跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 15:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:肇綺筠
研究生(外文):CHI-YUN CHAO
論文名稱:整合生成式人工智慧增強之多模態圖卷積平行階層式對比學習遊戲推薦系統
論文名稱(外文):Game Recommendation through Generative AI-Augmented Multimodal Graph-based Recommender with Parallel-stage Contrastive Learning
指導教授:劉敦仁劉敦仁引用關係
指導教授(外文):LIU,DUEN- REN
口試委員:羅濟群廖純中劉敦仁
口試委員(外文):Lo, Chi-ChunLiau, Churn-JungLiu, Duen-Ren
口試日期:2024-06-19
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:56
中文關鍵詞:推薦系統對比學習多模態推薦冷啟動推薦圖卷積網絡
外文關鍵詞:Recommender SystemContrastive LearningMultimedia RecommendationCold-start RecommendationGraph Convolution Network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:14
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Content
摘要i
ABSTRACTii
Contentiii
List of Figuresv
List of Tablesvi
1Introduction1
2Related Work5
2.1Multimodal Recommendation5
2.2GCN-based Recommender Systems6
2.3Contrastive Learning7
2.4Prompt Engineering8
3Proposed Approach10
3.1Overview10
3.2Multimodal Data Preprocessing and Feature Extraction11
3.2.1Item Network Data Preprocessing11
3.2.2User Network Data Preprocessing with GAI – Prompt Engineering13
3.2.3Textual Data Embedding Backbone – text-embedding-ada-00216
3.3Uncovering Latent Structures with Modality Awareness18
3.3.1Formation of Initial Modality-aware Graphs19
3.3.2Discovery and Refinement of Latent Modality-aware Graphs20
3.4Graph Convolution-based Learning of User and Item Relationships21
3.5Multimodal Fusion Feature Module23
3.6Multimodal Fusion Aggregation with Collaborative Filtering Models25
3.6.1Collaborative-filtered User-Item Interaction Graph25
3.6.2Modality-aware Feature and Collaborative Embedding Aggregation26
3.7User-Item Preference Score Prediction27
3.8Parallel-stage Contrastive Learning Framework27
3.8.1Stage A: Single and Multimodal Features Contrastive Learning29
3.8.2Stage B: Collaborative Filtered embedding and Multimodal Features Contrastive Learning31
3.8.3Parallel-Stage Contrastive Learning Concatenation32
3.9Optimization33
4Experiment and Evaluation33
4.1Dataset34
4.1.1Data Filtering34
4.1.2User-based Feature Data34
4.1.3Item-based Feature Data34
4.1.4Training and Testing Dataset35
4.2Experimental Setting36
4.2.1Experimental Settings36
4.2.2Evaluation Metrics36
4.3Comparison with Baseline Models36
4.4Evaluation38
4.4.1Evaluation of the effectiveness of Generative AI38
4.4.2Evaluation of Neighbor Graph Mechanism: KNN39
4.4.3Evaluation of the Multimodal Latent Semantic Graph39
4.4.4Evaluation of Different Stage Training of Contrastive Learning40
4.4.4.1Effectiveness of Contrastive Learning – Warm-Start41
4.4.4.2Effectiveness of Contrastive Learning – Cold-Start42
4.4.5Sensitivity Analysis of Model Parameters44
4.4.5.1Impact of the parallel-stage contrastive auxiliary coefficients β and γ44
4.4.6Comparisons with the State-of-the-art Models47
5Conclusion and Future Work50
References50
References
[1] S.M. Anwar, T. Shahzad, Z. Sattar, R. Khan, M. Majid, A game recommender system using collaborative filtering (GAMBIT), 2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 2017, pp. 328-332.
[2] R. Aperdannier, M. Koeppel, T. Unger, S. Schacht, S.K. Barkur, Systematic Evaluation of Different Approaches on Embedding Search, Future of Information and Communication Conference, 2024, pp. 526-536.
[3] C. BharathiPriya, A. Sreenivasu, S. Kumar, Online Video Game Recommendation System Using Content And Collaborative Filtering Techniques, 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Coimbatore, India, 2021, pp. 1-7.
[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J.D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, Language models are few-shot learners, Advances in neural information processing systems, 33, 2020, pp. 1877-1901.
[5] R. Bunga, F. Batista, R. Ribeiro, From implicit preferences to ratings: video games recommendation based on collaborative filtering, From implicit preferences to ratings: Video games recommendation based on collaborative filtering, 2021, pp. 209-216.
[6] J. Chen, H. Zhang, X. He, L. Nie, W. Liu, T.-S. Chua, Attentive collaborative filtering: Multimedia recommendation with item-and component-level attention, Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, 2017, pp. 335-344.
[7] T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for contrastive learning of visual representations, International conference on machine learning, 2020, pp. 1597-1607.
[8] X. Chen, H. Chen, H. Xu, Y. Zhang, Y. Cao, Z. Qin, H. Zha, Personalized fashion recommendation with visual explanations based on multimodal attention network: Towards visually explainable recommendation, Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, 2019, pp. 765-774.
[9] G. Cheuque, J. Guzmán, D. Parra, Recommender systems for online video game platforms: The case of steam, Companion Proceedings of The 2019 World Wide Web Conference, San Francisco, 2019, pp. 763-771.
[10] A. Chow, M.-H.N. Foo, G. Manai, HybridRank: A Hybrid Content-Based Approach To Mobile Game Recommendations, CBRecSys@ RecSys, 2014, pp. 10-13.
[11] Z. Cui, F. Yu, S. Wu, Q. Liu, L. Wang, Disentangled item representation for recommender systems, ACM Transactions on Intelligent Systems and Technology (TIST), 12 (2), 2021, pp. 1-20.
[12] H. Gao, S. Wang, B. Yang, H. Yang, User Preference-oriented Collaborative Recommendation Algorithm in e-commerce, Journal of Software, 9 (7), 2014, pp. 1886-1893.
[13] X. Gao, F. Feng, X. He, H. Huang, X. Guan, C. Feng, Z. Ming, T.-S. Chua, Hierarchical attention network for visually-aware food recommendation, IEEE Transactions on Multimedia, 22 (6), 2019, pp. 1647-1659.
[14] H. Guo, R. Tang, Y. Ye, Z. Li, X. He. DeepFM: a factorization-machine based neural network for CTR prediction, https://doi.org/10.48550/arXiv.1703.04247.
[15] R. Hadsell, S. Chopra, Y. LeCun, Dimensionality reduction by learning an invariant mapping, 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR'06), New York City, New York, 2006, pp. 1735-1742.
[16] K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Seattle, WA, USA., 2020, pp. 9729-9738.
[17] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, Nevada, USA., 2016, pp. 770-778.
[18] R. He, J. McAuley. VBPR: visual bayesian personalized ranking from implicit feedback, https://doi.org/10.48550/arXiv.1510.01784.
[19] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying and powering graph convolution network for recommendation, Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, 2020, pp. 639-648.
[20] G. Hinton, O. Vinyals, J. Dean. Distilling the knowledge in a neural network, https://doi.org/10.48550/arXiv.1503.02531.
[21] R.D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, Y. Bengio. Learning deep representations by mutual information estimation and maximization, https://doi.org/10.48550/arXiv.1808.06670.
[22] A. Holtzman, J. Buys, L. Du, M. Forbes, Y. Choi. The curious case of neural text degeneration, https://doi.org/10.48550/arXiv.1904.09751.
[23] F. Ikram, H. Farooq. Multimedia recommendation system for video game based on high-level visual semantic features, 2022, https://doi.org/10.1155/2022/6084363.
[24] W.-C. Kang, C. Fang, Z. Wang, J. McAuley, Visually-aware fashion recommendation and design with generative image models, 2017 IEEE international conference on data mining (ICDM), New Orleans, LA, USA., 2017, pp. 207-216.
[25] Y. Koren, Collaborative filtering with temporal dynamics, Communications of the ACM, 53 (4), 2010, pp. 89-97.
[26] B. Li, B. Jin, J. Song, Y. Yu, Y. Zheng, W. Zhou, Improving micro-video recommendation via contrastive multiple interests, Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain., 2022, pp. 2377-2381.
[27] J. Li, M. Jing, K. Lu, L. Zhu, Y. Yang, Z. Huang, From zero-shot learning to cold-start recommendation, Proceedings of the AAAI conference on artificial intelligence, Honolulu, Hawaii, USA., 2019, pp. 4189-4196.
[28] M. Liu, L. Nie, M. Wang, B. Chen, Towards micro-video understanding by joint sequential-sparse modeling, Proceedings of the 25th ACM international conference on Multimedia, Mountain View, California, US 2017, pp. 970-978.
[29] M. Liu, L. Nie, X. Wang, Q. Tian, B. Chen, Online data organizer: micro-video categorization by structure-guided multimodal dictionary learning, IEEE Transactions on Image Processing, 28 (3), 2018, pp. 1235-1247.
[30] L. Logeswaran, H. Lee. An efficient framework for learning sentence representations, https://doi.org/10.48550/arXiv.1803.02893.
[31] W.E. Lomanto, V. Andrian, S. Achmad, R. Sutoyo, Collaborative Filtering for Steam Games Recommendation, 2023 5th International Conference on Cybernetics and Intelligent System (ICORIS), ISB Atma Luhur,Pangkal Pinang - Bangka Belitung Islands, Indonesia, 2023, pp. 1-6.
[32] K. Mao, J. Zhu, X. Xiao, B. Lu, Z. Wang, X. He, UltraGCN: ultra simplification of graph convolutional networks for recommendation, Proceedings of the 30th ACM international conference on information & knowledge management, Gold Coast, Queensland, Australia, 2021, pp. 1253-1262.
[33] J. McAuley, C. Targett, Q. Shi, A. Van Den Hengel, Image-based recommendations on styles and substitutes, Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, Santiago, Chile, 2015, pp. 43-52.
[34] A.v.d. Oord, Y. Li, O. Vinyals. Representation learning with contrastive predictive coding, https://doi.org/10.48550/arXiv.1807.03748.
[35] M. Pazzani, D. Billsus, Content-Based Recommendation Systems, The Adaptive Web, Springer Berlin / Heidelber LNCS 4321, 2007, pp. 325-341.
[36] D. Qi, J. Wang. CleanAgent: Automating Data Standardization with LLM-based Agents, https://doi.org/10.48550/arXiv.2403.08291.
[37] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme. BPR: Bayesian personalized ranking from implicit feedback, https://doi.org/10.48550/arXiv.1205.2618.
[38] P. Sahoo, A.K. Singh, S. Saha, V. Jain, S. Mondal, A. Chadha. A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications, https://doi.org/10.48550/arXiv.2402.07927.
[39] J. Shuai, K. Zhang, L. Wu, P. Sun, R. Hong, M. Wang, Y. Li, A review-aware graph contrastive learning framework for recommendation, Proceedings of the 45th international ACM SIGIR conference on research and development in information retrieval, 2022, pp. 1283-1293.
[40] G. Song, W. Chai. Collaborative learning for deep neural networks, 31, https://doi.org/10.48550/arXiv.1805.11761.
[41] X. Su, T.M. Khoshgoftaar. A survey of collaborative filtering techniques, 2009, https://doi.org/10.1155/2009/421425.
[42] Z. Tao, X. Liu, Y. Xia, X. Wang, L. Yang, X. Huang, T.-S. Chua. Self-supervised learning for multimedia recommendation, https://ieeexplore.ieee.org/document/9811387.
[43] Y. Tian, D. Krishnan, P. Isola, Contrastive multiview coding, Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16, 2020, pp. 776-794.
[44] T. van der Zant, M. Kouw, L. Schomaker, Generative artificial intelligence, Springer, 2013.
[45] C. Wang, D.M. Blei, Collaborative topic modeling for recommending scientific articles, Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, 2011, pp. 448-456.
[46] D. Wang, M. Moh, T.-S. Moh, Using deep learning and steam user data for better video game recommendations, Proceedings of the 2020 ACM Southeast Conference, 2020, pp. 154-159.
[47] D. Wang, Q. Wang, Y. An, X. Gao, Y. Tian, Online collective matrix factorization hashing for large-scale cross-media retrieval, Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, Virtual Event China, 2020, pp. 1409-1418.
[48] X. Wang, X. He, M. Wang, F. Feng, T.-S. Chua, Neural graph collaborative filtering, Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval, Paris, 2019, pp. 165-174.
[49] Y. Wang, Z. Liu, Z. Fan, L. Sun, P.S. Yu, Dskreg: Differentiable sampling on knowledge graph for recommendation with relational gnn, Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Virtual Event Queensland Australia, 2021, pp. 3513-3517.
[50] Y. Wang, K. Zhou, R. Miao, N. Liu, X. Wang, Adagcl: Adaptive subgraph contrastive learning to generalize large-scale graph training, Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, 2022, pp. 2046-2055.
[51] Z. Wang, W. Wei, G. Cong, X.-L. Li, X.-L. Mao, M. Qiu, Global context enhanced graph neural networks for session-based recommendation, Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, Xi'an, China., 2020, pp. 169-178.
[52] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q.V. Le, D. Zhou, Chain-of-thought prompting elicits reasoning in large language models, Advances in neural information processing systems, 35, 2022, pp. 24824-24837.
[53] W. Wei, C. Huang, L. Xia, C. Zhang, Multi-modal self-supervised learning for recommendation, Proceedings of the ACM Web Conference 2023, Austin, Texas, USA, 2023, pp. 790-800.
[54] Y. Wei, X. Wang, Q. Li, L. Nie, Y. Li, X. Li, T.-S. Chua, Contrastive learning for cold-start recommendation, Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China., 2021, pp. 5382-5390.
[55] Y. Wei, X. Wang, L. Nie, X. He, T.-S. Chua, Graph-refined convolutional network for multimedia recommendation with implicit feedback, Proceedings of the 28th ACM international conference on multimedia, New York,NY,United States, 2020, pp. 3541-3549.
[56] Y. Wei, X. Wang, L. Nie, X. He, R. Hong, T.-S. Chua, MMGCN: Multi-modal graph convolution network for personalized recommendation of micro-video, Proceedings of the 27th ACM international conference on multimedia, Nice, France, 2019, pp. 1437-1445.
[57] J. Wu, X. Wang, F. Feng, X. He, L. Chen, J. Lian, X. Xie, Self-supervised graph learning for recommendation, Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval, Montréal, Quebec, 2021, pp. 726-735.
[58] Z. Wu, Y. Xiong, S.X. Yu, D. Lin, Unsupervised feature learning via non-parametric instance discrimination, Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, UT, USA, 2018, pp. 3733-3742.
[59] B. Xia, Y. Bai, J. Yin, Q. Li, L. Xu, MTPR: a multi-task learning based poi recommendation considering temporal check-ins and geographical locations, Applied Sciences, 10 (19), 2020, pp. 6664.
[60] L. Xia, C. Huang, Y. Xu, J. Zhao, D. Yin, J. Huang, Hypergraph contrastive collaborative filtering, Proceedings of the 45th International ACM SIGIR conference on research and development in information retrieval, Madrid Spain, 2022, pp. 70-79.
[61] Y. Xiao, C. Li, V. Liu, DFM-GCN: a multi-task learning recommendation based on a deep graph neural network, Mathematics, 10 (5), 2022, pp. 721.
[62] G. Xv, C. Lin, W. Guan, J. Gou, X. Li, H. Deng, J. Xu, B. Zheng, E-commerce Search via Content Collaborative Graph Neural Network, Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach CA USA 2023, pp. 2885-2897.
[63] L. Yang, Z. Liu, Y. Wang, C. Wang, Z. Fan, P.S. Yu, Large-scale personalized video game recommendation via social-aware contextualized graph neural network, Proceedings of the ACM Web Conference 2022, Lyon, France, 2022, pp. 3376-3386.
[64] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, K. Narasimhan, Tree of thoughts: Deliberate problem solving with large language models, Advances in Neural Information Processing Systems, 2024, pp. 11809--11822.
[65] T. Yao, X. Yi, D.Z. Cheng, F. Yu, T. Chen, A. Menon, L. Hong, E.H. Chi, S. Tjoa, J. Kang, Self-supervised learning for large-scale item recommendations, Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Gold Coast, Queensland, Australia,, 2021, pp. 4321-4330.
[66] Z. Yi, X. Wang, I. Ounis, C. Macdonald, Multi-modal graph contrastive learning for micro-video recommendation, Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain., 2022, pp. 1807-1811.
[67] P. Yu, Z. Tan, G. Lu, B.-K. Bao, Multi-view graph convolutional network for multimedia recommendation, Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, Canada, 2023, pp. 6576-6585.
[68] H. Zhang, Y. Dong, C. Xiao, M. Oyamada. Jellyfish: A Large Language Model for Data Preprocessing, https://doi.org/10.48550/arXiv.2312.01678.
[69] H. Zhang, Y. Dong, C. Xiao, M. Oyamada. Large language models as data preprocessors, https://doi.org/10.48550/arXiv.2308.16361.
[70] J. Zhang, Y. Zhu, Q. Liu, S. Wu, S. Wang, L. Wang, Mining latent structures for multimedia recommendation, Proceedings of the 29th ACM international conference on multimedia, Virtual Event China, 2021, pp. 3872-3880.
[71] M. Zhang, J. Tang, X. Zhang, X. Xue, Addressing cold start in recommender systems: A semi-supervised co-training algorithm, Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, Gold Coast Queensland Australia, 2014, pp. 73-82.
[72] M. Zhang, S. Wu, X. Yu, Q. Liu, L. Wang, Dynamic graph neural networks for sequential recommendation, IEEE Transactions on Knowledge and Data Engineering, 35 (5), 2022, pp. 4741-4753.
[73] Y. Zhou, A.I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, J. Ba. Large language models are human-level prompt engineers, https://doi.org/10.48550/arXiv.2211.01910.
[74] Y. Zhu, J. Lin, S. He, B. Wang, Z. Guan, H. Liu, D. Cai. Addressing the Item Cold-start Problem by Attribute-driven Active Learning, https://doi.org/10.48550/arXiv.1805.09023.
[75] Z. Zhu, S. Sefati, P. Saadatpanah, J. Caverlee, Recommendation for new users and new items via randomized training and mixture-of-experts transformation, Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, Xi'an, China, 2020, pp. 1121-1130.
電子全文 電子全文(網際網路公開日期:20290709)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top