跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 20:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許宸睿
研究生(外文):Hsu, Chen-Rui
論文名稱:基於時間序列殘差的EWMA管制圖:新冠肺炎之應用
論文名稱(外文):Residual-Based EWMA Methodology Integrated with Time Series Models : Application in Covid-19
指導教授:王秀瑛王秀瑛引用關係
指導教授(外文):Wang, Hsiu-Ying
口試委員:王秀瑛程毅豪陳鄰安
口試委員(外文):Wang, Hsiu-YingChen, Yi-HauChen, Lin-An
口試日期:2024-06-20
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:40
中文關鍵詞:管制圖殘差
外文關鍵詞:Covid-19ARIMAVARMAControl ChartResiduals
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Acknowledgement .......... i
Chinese Abstract .......... ii
English Abstract .......... iii
Contents .......... iv
List of Figures .......... vi
List of Tables .......... vii
1. Introduction ..........1
2. Literature Review ..........3
3. Research Design ..........5
3.1 Framework ..........5
3.2 Data Description ..........6
3.2.1 India ..........7
3.2.2 Malaysia ..........9
3.2.3 Thailand ..........12
4. Methodology ..........15
4.1 Time Series Model ..........15
4.1.1 ARIMA Model ..........15
4.1.2 VARMA Model ..........16
4.2 Model Selection ..........17
4.3 Control Charts ..........19
4.3.1 Shewart Control Chart ..........19
4.3.2EWMA Control Chart ..........19
5. Results ..........22
5.1 Covid-19 in India ..........22
5.2 Covid-19 in Malaysia ..........26
5.3 Covid-19 in Thailand ..........30
6. Conclusion ..........34
References ..........35
[1] L. Yang, S. Liu, J. Liu, Z. Zhang, X. Wan, B. Huang, Y. Chen, and Y. Zhang, “Covid-19:
immunopathogenesis and immunotherapeutics,” Signal transduction and targeted therapy,
vol. 5, no. 1, p. 128, 2020.
[2] M. Ciotti, S. Angeletti, M. Minieri, M. Giovannetti, D. Benvenuto, S. Pascarella, C. Sag�nelli, M. Bianchi, S. Bernardini, and M. Ciccozzi, “Covid-19 outbreak: an overview,”
Chemotherapy, vol. 64, no. 5-6, pp. 215–223, 2020.
[3] R. Padhan and K. Prabheesh, “The economics of covid-19 pandemic: A survey,” Economic
analysis and policy, vol. 70, pp. 220–237, 2021.
[4] S. Pokhrel and R. Chhetri, “A literature review on impact of covid-19 pandemic on teach�ing and learning,” Higher education for the future, vol. 8, no. 1, pp. 133–141, 2021.
[5] D. D. Rajgor, M. H. Lee, S. Archuleta, N. Bagdasarian, and S. C. Quek, “The many
estimates of the covid-19 case fatality rate,” The Lancet Infectious Diseases, vol. 20, no. 7,
pp. 776–777, 2020.
[6] M. Andrews, B. Areekal, K. Rajesh, J. Krishnan, R. Suryakala, B. Krishnan, C. Muraly,
and P. Santhosh, “First confirmed case of covid-19 infection in india: A case report,” The
Indian journal of medical research, vol. 151, no. 5, p. 490, 2020.
[7] D. Baud, X. Qi, K. Nielsen-Saines, D. Musso, L. Pomar, and G. Favre, “Real estimates of
mortality following covid-19 infection,” The Lancet infectious diseases, vol. 20, no. 7, p.
773, 2020.
[8] J. Noh and G. Danuser, “Estimation of the fraction of covid-19 infected people in us states
and countries worldwide,” PloS one, vol. 16, no. 2, p. e0246772, 2021.
[9] R. Kumar, A. Jain, A. K. Tripathi, and S. Tyagi, “Covid-19 outbreak: An epidemic anal�ysis using time series prediction model,” in 2021 11th international conference on cloud
computing, data science & engineering (Confluence). IEEE, 2021, pp. 1090–1094.
[10] S. Ballı, “Data analysis of covid-19 pandemic and short-term cumulative case forecasting
using machine learning time series methods,” Chaos, Solitons & Fractals, vol. 142, p.
110512, 2021.
[11] Z. Ceylan, “Estimation of covid-19 prevalence in italy, spain, and france,” Science of The
Total Environment, vol. 729, p. 138817, 2020.
[12] V. Singh, R. C. Poonia, S. Kumar, P. Dass, P. Agarwal, V. Bhatnagar, and L. Raja, “Pre�diction of covid-19 corona virus pandemic based on time series data using support vector
machine,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 23, no. 8,
pp. 1583–1597, 2020.
[13] R. J. Perla, S. M. Provost, G. J. Parry, K. Little, and L. P. Provost, “Understanding variation
in reported covid-19 deaths with a novel shewhart chart application,” International Journal
for Quality in Health Care, vol. 33, no. 1, p. mzaa069, 2021.
[14] S. Mandal, T. Roychowdhury, and A. Bhattacharya, “Pattern of genomic variation in sars�cov-2 (covid-19) suggests restricted nonrandom changes: Analysis using shewhart control
charts,” Journal of Biosciences, vol. 46, pp. 1–7, 2021.
[15] Y. Mahmood, S. Ishtiaq, M. B. Khoo, S. Y. Teh, and H. Khan, “Monitoring of three-phase
variations in the mortality of covid-19 pandemic using control charts: where does pakistan
stand?” International Journal for Quality in Health Care, vol. 33, no. 2, p. mzab062, 2021.
[16] I. Dawoud, “Modeling palestinian covid-19 cumulative confirmed cases: A comparative
study,” Infectious Disease Modelling, vol. 5, pp. 748–754, 2020.
[17] L. C. Alwan and H. V. Roberts, “Time series modeling for statistical process control,” in
Statistical process control in automated manufacturing. CRC Press, 2020, pp. 45–65.
[18] E. N. Loredo, D. Jearkpaporn, and C. M. Borror, “Model-based control chart for autore�gressive and correlated data,” Quality and Reliability Engineering International, vol. 18,
no. 6, pp. 489–496, 2002.
[19] A. Rius, I. Ruisánchez, M. Callao, and F. Rius, “Reliability of analytical systems: use
of control charts, time series models and recurrent neural networks (rnn),” Chemometrics
and Intelligent Laboratory Systems, vol. 40, no. 1, pp. 1–18, 1998.
[20] H. Madsen, Time series analysis. CRC Press, 2007.
[21] N. F. Zhang, “Detection capability of residual control chart for stationary process data,”
Journal of Applied Statistics, vol. 24, no. 4, pp. 475–492, 1997.
[22] N. F. Zhang, “A statistical control chart for stationary process data,” Technometrics,
vol. 40, no. 1, pp. 24–38, 1998.
[23] ˙Ismail Kırba¸s, A. Sözen, A. D. Tuncer, and F. ¸Sinasi Kazancıoglu, “Comparative analysis ˘
and forecasting of covid-19 cases in various european countries with arima, narnn and
lstm approaches,” Chaos, Solitons Fractals, 2020.
[24] K. ArunKumar, D. V. Kalaga, C. Mohan Sai Kumar, M. Kawaji, and T. M. Brenza, “Com�parative analysis of gated recurrent units (gru), long short-term memory (lstm) cells, au�toregressive integrated moving average (arima), seasonal autoregressive integrated mov�ing average (sarima) for forecasting covid-19 trends,” Alexandria Engineering Journal,
vol. 61, no. 10, pp. 7585–7603, 2022.
[25] L. R. de Araújo Morais and G. S. da Silva Gomes, “Forecasting daily covid-19 cases in
the world with a hybrid arima and neural network model,” Applied Soft Computing, vol.
126, p. 109315, 2022.
[26] A. Barman, “Time series analysis and forecasting of covid-19 cases using lstm and arima
models,” 2020.
[27] S. Prajapati, A. Swaraj, R. Lalwani, A. Narwal, K. Verma, G. Singh, and A. Kumar,
“Comparison of traditional and hybrid time series models for forecasting covid-19 cases,”
may 2021.
[28] T. B. Alakus and I. Turkoglu, “Comparison of deep learning approaches to predict covid�19 infection,” Chaos, Solitons & Fractals, vol. 140, p. 110120, 2020.
[29] V. K. R. Chimmula and L. Zhang, “Time series forecasting of covid-19 transmission in
canada using lstm networks,” Chaos, solitons & fractals, vol. 135, p. 109864, 2020.
[30] N. Kumar and S. Susan, “Covid-19 pandemic prediction using time series forecasting
models,” in 2020 11th international conference on computing, communication and net�working technologies (ICCCNT). IEEE, 2020, pp. 1–7.
[31] V. Chaurasia and S. Pal, “Application of machine learning time series analysis for predic�tion covid-19 pandemic,” Research on Biomedical Engineering, pp. 1–13, 2020.
[32] S. Singh, C. Chowdhury, A. K. Panja, and S. Neogy, “Time series analysis of covid-19
data to study the effect of lockdown and unlock in india,” Journal of The Institution of
Engineers (India): Series B, pp. 1–7, 2021.
[33] L. J. Tashman, “Out-of-sample tests of forecasting accuracy: an analysis and review,”
International journal of forecasting, vol. 16, no. 4, pp. 437–450, 2000.
[34] F. Petropoulos, S. Makridakis, and N. Stylianou, “Covid-19: Forecasting confirmed cases
and deaths with a simple time series model,” International journal of forecasting, vol. 38,
no. 2, pp. 439–452, 2022.
[35] S. Prajapati, A. Swaraj, R. Lalwani, A. Narwal, and K. Verma, “Comparison of tra�ditional and hybrid time series models for forecasting covid-19 cases,” arXiv preprint
arXiv:2105.03266, 2021.
[36] A. Malki, E.-S. Atlam, A. E. Hassanien, A. Ewis, G. Dagnew, and I. Gad, “Sarima model�based forecasting required number of covid-19 vaccines globally and empirical analysis
of peoples’ view towards the vaccines,” Alexandria Engineering Journal, vol. 61, no. 12,
pp. 12 091–12 110, 2022.
[37] H. Qi, S. Xiao, R. Shi, M. P. Ward, Y. Chen, W. Tu, Q. Su, W. Wang, X. Wang, and
Z. Zhang, “Covid-19 transmission in mainland china is associated with temperature and
humidity: A time-series analysis,” Science of the total environment, vol. 728, p. 138778,
2020.
[38] M. Maleki, M. R. Mahmoudi, D. Wraith, and K.-H. Pho, “Time series modelling to fore�cast the confirmed and recovered cases of covid-19,” Travel medicine and infectious dis�ease, vol. 37, p. 101742, 2020.
[39] V. Papastefanopoulos, P. Linardatos, and S. Kotsiantis, “Covid-19: a comparison of time
series methods to forecast percentage of active cases per population,” Applied sciences,
vol. 10, no. 11, p. 3880, 2020.
[40] P. Phanthuna and Y. Areepong, “Detection sensitivity of a modified ewma control chart
with a time series model with fractionality and integration,” Emerging Science Journal,
vol. 6, no. 5, pp. 1134–1152, 2022.
[41] S. Sengupta, S. Mohinuddin, and M. Arif, “Spatiotemporal dynamics of temperature and
precipitation with reference to covid-19 pandemic lockdown: perspective from indian sub�continent,” Environment, Development and Sustainability, pp. 1–41, 2021.
[42] P. Kumari, A. Priyadarshi, A. K. Gupta, and S. K. Prasad, “Monitoring of the covid-19
cases by ewma control chart,” in International Conference on Innovative Computing and
Communications, A. Khanna, D. Gupta, S. Bhattacharyya, A. E. Hassanien, S. Anand, and
A. Jaiswal, Eds. Singapore: Springer Singapore, 2022, pp. 541–551.
[43] H. Wang, “Tolerance limits for mixture-of-normal distributions with application to covid�19 data,” Wiley Interdisciplinary Reviews: Computational Statistics, p. e1611, 2023.
[44] J. D. Hamilton, Time series analysis. Princeton university press, 2020.
[45] G. Kirchgässner, J. Wolters, and U. Hassler, Introduction to modern time series analysis.
Springer Science & Business Media, 2012.
[46] W. A. Fuller, Introduction to statistical time series. John Wiley & Sons, 2009.
[47] R. H. Shumway, D. S. Stoffer, and D. S. Stoffer, Time series analysis and its applications.
Springer, 2000, vol. 3.
[48] A. Swaraj, K. Verma, A. Kaur, G. Singh, A. Kumar, and L. M. de Sales, “Implementa�tion of stacking based arima model for prediction of covid-19 cases in india,” Journal of
Biomedical Informatics, vol. 121, p. 103887, 2021.
[49] P. J. Brockwell and R. A. Davis, Time series: theory and methods. Springer science &
business media, 1991.
[50] D. R. Brillinger, Time series: data analysis and theory. SIAM, 2001.
電子全文 電子全文(網際網路公開日期:20270625)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊