|
References [1] L. Kong, J. Tan, J. Huang, G. Chen, S. Wang, X. Jin, P. Zeng, M. Khan, and S. K. Das, “Edge-computing-driven internet of things: A survey,” ACM Comput. Surv., vol. 55, no. 8, dec 2022. [Online]. Available: https://doi.org/10.1145/3555308 [2] S. J. Zidan, M.A. and W. Lu, “The future of electronics based on memristive systems,” in Nat Electron 1, 2018, p. 22–29. [3] W. Haensch, A. Raghunathan, K. Roy, B. Chakrabarti, C. M. Phatak, C. Wang, and S. Guha, “Compute in-memory with non-volatile elements for neural networks: A review from a co-design perspective,” Advanced Materials, vol. n/a, no. n/a, p. 2204944. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204944 [4] L. Deng, Y. Wu, X. Hu, L. Liang, Y. Ding, G. Li, G. Zhao, P. Li, and Y. Xie, “Rethinking the performance comparison between snns and anns,” Neural Networks, vol. 121, pp. 294–307, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0893608019302667 [5] E. Izhikevich, “Which model to use for cortical spiking neurons?” IEEE Transactions on Neural Networks, vol. 15, no. 5, pp. 1063–1070, 2004. [6] A. Basu, L. Deng, C. Frenkel, and X. Zhang, “Spiking neural network integrated circuits: A review of trends and future directions,” in 2022 IEEE Custom Integrated Circuits Conference (CICC). IEEE, 2022, pp. 1–8. [7] D.-A. Nguyen, X.-T. Tran, and F. Iacopi, “A review of algorithms and hardware implementations for spiking neural networks,” Journal of Low Power Electronics and Applications, vol. 11, no. 2, 2021. [Online]. Available: https://www.mdpi.com/ 2079-9268/11/2/23 [8] A. Singh, M. A. Lebdeh, A. Gebregiorgis, R. Bishnoi, R. V. Joshi, and S. Hamdioui, “Srif: Scalable and reliable integrate and fire circuit adc for memristor-based cim architectures,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 5, pp. 1917– 1930, 2021. [9] H. Jiang, S. Huang, X. Peng, and S. Yu, “Mint: Mixed-precision rram-based in-memory training architecture,” in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020, pp. 1–5. [10] T. Xie, S. Yu, and S. Li, “A high-parallelism rram-based compute-in-memory macro with intrinsic impedance boosting and in-adc computing,” IEEE Journal on Exploratory Solid- State Computational Devices and Circuits, vol. 9, no. 1, pp. 38–46, 2023. [11] C.-C. Liu, “Design of high-speed energy-efficient successive-approximation analog-todigital converters,” D], National Cheng Kung University, Tainan, Taiwan, ROC, pp. 17– 32, 2010. [12] L. Yao, M. Steyaert, and W. Sansen, “A 1-v 140-/spl mu/w 88-db audio sigma-delta modulator in 90-nm cmos,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 1809–1818, 2004. [13] S. Hussain, R. Kumar, and G. Trivedi, “Comparison of nmos and pmos input driving dynamic comparator in 45nm technology,” IOP Conference Series: Materials Science and Engineering, vol. 1020, no. 1, p. 012022, jan 2021. [Online]. Available: https://dx.doi.org/10.1088/1757-899X/1020/1/012022 [14] J. Yeung and H. Mahmoodi, “Robust sense amplifier design under random dopant fluctuations in nano-scale cmos technologies,” in 2006 IEEE International SOC Conference, 2006, pp. 261–264. [15] B. Yan, Q. Yang, W.-H. Chen, K.-T. Chang, J.-W. Su, C.-H. Hsu, S.-H. Li, H.-Y. Lee, S.-S. Sheu, M.-S. Ho, Q. Wu, M.-F. Chang, Y. Chen, and H. Li, “Rram-based spiking nonvolatile computing-in-memory processing engine with precision-configurable in situ nonlinear activation,” in 2019 Symposium on VLSI Technology, 2019, pp. T86–T87. [16] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz, E. Vianello, and E. Beigne, “Spiking neural networks hardware implementations and challenges: A survey,” J. Emerg. Technol. Comput. Syst., vol. 15, no. 2, apr 2019. [Online]. Available: https://doi.org/10.1145/3304103 [17] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R. Lester, A. D. Brown, and S. B. Furber, “Spinnaker: A 1-w 18-core system-on-chip for massivelyparallel neural network simulation,” IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1943–1953, 2013. [18] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 10, pp. 1537– 1557, 2015. [19] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018. [20] P. Jain, U. Arslan, M. Sekhar, B. C. Lin, L. Wei, T. Sahu, J. Alzate-vinasco, A. Vangapaty, M. Meterelliyoz, N. Strutt, A. B. Chen, P. Hentges, P. A. Quintero, C. Connor, O. Golonzka, K. Fischer, and F. Hamzaoglu, “13.2 a 3.6mb 10.1mb/mm2 embedded non-volatile reram macro in 22nm finfet technology with adaptive forming/set/reset schemes yielding down to 0.5v with sensing time of 5ns at 0.7v,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), 2019, pp. 212–214. [21] J.-H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and A. Raychowdhury, “A 40-nm 118.44-tops/w voltage-sensing compute-in-memory rram macro with write verification and multi-bit encoding,” IEEE Journal of Solid-State Circuits, vol. 57, no. 3, pp. 845–857, 2022. [22] S.-T. Wei, B. Gao, D. Wu, J.-S. Tang, H. Qian, and H.-Q. Wu, “Trends and challenges in the circuit and macro of rram-based computing-in-memory systems,” Chip, vol. 1, no. 1, p. 100004, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S2709472322000028 [23] Q. Liu, B. Gao, P. Yao, D. Wu, J. Chen, Y. Pang, W. Zhang, Y. Liao, C.-X. Xue, W.-H. Chen, J. Tang, Y. Wang, M.-F. Chang, H. Qian, and H. Wu, “33.2 a fully integrated analog reram based 78.4tops/w compute-in-memory chip with fully parallel mac computing,” in 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 500–502. [24] S. D. Spetalnick, M. Chang, B. Crafton, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and A. Raychowdhury, “A 40nm 64kb 26.56tops/w 2.37mb/mm2rram binary/compute-in-memory macro with 4.23x improvement in density and >75of sensing dynamic range,” in 2022 IEEE International Solid- State Circuits Conference (ISSCC), vol. 65, 2022, pp. 1–3. [25] J. Shamsi, K. Mohammadi, and S. B. Shokouhi, “A low power circuit of a leaky integrate and fire neuron with global reset,” in 2017 Iranian Conference on Electrical Engineering (ICEE), 2017, pp. 366–369. [26] M. Zare, E. Zafarkhah, and N. S. Anzabi-Nezhad, “An area and energy efficient lif neuron model with spike frequency adaptation mechanism,” Neurocomputing, vol. 465, pp. 350–358, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0925231221013588 [27] L. Han, P. Huang, Y. Wang, Z. Zhou, Y. Zhang, X. Liu, and J. Kang, “Efficient discrete temporal coding spike-driven in-memory computing macro for deep neural network based on nonvolatile memory,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 11, pp. 4487–4498, 2022. [28] R. Mao, B. Wen, M. Jiang, J. Chen, and C. Li, “Experimentally-validated crossbar model for defect-aware training of neural networks,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 5, pp. 2468–2472, 2022. [29] H. M. Lehmann, J. Hille, C. Grassmann, and V. Issakov, “Leaky integrate-and-fire neuron with a refractory period mechanism for invariant spikes,” in 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), 2022, pp. 365–368. [30] A. K. Sharma, M. Madhusudan, S. M. Burns, P. Mukherjee, S. Yaldiz, R. Harjani, and S. S. Sapatnekar, “Common-centroid layouts for analog circuits: Advantages and limitations,” in 2021 Design, Automation Test in Europe Conference Exhibition (DATE), 2021, pp. 1224–1229. [31] G. Wegmann, E. Vittoz, and F. Rahali, “Charge injection in analog mos switches,” IEEE Journal of Solid-State Circuits, vol. 22, no. 6, pp. 1091–1097, 1987. [32] W. Xu and E. Friedman, “Clock feedthrough in cmos analog transmission gate switches,” in 15th Annual IEEE International ASIC/SOC Conference, 2002, pp. 181–185.
|