跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 08:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許慎言
研究生(外文):Hsu, Shen-Yen
論文名稱:不同分子量玻尿酸治療大白鼠肺臟纖維化之差異
論文名稱(外文):Discrepant therapy for pulmonary fibrosis in rats with hyaluronan of varying molecular weights
指導教授:傅毓秀傅毓秀引用關係
指導教授(外文):Fu, Yu-Show
口試委員:黃奇英彭殿王
口試委員(外文):Huang, Chi-YingPeng, Dian-Wang
口試日期:2024-06-19
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:解剖學及細胞生物學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:88
中文關鍵詞:肺臟纖維化玻尿酸
外文關鍵詞:Pulmonary fibrosisHyaluronan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:4
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肺臟纖維化是一種漸進且不可逆的病理過程,肺部受損導致肺泡細胞死亡、減少,肺泡組織間被纖維化組織取代。至今臨床上,沒有藥物能夠有效治療肺臟纖維化,僅能降低患者的不適感或延緩病情惡化。因此,尋求能夠逆轉治療肺部纖維化的方法是至關重要的議題。本實驗先透過注射博來黴素(Bleomycin,簡稱 BLM) 造成大白鼠左肺纖維化之後,才開始給予不同分子量玻尿酸。探討不同分子量玻尿酸治療肺臟纖維化的效果與差異。
經由大白鼠左支氣管給予5 mg BLM,造成左肺產生穩定、且嚴重的肺臟纖維化,於傷害後的第21天起,由大白鼠左支氣管,分別給予低分子量、中分子量、高分子量、以及綜合分子量玻尿酸,在第49天犧牲,觀察其肺臟功能以及肺臟病理變化的情形。
給予不同分子量的玻尿酸,均能提升肺纖維化病鼠動脈血之含氧飽和度。其中,僅有給予綜合分子量玻尿酸之大白鼠,其動脈血中的氧分壓能明顯上升、二氧化碳分壓能快速下降、並且呼吸急促的現象能顯著的降低。
另外,以電腦斷層影像連續追蹤大白鼠肺泡的變化情形。結果顯示,給予綜合分子量玻尿酸能促進肺纖維化病鼠肺泡的增多。在實驗的第49天犧牲大白鼠,由肺臟巨觀顯示,BLM傷害後之肺纖維化病鼠,左肺明顯的萎縮;給予綜合分子量玻尿酸,可以提升左肺肺泡體積,與改善肺泡結構。
進一步,給予中分子、高分子、與綜合分子量玻尿酸都可以降低左肺組織間之膠原蛋白沉積,並且,左肺中巨噬細胞細胞質內具有顆粒狀之細胞比例也明顯上升。另外,給予高分子、與綜合分子量玻尿酸可以明顯降低α-SMA的表現、和顯著減少肺洗液中之細胞數目。
綜合以上實驗結果,肺臟纖維化病鼠給予綜合分子量玻尿酸能有效提升肺臟功能、改善肺臟組織、並緩解肺臟纖維化。希望對肺纖維化病患能提供另一個可能的治療方法。
Pulmonary fibrosis (PF) is an irreversible and progressing process characterized by the gradual reduction of alveolar epitheliums and replacement of alveolar tissue with fibrotic tissue. To date, there are no effective treatments for PF clinically but only for relieving symptoms or slowing down the disease progression. Therefore, it is a critical issue to identify therapies that are able to reverse PF. In this study, we investigated the therapeutic effect of administrating low, medium, high, or mixed molecular weight of hyaluronan (HA) on bleomycin (BLM) induced PF rats.
Rats were injected with 5 mg of BLM through the left bronchus, causing steady and severe PF in the left lung. On day 21 after the BLM injection, low, medium, high, or mixed molecular weight HA was administered intratracheally to the left lung. Lung function and pathology were observed until day 49.
Our study demonstrated that the administration of different molecular weight HA resulted in the enhancement of blood oxygen concentration. However, the increase in arterial oxygen pressure and the decrease in arterial carbon dioxide pressure and respiratory rate were only observed with the administration of mixed molecular weight HA.
Moreover, the results of lung computed tomography showed that the administration of mixed molecular weight HA increased the number of alveoli in PF rats. Morphologically, the administration of mixed molecular weight HA promoted lung volume and improved alveolar structure in PF rats.
The amelioration of collagen deposition and the increased population of macrophages with particles were observed with the administration of medium, high, and mixed molecular weight HA. Furthermore, the administration of high and mixed molecular weight HA decreased inflammation and the activity of myofibroblasts.
Based on our observations, the administration of mixed molecular weight HA performed better than single molecular weight HA in promoting lung function, improving alveolar tissue, and alleviating PF.
目錄
中文摘要i
英文摘要iii
目錄v
圖目錄ix
表目錄xi
第一章 緒論1
1.1 肺臟纖維化的病理發展1
1.2 治療藥物於肺臟纖維化的基礎醫學研究3
1.3 臍帶間質幹細胞逆轉修復肺臟纖維化4
1.4 玻尿酸 (Hyaluronic acid,簡稱HA)5
1.5 不同分子量玻尿酸對身體器官的醫學研究7
1.6 玻尿酸於肺臟的基礎醫學研究8
第二章 研究目的11
第三章 材料與方法12
3.1 實驗動物12
3.2 撲類惡/博來黴素注射劑12
3.3 左側單肺纖維化動物模式的建立12
3.4玻尿酸溶液配製13
3.5 實驗分組13
3.6 實驗動物肺功能檢測15
3.6.1 動脈血氧飽和度的測定15
3.6.2動脈血的氧分壓與二氧化碳分壓的檢測15
3.6.3 呼吸頻率的測定16
3.7 小動物電腦斷層造影 (Micro Computed Tomography,簡稱CT)16
3.7.1 電腦斷層造影16
3.7.2 電腦斷層造影3D圖檔的建立與體積計算17
3.8 實驗動物犧牲和灌流固定17
3.9 組織的石蠟包埋和切片18
3.9.1 組織脫水18
3.9.2 組織浸蠟包埋18
3.9.3 組織切片和取片方式18
3.10 組織化學染色20
3.10.1 蘇木紫-伊紅染色 (Hematoxylin & Eosin stain,H&E Stain)20
3.10.2 組織纖維化染色 (Sirius Red Stain)21
3.10.3 組織免疫染色 (Immunohistochemistry,簡稱IHC)21
3.11 支氣管肺泡沖洗液 (Bronchoalverlar lavage,簡稱 BAL) 細胞計數22
3.12 統計分析23
第四章 結果24
4.1 給予玻尿酸治療,對於肺纖維化病鼠的體重,沒有顯著的影響24
4.2 給予玻尿酸,可增加肺纖維化病鼠的動脈血氧飽和度24
4.3 給予玻尿酸對動脈血氧分壓與二氧化碳分壓的影響26
4.3.1 給予高分子、或綜合分子量玻尿酸,能提升肺纖維化病鼠的動脈血氧分壓26
4.3.2 給予中分子、或綜合分子量玻尿酸,能快速降低動脈血中之二氧化碳分壓26
4.4 給予綜合分子量玻尿酸,能減緩肺纖維化病鼠的呼吸頻率27
4.5 由電腦斷層3D影像顯示,給予綜合分子量玻尿酸,可以促進肺泡的再生28
4.6 由肺臟巨觀顯示,給予綜合分子量玻尿酸,能促進肺纖維化大白鼠左肺體積的增加30
4.7 從蘇木紫-伊紅染色結果顯示,給予綜合分子量玻尿酸,能增加肺纖維化大白鼠的肺臟體積、與改善肺泡結構31
4.8 組織纖維化染色結果顯示,給予中、高、與綜合分子量玻尿酸,能降低肺纖維化病鼠肺臟內膠原蛋白的沉積33
4.9 給予高分子、綜合分子量玻尿酸,能降低肺纖維化病鼠左肺中,肌纖維母細胞的活化34
4.10 給予中、高、或綜合分子量玻尿酸能改變肺纖維化病鼠左肺中的巨噬細胞型態35
4.11 給予高分子量或綜合分子量玻尿酸,減少肺纖維化病鼠左肺支氣管肺泡沖洗液內的細胞數量36
第五章、討論37
5.1 玻尿酸於早期肺臟疾病的治療或預防37
5.2 不同分子量玻尿酸治療急性肺臟損傷可能的機制38
5.2.1 玻尿酸影響發炎反應38
5.2.2 玻尿酸影響巨噬細胞的存活與極化40
5.2.3 玻尿酸影響肺泡上皮細胞的再生42
5.3比較人類臍帶間質幹細胞與玻尿酸於肺臟纖維化的治療45
5.4結論與未來展望47
第六章 參考文獻48
第七章 圖表54

圖目錄
圖一、誘發大白鼠肺纖維化、分別給予不同分子量玻尿酸的實驗流程圖。55
圖二、給予玻尿酸治療,對於肺纖維化病鼠的體重變化,沒有顯著的影響。56
圖三、給予玻尿酸,可增加肺纖維化病鼠的動脈血氧飽和度。57
圖四、給予高分子、或綜合分子量玻尿酸,能提升肺纖維化病鼠的動脈血氧分壓。58
圖五、給予中分子、或綜合分子量玻尿酸,能快速降低動脈血中的二氧化碳分壓。59
圖六、給予綜合分子量玻尿酸,能減緩肺纖維化病鼠的呼吸頻率。60
圖七、肺臟電腦斷層3D模型的建立。62
圖八、由電腦斷層3D影像,呈現肺臟肺泡的變化情形。64
圖九、由電腦斷層3D影像顯示,給予綜合分子量玻尿酸,可以促進肺泡的再生。65
圖十、所有組別的肺泡空間變化。66
圖十一、由肺臟巨觀顯示,給予綜合分子量玻尿酸,能促進肺纖維化大白鼠左肺體積的增加。68
圖十二、左肺石蠟切片、與取片方法。69
圖十三、從HE染色結果顯示,給予綜合分子量玻尿酸,能增加肺纖維化大白鼠的肺臟體積、與改善肺泡結構。71
圖十四、給予中、高、與綜合分子量玻尿酸,能降低肺纖維化病鼠肺臟內膠原蛋白的沉積。73
圖十五、給予高分子、綜合分子量玻尿酸,能降低肺纖維化病鼠左肺中,肌纖維母細胞的活化。74
圖十六、給予中、高、或綜合分子量玻尿酸能改變肺纖維化病鼠左肺中的巨噬細胞型態。75
圖十七、給予高分子量或綜合分子量玻尿酸,減少肺纖維化病鼠左肺支氣管肺泡沖洗液內的細胞數量。77
Allegra, Luigi, Sabrina Della Patrona, Giuseppe Petrigni, 1, and 2. 2012. 'Hyaluronic acid: perspectives in lung diseases', Heparin-A Century of Progress: 385-401.
Astachov, Liliana, Razi Vago, Moran Aviv, and Zvi Nevo. 2011. 'Hyaluronan and mesenchymal stem cells: from germ layer to cartilage and bone', Front Biosci, 16: 261-76.
Cabrera, Sandra, Miguel Gaxiola, José Luis Arreola, Remedios Ramírez, Paul Jara, Jeanine D’Armiento, Thomas Richards, Moisés Selman, and Annie Pardo. 2007. 'Overexpression of MMP9 in macrophages attenuates pulmonary fibrosis induced by bleomycin', The international journal of biochemistry & cell biology, 39: 2324-38.
Chen, Minshan, Lin Li, Zhenshi Wang, Ping Li, Feng Feng, and Xi Zheng. 2019. 'High molecular weight hyaluronic acid regulates P. gingivalis–induced inflammation and migration in human gingival fibroblasts via MAPK and NF-κB signaling pathway', Archives of oral biology, 98: 75-80.
Chu, Kuo-An, Shih-Yao Wang, Chang-Ching Yeh, Tz-Win Fu, Yu-Yi Fu, Tsui-Ling Ko, Mei-Miao Chiu, Tien-Hua Chen, Pei-Jiun Tsai, and Yu-Show Fu. 2019. 'Reversal of bleomycin-induced rat pulmonary fibrosis by a xenograft of human umbilical mesenchymal stem cells from Wharton's jelly', Theranostics, 9: 6646.
Chu, Kuo-An, Chang-Ching Yeh, Chun-Hsiang Hsu, Chien-Wei Hsu, Fu-Hsien Kuo, Pei-Jiun Tsai, and Yu-Show Fu. 2023. 'Reversal of Pulmonary Fibrosis: Human Umbilical Mesenchymal Stem Cells from Wharton’s Jelly versus Human-Adipose-Derived Mesenchymal Stem Cells', International Journal of Molecular Sciences, 24: 6948.
Chu, Kuo-An, Chang-Ching Yeh, Fu-Hsien Kuo, Wen-Ren Lin, Chien-Wei Hsu, Tien-Hua Chen, and Yu-Show Fu. 2020. 'Comparison of reversal of rat pulmonary fibrosis of nintedanib, pirfenidone, and human umbilical mesenchymal stem cells from Wharton’s jelly', Stem Cell Research & Therapy, 11: 1-14.
Chung, Kuei-Pin, Chia-Lang Hsu, Li-Chao Fan, Ziling Huang, Divya Bhatia, Yi-Jung Chen, Shu Hisata, Soo Jung Cho, Kiichi Nakahira, and Mitsuru Imamura. 2019. 'Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis', Nature communications, 10: 1-17.
Cowman, Mary K, Hong-Gee Lee, Kathryn L Schwertfeger, James B McCarthy, and Eva A Turley. 2015. 'The content and size of hyaluronan in biological fluids and tissues', Frontiers in immunology, 6: 138552.
Dong, Y, GFT Poon, AA Arif, SSM Lee-Sayer, M Dosanjh, and P Johnson. 2018. 'The survival of fetal and bone marrow monocyte-derived alveolar macrophages is promoted by CD44 and its interaction with hyaluronan', Mucosal Immunology, 11: 601-14.
Du Bois, RM. 2010. 'Strategies for treating idiopathic pulmonary fibrosis', Nature reviews Drug discovery, 9: 129-40.
Fedorov, Andriy, Reinhard Beichel, Jayashree Kalpathy-Cramer, Julien Finet, Jean-Christophe Fillion-Robin, Sonia Pujol, Christian Bauer, Dominique Jennings, Fiona Fennessy, and Milan Sonka. 2012. '3D Slicer as an image computing platform for the Quantitative Imaging Network', Magnetic resonance imaging, 30: 1323-41.
Garantziotis, Stavros, Martin Brezina, Paolo Castelnuovo, and Lorenzo Drago. 2016. 'The role of hyaluronan in the pathobiology and treatment of respiratory disease', American Journal of Physiology-Lung Cellular and Molecular Physiology, 310: L785-L95.
Garantziotis, Stavros, and Rashmin C Savani. 2019. 'Hyaluronan biology: A complex balancing act of structure, function, location and context', Matrix Biology, 78: 1-10.
Giji, Sadhasivam, and Muthuvel Arumugam. 2014. 'Isolation and characterization of hyaluronic acid from marine organisms', Advances in food and nutrition research, 72: 61-77.
Glasser, Stephan W, James S Hagood, Simon Wong, Carmen A Taype, Satish K Madala, and William D Hardie. 2016. 'Mechanisms of lung fibrosis resolution', The American journal of pathology, 186: 1066-77.
Hall, Christine L, Chao Wang, Lamie A Lange, and Eva A Turley. 1994. 'Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity', The Journal of cell biology, 126: 575-88.
Hoarau, Antony, Myriam Polette, Christelle Coraux, 1, 2, and 3. 2022. 'Lung Hyaluronasome: Involvement of Low Molecular Weight Ha (Lmw-Ha) in Innate Immunity', Biomolecules, 12: 658.
Hogan, Brigid LM, Christina E Barkauskas, Harold A Chapman, Jonathan A Epstein, Rajan Jain, Connie CW Hsia, Laura Niklason, Elizabeth Calle, Andrew Le, and Scott H Randell. 2014. 'Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function', Cell stem cell, 15: 123-38.
Hou, Fei, Kun Xiao, Li Tang, Lixin Xie, 1, and 2. 2021. 'Diversity of macrophages in lung homeostasis and diseases', Frontiers in immunology, 12: 753940.
Huang, Pei‐ming, Olga Syrkina, Lunyin Yu, Rejmon Dedaj, Hang Zhao, Aviva Shiedlin, Yung‐yang LIU, Hari Garg, Deborah A Quinn, and Charles A Hales. 2010. 'High MW hyaluronan inhibits smoke inhalation‐induced lung injury and improves survival', Respirology, 15: 1131-39.
Kim, Kevin K, Matthias C Kugler, Paul J Wolters, Liliane Robillard, Michael G Galvez, Alexis N Brumwell, Dean Sheppard, and Harold A Chapman. 2006. 'Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix', Proceedings of the National Academy of Sciences, 103: 13180-85.
Laurent, Torvard C, J Robert E Fraser, 1, 2, 3, 4, and 5. 1992. 'Hyaluronan 1', The FASEB journal, 6: 2397-404.
Lee, Bo Mi, Sang Jun Park, Insup Noh, and Chun-Ho Kim. 2021. 'The effects of the molecular weights of hyaluronic acid on the immune responses', Biomaterials Research, 25: 27.
Liang, Jiurong, Yanli Zhang, Ting Xie, Ningshan Liu, Huaiyong Chen, Yan Geng, Adrianne Kurkciyan, Jessica Monterrosa Mena, Barry R Stripp, and Dianhua Jiang. 2016. 'Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice', Nature medicine, 22: 1285-93.
Lieb, Thomas, ROSANNA FORTEZA, MATTHIAS SALATHE, 1, 2, and 3. 2000. 'Hyaluronic acid in cultured ovine tracheal cells and its effect on ciliary beat frequency in vitro', Journal of aerosol medicine, 13: 231-37.
Maher, T. M., E. Bendstrup, L. Dron, J. Langley, G. Smith, J. M. Khalid, H. Patel, and M. Kreuter. 2021. 'Global incidence and prevalence of idiopathic pulmonary fibrosis', Respir Res, 22: 197.
McDonald, Lindsay T. 2021. 'Healing after COVID-19: are survivors at risk for pulmonary fibrosis?', American Journal of Physiology-Lung Cellular and Molecular Physiology, 320: L257-L65.
Oku, Hisashi, Hitoshi Nakazato, Tatsuya Horikawa, Yuji Tsuruta, and Ryuji Suzuki. 2002. 'Pirfenidone suppresses tumor necrosis factor-α, enhances interleukin-10 and protects mice from endotoxic shock', European journal of pharmacology, 446: 167-76.
Pogrel, Michael Anthony, Marie Anne Low, Robert Stern, 1, 2, and 3. 2003. 'Hyaluronan (hyaluronic acid) and its regulation in human saliva by hyaluronidase and its inhibitors', Journal of oral science, 45: 85-91.
Rayahin, Jamie E, Jason S Buhrman, Yu Zhang, Timothy J Koh, and Richard A Gemeinhart. 2015. 'High and low molecular weight hyaluronic acid differentially influence macrophage activation', ACS biomaterials science & engineering, 1: 481-93.
Richeldi, Luca, Roland M Du Bois, Ganesh Raghu, Arata Azuma, Kevin K Brown, Ulrich Costabel, Vincent Cottin, Kevin R Flaherty, David M Hansell, and Yoshikazu Inoue. 2014. 'Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis', New England Journal of Medicine, 370: 2071-82.
Shamskhou, Elya A, Michael J Kratochvil, Mark E Orcholski, Nadine Nagy, Gernot Kaber, Emily Steen, Swathi Balaji, Ke Yuan, Sundeep Keswani, and Ben Danielson. 2019. 'Hydrogel-based delivery of Il-10 improves treatment of bleomycin-induced lung fibrosis in mice', Biomaterials, 203: 52-62.
Shi, Qiwen, Lan Zhao, Chenming Xu, Leifang Zhang, and Hang Zhao. 2019. 'High molecular weight hyaluronan suppresses macrophage M1 polarization and enhances IL-10 production in PM2. 5-induced lung inflammation', Molecules, 24: 1766.
Spagnolo, Paolo, Jonathan A Kropski, Mark G Jones, Joyce S Lee, Giulio Rossi, Theodoros Karampitsakos, Toby M Maher, Argyrios Tzouvelekis, and Christopher J Ryerson. 2021. 'Idiopathic pulmonary fibrosis: disease mechanisms and drug development', Pharmacology & Therapeutics, 222: 107798.
Tammi, Raija, Ulla M Ågren, Anna-Liisa Tuhkanen, and Markku Tammi. 1994. 'Hyaluronan metabolism in skin', Progress in histochemistry and cytochemistry, 29: III-77.
Tavianatou, Anastasia G, Ilaria Caon, Marco Franchi, Zoi Piperigkou, Devis Galesso, and Nikos K Karamanos. 2019. 'Hyaluronan: molecular size‐dependent signaling and biological functions in inflammation and cancer', The FEBS journal, 286: 2883-908.
Vlahos, Ross, and Steven Bozinovski. 2014. 'Role of alveolar macrophages in chronic obstructive pulmonary disease', Frontiers in immunology, 5: 110822.
Wang, C-T, Y-T Lin, B-L Chiang, Y-H Lin, and S-M Hou. 2006. 'High molecular weight hyaluronic acid down-regulates the gene expression of osteoarthritis-associated cytokines and enzymes in fibroblast-like synoviocytes from patients with early osteoarthritis', Osteoarthritis and cartilage, 14: 1237-47.
Weil, Arnold J. 2011. 'High molecular weight hyaluronan for treatment of chronic shoulder pain associated with glenohumeral arthritis', Medical Devices: Evidence and Research: 99-105.
Wolf, Dominik, Jens Schümann, Kerstin Koerber, Alexandra K Kiemer, Angelika M Vollmar, Gabriele Sass, Thomas Papadopoulos, Renate Bang, Sabine D Klein, and Bernhard Brüne. 2001. 'Low–molecular-weight hyaluronic acid induces nuclear factor-κB–dependent resistance against tumor necrosis factor α–mediated liver injury in mice', Hepatology, 34: 535-47.
Wolters, Paul J, Harold R Collard, Kirk D Jones, 1, 2, 3, 4, and 5. 2014. 'Pathogenesis of idiopathic pulmonary fibrosis', Annual review of pathology, 9: 157.
Wynn, TA2693329. 2008. 'Cellular and molecular mechanisms of fibrosis', The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 214: 199-210.
Wynn, Thomas A. 2011. 'Integrating mechanisms of pulmonary fibrosis', Journal of Experimental Medicine, 208: 1339-50.
Xu, Changqing, Gang Chen, Weiwei Yang, Yizhe Xu, Yongfang Xu, Xuqing Huang, Jiangang Liu, Yuejuan Feng, Yanchun Xu, and Baojun Liu. 2015. 'Hyaluronan ameliorates LPS-induced acute lung injury in mice via Toll-like receptor (TLR) 4-dependent signaling pathways', International immunopharmacology, 28: 1050-58.
Xu, Chenming, Qiwen Shi, Leifang Zhang, and Hang Zhao. 2018. 'High molecular weight hyaluronan attenuates fine particulate matter-induced acute lung injury through inhibition of ROS-ASK1-p38/JNK-mediated epithelial apoptosis', Environmental toxicology and pharmacology, 59: 190-98.
Yang, Hong-Zhen, Jia-Ping Wang, SU Mi, Han-Zhi Liu, Bing Cui, Hui-Min Yan, Jun Yan, Zhe Li, Hong Liu, and Fang Hua. 2012. 'TLR4 activity is required in the resolution of pulmonary inflammation and fibrosis after acute and chronic lung injury', The American journal of pathology, 180: 275-92.
Yuan, Han, Ripal Amin, Xin Ye, Carol A De La Motte, and Mary K Cowman. 2015. 'Determination of hyaluronan molecular mass distribution in human breast milk', Analytical biochemistry, 474: 78-88.
Zahm, Jean-Marie, Magali Milliot, Anthony Bresin, Christelle Coraux, and Philippe Birembaut. 2011. 'The effect of hyaluronan on airway mucus transport and airway epithelial barrier integrity: potential application to the cytoprotection of airway tissue', Matrix Biology, 30: 389-95.
Zhang, Boke, Yan Du, Yiqing He, Yiwen Liu, Guoliang Zhang, Cuixia Yang, and Feng Gao. 2019. 'INT-HA induces M2-like macrophage differentiation of human monocytes via TLR4-miR-935 pathway', Cancer Immunology, Immunotherapy, 68: 189-200.
Zheng, Ling, Terrence E Riehl, William F Stenson, 1, and 2. 2009. 'Regulation of colonic epithelial repair in mice by Toll-like receptors and hyaluronic acid', Gastroenterology, 137: 2041-51.
Zhou, Ting, Zhihong Yu, Ming-Yuan Jian, Israr Ahmad, Carol Trempus, Brant M Wagener, Jean-Francois Pittet, Saurabh Aggarwal, Stavros Garantziotis, and Weifeng Song. 2018. 'Instillation of hyaluronan reverses acid instillation injury to the mammalian blood gas barrier', American Journal of Physiology-Lung Cellular and Molecular Physiology, 314: L808-L21.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top