(23)Matsui, M.; Murasaki, N.; Fujibayashi, K.; Bao, P. Y.; Kishimoto, Y. Electrification of pure water flowing down a trough set up with a resin sheet. J Electrostat. 1993, 31 (1), 1-10.
(24)Passariello, B.; Barbaro, M.; Quaresima, S.; Casciello, A.; Marabini, A. Determination of mercury by inductively coupled plasma—mass spectrometry. Microchem. J. 1996, 54 (4), 348-354.
(25)Roy Barman, S.; Lin, Y.-J.; Lee, K.-M.; Pal, A.; Tiwari, N.; Lee, S.; Lin, Z.-H. Triboelectric nanosensor integrated with robotic platform for self-powered detection of chemical analytes. ACS nano 2023, 17 (3), 2689-2701.
(26)Fan, F.-R.; Lin, L.; Zhu, G.; Wu, W.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12 (6), 3109-3114.
(27)Wang, S.; Zi, Y.; Zhou, Y. S.; Li, S.; Fan, F.; Lin, L.; Wang, Z. L. Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A. 2016, 4 (10), 3728-3734.
(28)Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. 2005, 105 (4), 1103-1170.
(29)Vericat, C.; Vela, M.; Benitez, G.; Carro, P.; Salvarezza, R. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev. 2010, 39 (5), 1805-1834.
(30)Huheey, J. E. The electronegativity of groups. J. Phys. Chem. 1965, 69 (10), 3284-3291.
(31)Huheey, J. E. The electronegativity of multiply bonded groups. J. Phys. Chem. 1966, 70 (7), 2086-2092.
(32)Melitz, W.; Shen, J.; Kummel, A. C.; Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 2011, 66 (1), 1-27.
(33)Zhou, Y. S.; Wang, S.; Yang, Y.; Zhu, G.; Niu, S.; Lin, Z.-H.; Liu, Y.; Wang, Z. L. Manipulating nanoscale contact electrification by an applied electric field. Nano Lett. 2014, 14 (3), 1567-1572.
(34)Mogaki, R.; Hashim, P.; Okuro, K.; Aida, T. Guanidinium-based “molecular glues” for modulation of biomolecular functions. Chem. Soc. Rev. 2017, 46 (21), 6480-6491.
(35)Ashraf Kharaz, Y.; Zamboulis, D.; Sanders, K.; Comerford, E.; Clegg, P.; Peffers, M. Comparison between chaotropic and detergent‐based sample preparation workflow in tendon for mass spectrometry analysis. Proteomics 2017, 17 (13-14), 1700018.
(36)Kiesewetter, M. K.; Scholten, M. D.; Kirn, N.; Weber, R. L.; Hedrick, J. L.; Waymouth, R. M. Cyclic guanidine organic catalysts: what is magic about triazabicyclodecene? J. Org. Chem. 2009, 74 (24), 9490-9496.
(37)Strassl, F.; Grimm‐Lebsanft, B.; Rukser, D.; Biebl, F.; Biednov, M.; Brett, C.; Timmermann, R.; Metz, F.; Hoffmann, A.; Rübhausen, M. Oxygen activation by copper complexes with an aromatic bis (guanidine) ligand. Eur. J. Inorg. 2017, 2017 (27), 3350-3359.
(38)Nycz, J. E.; Malecki, G. J. One-step aldehyde group transformation by using guanidine and aminoguanidine: Synthetic, structural and computational studies. J. Mol. Struct. 2014, 1064, 44-49.
(39)Schmidt, E. Y.; Tatarinova, I. V.; Protsuk, N. I.; Ushakov, I. A.; Trofimov, B. A. A one-pot synthesis of 2-aminopyrimidines from ketones, arylacetylenes, and guanidine. J. Org. Chem. 2017, 82 (1), 119-125.
(40)Al‐Hajjar, F. H.; Sabri, S. S. Reaction of α, β‐unsaturated ketones with guanidine. Substituent effects on the protonation constants of 2‐amino‐4, 6‐diarylpyrimidines. J Heterocycl Chem 1982, 19 (5), 1087-1092.
(41)Suhs, T.; König, B. Synthesis of functionalized guanidino amino acids. Chem. Eur. 2006, 12 (31), 8150-8157.
(42)Milne, J. C.; Jirousek, M. R.; Bemis, J. E.; Vu, C. B.; Ting, A. Fatty acid guanidine and salicylate guanidine derivatives and their uses. U.S. Pat. 2015.
(43)Ujjinamatada, R. K.; Hosmane, R. S. Selective functional group transformation using guanidine: the conversion of an ester group into an amide in vinylogous ester–aldehydes of imidazole. Tetrahedron Lett. 2005, 46 (36), 6005-6009.
(44)Chomczynski, P.; Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat. Protoc. 2006, 1 (2), 581-585.
(45)Pramanick, D.; Forstova, J.; Pivec, L. 4 M guanidine hydrochloride applied to the isolation of DNA from different sources. FEBS letters 1976, 62 (1), 81-84.
(46)Elorriaga, D.; Parra-Cadenas, B.; Antiñolo, A.; Carrillo-Hermosilla, F.; García-Álvarez, J. Combination of air/moisture/ambient temperature compatible organolithium chemistry with sustainable solvents: selective and efficient synthesis of guanidines and amidines. Green Chem. 2022, 24 (2), 800-812.
(47)Wang, B.; Dong, T.; Myrlie, A.; Gu, L.; Zhu, H.; Xiong, W.; Maness, P.; Zhou, R.; Yu, J. Photosynthetic production of the nitrogen-rich compound guanidine. Green Chem. 2019, 21 (11), 2928-2937.
(48)Gabriele, B.; Della Ca, N.; Mancuso, R.; Veltri, L.; Ziccarelli, I. Amidine‒and guanidine‒based synthetic methods for CO2 capture and utilization. Curr. Opin. Green Sustain. Chem. 2023, 41, 100793.
(49)Zhu, G.; Ma, X.; Huang, Q.; Zhao, L.; Zhang, R.; Yang, X.; Wang, S. A high-performance guanidinium-based aqueous biphasic system for green separation of palladium from acid solution. ACS Sustain. Chem. Eng. 2022, 10 (4), 1633-1643.
(50)Williams, N. J.; Seipp, C. A.; Brethomé, F. M.; Ma, Y.-Z.; Ivanov, A. S.; Bryantsev, V. S.; Kidder, M. K.; Martin, H. J.; Holguin, E.; Garrabrant, K. A. CO2 capture via crystalline hydrogen-bonded bicarbonate dimers. Chem. 2019, 5 (3), 719-730.
(51)Plachá, D.; Muñoz-Bonilla, A.; Škrlová, K.; Echeverria, C.; Chiloeches, A.; Petr, M.; Lafdi, K.; Fernández-García, M. Antibacterial character of cationic polymers attached to carbon-based nanomaterials. Nanomaterials 2020, 10 (6), 1218.
(52)Thoma, L. M.; Boles, B. R.; Kuroda, K. Cationic methacrylate polymers as topical antimicrobial agents against Staphylococcus aureus nasal colonization. Biomacromolecules 2014, 15 (8), 2933-2943.
(53)Carmona-Ribeiro, A. M.; de Melo Carrasco, L. D. Cationic antimicrobial polymers and their assemblies. Int. J. Mol. 2013, 14 (5), 9906-9946.
(54)Zhang, H.-L.; Gao, Y.-B.; Gai, J.-G. Guanidinium-functionalized nanofiltration membranes integrating anti-fouling and antimicrobial effects. J. Mater. Chem. 2018, 6 (15), 6442-6454.
(55)Sasaki, D. Y.; Alam, T. M. Solid-state 31P NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels. Chem. Mater. 2000, 12 (5), 1400-1407
(56)Salvio, R. The guanidinium unit in the catalysis of phosphoryl transfer reactions: From molecular spacers to nanostructured supports. Chem. Eur. 2015, 21 (31), 10960-10971.
(57)Yatvin, J.; Gao, J.; Locklin, J. Durable defense: robust and varied attachment of non-leaching poly “-onium” bactericidal coatings to reactive and inert surfaces. Chem Comm. 2014, 50 (67), 9433-9442.
(58)Trinh, K. T. L.; Lee, N. Y. Recent methods for the viability assessment of bacterial pathogens: Advances, Challenges, and Future Perspectives. Pathogens 2022, 11 (9), 1057.
(59)Nitsch, A.; Haralambiev, L.; Einenkel, R.; Muzzio, D. O.; Zygmunt, M. T.; Ekkernkamp, A.; Burchardt, M.; Stope, M. B. Determination of in vitro membrane permeability by analysis of intracellular and extracellular fluorescein signals in renal cells. in vivo 2019, 33 (6), 1767-1771.
(60)Breeuwer, P.; Drocourt, J.-L.; Bunschoten, N.; Zwietering, M. H.; Rombouts, F. M.; Abee, T. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl. Environ. Microbiol. 1995, 61 (4), 1614-1619.
(61)Kontchou, J. A.; Nocker, A. Optimization of viability qPCR for selective detection of membrane-intact Legionella pneumophila. J. Microbiol. Methods. 2019, 156, 68-76.
(62)Leifels, M.; Cheng, D.; Sozzi, E.; Shoults, D. C.; Wuertz, S.; Mongkolsuk, S.; Sirikanchana, K. Capsid integrity quantitative PCR to determine virus infectivity in environmental and food applications–a systematic review. Water Res. 2021, 11, 100080.
(63)Allen, D. M.; Einarsson, G. G.; Tunney, M. M.; Bell, S. E. Characterization of bacteria using surface-enhanced Raman spectroscopy (SERS): Influence of microbiological factors on the SERS spectra. Anal. Chem. 2022, 94 (26), 9327-9335.
(64)Benešová, M.; Bernatová, S.; Mika, F.; Pokorná, Z.; Ježek, J.; Šiler, M.; Samek, O.; Růžička, F.; Rebrošová, K.; Zemánek, P. SERS-Tags: Selective immobilization and detection of bacteria by strain-specific antibodies and surface-enhanced Raman scattering. Biosensors 2023, 13 (2), 182.
(65)Xu, N.; Wang, W.; Chen, F.; Li, W.; Wang, G. ELISA is superior to bacterial culture and agglutination test in the diagnosis of brucellosis in an endemic area in China. BMC Infect. Dis. 2020, 20 (1), 1-7.
(66)Viljanen, M. K.; Nurmi, T.; Salminen, A. Enzyme-linked immunosorbent assay (ELISA) with bacterial sonicate antigen for IgM, IgA, and IgG antibodies to Francisella tularensis: comparison with bacterial agglutination test and ELISA with lipopolysaccharide antigen. J. Infect. Dis. 1983, 148 (4), 715-720.
(67)Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339 (8), 520-532.
(68)Wang, C.; Wang, P.; Chen, J.; Zhu, L.; Zhang, D.; Wan, Y.; Ai, S. Self-powered biosensing system driven by triboelectric nanogenerator for specific detection of Gram-positive bacteria. Nano Energy 2022, 93, 106828.
(69)Singh, S.; Moudgil, A.; Mishra, N.; Das, S.; Mishra, P. Vancomycin functionalized WO3 thin film-based impedance sensor for efficient capture and highly selective detection of Gram-positive bacteria. Biosens. Bioelectron. 2019, 136, 23-30.
(70)Spychalska, K.; Zając, D.; Baluta, S.; Halicka, K.; Cabaj, J. Functional polymers structures for (Bio) sensing application—A review. Polymers 2020, 12 (5), 1154.
(71)Zhang, H.; Chan‐Park, M. B.; Wang, M. Functional polymers and polymer–dye composites for food sensing. Macromol Rapid Commun. 2020, 41 (21), 2000279.
(72)Muralikrishna, S.; Kempahanumakkagari, S.; Thippeswamy, R.; Surareungchai, W. Functional polymer materials for environmental monitoring and safety applications. Adv. Funct. Mater. 2022, 177-204.
(73)Sarapas, J. M.; Backlund, C. M.; deRonde, B. M.; Minter, L. M.; Tew, G. N. ROMP‐and RAFT‐based guanidinium‐containing polymers as scaffolds for protein mimic synthesis. Chem. Eur. 2017, 23 (28), 6858-6863.
(74)Turishchev, S. Y.; Marchenko, D.; Sivakov, V.; Belikov, E.; Chuvenkova, O.; Parinova, E.; Koyuda, D.; Chumakov, R.; Lebedev, A.; Kulikova, T. On the possibility of photoemission electron microscopy for E. coli advanced studies. Results Phys. 2020, 16, 102821.
(75)Li, P.; Gao, Y.; Sun, Z.; Chang, D.; Gao, G.; Dong, A. Synthesis, characterization, and bactericidal evaluation of chitosan/guanidine functionalized graphene oxide composites. Molecules 2016, 22 (1), 12.
(76)Stypczyńska, A.; Nixon, T.; Mason, N. X-ray radiation of poly-L-arginine hydrochloride and multilayered DNA-coatings. Eur. Phys. J. D. 2014, 68, 1-10.
(77)Waite, J. H.; Tanzer, M. L. Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science 1981, 212 (4498), 1038-1040.
(78)Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. science 2007, 318 (5849), 426-430.
(79)Lee, H.; Scherer, N. F.; Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. 2006, 103 (35), 12999-13003.
(80)Huang, Q.; Chen, J.; Liu, M.; Huang, H.; Zhang, X.; Wei, Y. Polydopamine-based functional materials and their applications in energy, environmental, and catalytic fields: State-of-the-art review. Chem. Eng. J. 2020, 387, 124019.
(81)Lee, H. A.; Park, E.; Lee, H. Polydopamine and its derivative surface chemistry in material science: a focused review for studies at KAIST. Adv. Mater. 2020, 32 (35), 1907505.
(82)Kwon, I. S.; Bettinger, C. J. Polydopamine nanostructures as biomaterials for medical applications. J Mater Chem B. 2018, 6 (43), 6895-6903.
(83)Fan, Y.-J.; Pham, M. T.; Huang, C.-J. Development of antimicrobial and antifouling universal coating via rapid deposition of polydopamine and zwitterionization. Langmuir 2018, 35 (5), 1642-1651.
(84)Li, J.; Hou, W.; Lin, S.; Wang, L.; Pan, C.; Wu, F.; Liu, J. Polydopamine nanoparticle‐mediated dopaminergic immunoregulation in colitis. Adv. Sci. 2022, 9 (1), 2104006.
(85)Yang, Y.-X.; Fang, Y.-Z.; Tian, J.-X.; Xiao, Q.; Kong, X.-J. Fluorescent polydopamine nanoparticles as a nanosensor for the sequential detection of mercury ions and l-ascorbic acid based on a coordination effect and redox reaction. RSC advances 2020, 10 (47), 28164-28170.
(86)Wang, Z.; Duan, Y.; Duan, Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release. 2018, 290, 56-74.
(87)Wang, W.; Tang, Z.; Zhang, Y.; Wang, Q.; Liang, Z.; Zeng, X. Mussel‐inspired polydopamine: the bridge for targeting drug delivery system and synergistic cancer treatment. Macromol Biosci. 2020, 20 (10), 2000222.
(88)Singh, I.; Dhawan, G.; Gupta, S.; Kumar, P. Recent advances in a polydopamine-mediated antimicrobial adhesion system. Front. Microbiol. 2021, 11, 607099.
(89)Huang, Z.-H.; Peng, S.-W.; Hsieh, S.-L.; Kirankumar, R.; Huang, P.-F.; Chang, T.-M.; Dwivedi, A. K.; Chen, N.-F.; Wu, H.-M.; Hsieh, S. Polydopamine ultrathin film growth on mica via in-situ polymerization of dopamine with applications for silver-based antimicrobial coatings. Materials 2021, 14 (3), 671.
電子全文 電子全文(網際網路公開日期:20260818)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top