|
[1]K. Salah, Y. Ismail, and A. El-Rouby, “Arbitrary Modeling of TSVs for 3D Integrated Circuits. in Analog Circuits and Signal Processing,” Cham: Springer International Publishing, 2015. doi: 10.1007/978-3-319-07611-9. [2]M. S. Lundstrom and M. A. Alam, “Moore’s law: The journey ahead,” Science, vol. 378, no. 6621, pp. 722–723, Nov. 2022, doi: 10.1126/science.ade2191. [3]K. Roy, B. Jung, D. Peroulis, and A. Raghunathan, “Integrated Systems in the More-Than-Moore Era: Designing Low-Cost Energy-Efficient Systems Using Heterogeneous Components,” IEEE Des. Test, vol. 33, no. 3, pp. 56–65, Jun. 2016, doi: 10.1109/MDT.2011.49. [4]M. Badaroglu, “More Moore,” in 2021 IEEE International Roadmap for Devices and Systems Outbriefs, Santa Clara, CA, USA: IEEE, Nov. 2021, pp. 01–38. doi: 10.1109/IRDS54852.2021.00010. [5]M. Graef, “More Than Moore White Paper,” in 2021 IEEE International Roadmap for Devices and Systems Outbriefs, Santa Clara, CA, USA: IEEE, Nov. 2021, pp. 1–47. doi: 10.1109/IRDS54852.2021.00013. [6]J. H. Lau, “Recent Advances and Trends in Advanced Packaging,” IEEE Trans. Compon., Packag. Manufact. Technol., vol. 12, no. 2, pp. 228–252, Feb. 2022, doi: 10.1109/TCPMT.2022.3144461. [7]H.-C. Cheng and Y.-C. Liu, “Warpage Characterization of Molded Wafer for Fan-Out Wafer-Level Packaging,” Journal of Electronic Packaging, vol. 142, no. 1, p. 011004, Mar. 2020, doi: 10.1115/1.4044625. [8]K. Ouyang, L. Li, J. Fang, G. Shao, N. Mei, and T. Sun, “Reliability Improvement Research of 2.5D CoWoS package,” in 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, China: IEEE, Aug. 2022, pp. 1–4. doi: 10.1109/ICEPT56209.2022.9873298. [9]M. L. Lin et al., “Organic Interposer CoWoS-R+ (plus) Technology,” in 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA: IEEE, May 2022, pp. 1–6. doi: 10.1109/ECTC51906.2022.00008. [10]E.-J. Jang, S. Hyun, H.-J. Lee, and Y.-B. Park, “Effect of Wet Pretreatment on Interfacial Adhesion Energy of Cu-Cu Thermocompression Bond for 3D IC Packages,” Journal of Elec Materi, vol. 38, no. 12, pp. 2449–2454, Dec. 2009, doi: 10.1007/s11664-009-0942-9. [11]Swinnen, B.; Ruythooren, W.; De Moor, P.; Bogaerts, L.; Carbonell, L.; De Munck, K.; Eyckens, B.; Stoukatch, S.; Tezcan, D.S.; Tokei, Z.; et al. "3D integration by Cu-Cu thermo-compression bonding of extremely thinned bulk-Si die containing 10 μm pitch through-Si vias," 2006 International Electron Devices Meeting, San Francisco, CA, USA, 2006, pp. 1-4, doi: 10.1109/IEDM.2006.346786. [12]S. Shin, E. Higurashi, K. Furuyama and T. Suga, "Hydrogen radical treatment for surface oxide removal from copper," 2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D), Tokyo, Japan, 2017, pp. 72-72, doi: 10.23919/LTB-3D.2017.7947468. [13]D. Chir and J. Toh, "Effect of RF plasma process gas chemistry and electrode configuration on the removal of copper lead frame oxidation," 2022 IEEE 24th Electronics Packaging Technology Conference (EPTC), Singapore, Singapore, 2022, pp. 493-497, doi: 10.1109/EPTC56328.2022.10013132. [14]T. -H. Hung et al., "Investigation of Wet Pretreatment to Improve Cu-Cu Bonding for Hybrid Bonding Applications," 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2021, pp. 700-705, doi: 10.1109/ECTC32696.2021.00121. [15]M. Yamamoto et al., "Wafer-scale Au-Au surface activated bonding using atmospheric-pressure plasma," 2019 International Conference on Electronics Packaging (ICEP), Niigata, Japan, 2019, pp. 361-364, doi: 10.23919/ICEP.2019.8733602. [16]A. Shigetou, T. Itoh, and T. Suga, “Bumpless interconnect of ultrafine Cu electrodes by surface activated bonding (SAB) method,” Electron Comm Jpn Pt II, vol. 89, no. 12, pp. 34–42, Dec. 2006, doi: 10.1002/ecjb.20247. [17]K. Takeuchi, E. Higurashi, J. Wang, A. Yamauchi and T. Suga, "Removal of Adsorbed Water on Si Wafers for Surface Activated Bonding," 2022 IEEE CPMT Symposium Japan (ICSJ), Kyoto, Japan, 2022, pp. 61-64, doi: 10.1109/ICSJ55786.2022.10034710. [18]T. Suga and F. Mu, "Surface Activated Bonding Method for Low Temperature Bonding," 2018 7th Electronic System-Integration Technology Conference (ESTC), Dresden, Germany, 2018, pp. 1-4, doi: 10.1109/ESTC.2018.8546367. [19]T. Suga, "Feasibility of surface activated bonding for ultra-fine pitch interconnection-a new concept of bump-less direct bonding for system level packaging," 2000 Proceedings. 50th Electronic Components and Technology Conference (Cat. No.00CH37070), Las Vegas, NV, USA, 2000, pp. 702-705, doi: 10.1109/ECTC.2000.853235. [20]S. Bonam, H. K. Cheemalamarri, S. R. K. Vanjari and S. G. Singh, "Diffusion Enhanced Optimized Thin Passivation Layer for Realizing Copper to Copper Wafer Bonding at Low Thermal Budget," 2022 IEEE 24th Electronics Packaging Technology Conference (EPTC), Singapore, Singapore, 2022, pp. 344-347, doi: 10.1109/EPTC56328.2022.10013232. [21]A. K. Panigrahi, S. Bonam, T. Ghosh, S. G. Singh, and S. R. K. Vanjari, “Ultra-thin Ti passivation mediated breakthrough in high quality Cu-Cu bonding at low temperature and pressure,” Materials Letters, vol. 169, pp. 269–272, Apr. 2016, doi: 10.1016/j.matlet.2016.01.126. [22]Z.-J. Hong et al., “Low-temperature hybrid bonding with high electromigration resistance scheme for application on heterogeneous integration,” Applied Surface Science, vol. 610, p. 155470, Feb. 2023, doi: 10.1016/j.apsusc.2022.155470. [23]Y. -P. Huang et al., "Novel Cu-to-Cu Bonding With Ti Passivation at 180 ∘C in 3-D Integration," in IEEE Electron Device Letters, vol. 34, no. 12, pp. 1551-1553, Dec. 2013, doi: 10.1109/LED.2013.2285702. [24]Y. -P. Huang, Y. -S. Chien, R. -N. Tzeng and K. -N. Chen, "Demonstration and Electrical Performance of Cu–Cu Bonding at 150 °C With Pd Passivation," in IEEE Transactions on Electron Devices, vol. 62, no. 8, pp. 2587-2592, Aug. 2015, doi: 10.1109/TED.2015.2446507. [25]T. -C. Chou et al., "Electrical and Reliability Investigation of Cu-to-Cu Bonding With Silver Passivation Layer in 3-D Integration," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 11, no. 1, pp. 36-42, Jan. 2021, doi: 10.1109/TCPMT.2020.3037365. [26]D. Liu, P. -C. Chen, Y. -C. Tsai and K. -N. Chen, "Low Temperature Cu to Cu Direct Bonding below 150 °C with Au Passivation Layer," 2019 International 3D Systems Integration Conference (3DIC), Sendai, Japan, 2019, pp. 1-4, doi: 10.1109/3DIC48104.2019.9058873. [27]Y.-P. Huang, "Development of Low Temperature Cu Bonding and Heterogeneous Integration Platform," PhD Thesis, National Chiao Tung University, Hsinchu, Taiwan, March 2017. [28]T.-C. Chou, "Investigation and Discussion on Passivation Bonding and Asymmetric Bonding Structure of Low Temperature Cu-Cu Direct Bonding in 3D Heterogeneous Integration," PhD Thesis, National Chiao Tung University, Hsinchu, Taiwan, December 2020. [29]D. Liu, "Development of Low-Temperature Cu-Cu Direct Bonding Technology Based on Passivation Scheme," PhD Thesis, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, November 2021. [30]P. Uttam, V. Kumar, K.-H. Kim, and A. Deep, “Nanotwinning: Generation, properties, and application,” Materials & Design, vol. 192, p. 108752, Jul. 2020, doi: 10.1016/j.matdes.2020.108752. [31]T. Zhu and H. Gao, “Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling,” Scripta Materialia, vol. 66, no. 11, pp. 843–848, Jun. 2012, doi: 10.1016/j.scriptamat.2012.01.031. [32]J.-J. Ong et al., “Low-Temperature Cu/SiO2 Hybrid Bonding with Low Contact Resistance Using (111)-Oriented Cu Surfaces,” Materials, vol. 15, no. 5, p. 1888, Mar. 2022, doi: 10.3390/ma15051888. [33]P. M. Agrawal, B. M. Rice, and D. L. Thompson, “Predicting trends in rate parameters for self-diffusion on FCC metal surfaces,” Surface Science, vol. 515, no. 1, pp. 21–35, Aug. 2002, doi: 10.1016/S0039-6028(02)01916-7. [34]K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Wen, “Microstructure evolution and abnormal grain growth during copper wafer bonding,” Applied Physics Letters, vol. 81, no. 20, pp. 3774–3776, Nov. 2002, doi: 10.1063/1.1521240. [35]P.-F. Lin, D.-P. Tran, H.-C. Liu, Y.-Y. Li, and C. Chen, “Interfacial Characterization of Low-Temperature Cu-to-Cu Direct Bonding with Chemical Mechanical Planarized Nanotwinned Cu Films,” Materials, vol. 15, no. 3, p. 937, Jan. 2022, doi: 10.3390/ma15030937. [36]S. Bonam, C. H. Kumar, S. R. K. Vanjari and S. G. Singh, "Gold Passivated Cu-Cu Bonding At 140°C For 3D IC Packaging And Heterogeneous Integration Applications," 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), Singapore, 2018, pp. 547-550, doi: 10.1109/EPTC.2018.8654445. [37]Y.-C. Huang, Y.-X. Lin, C.-K. Hsiung, T.-H. Hung, and K.-N. Chen, “Cu-Based Thermocompression Bonding and Cu/Dielectric Hybrid Bonding for Three-Dimensional Integrated Circuits (3D ICs) Application,” Nanomaterials, vol. 13, no. 17, p. 2490, Sep. 2023, doi: 10.3390/nano13172490. [38]M. F. Chen, C. S. Lin, E. B. Liao, W. C. Chiou, C. C. Kuo, C. C. Hu, C. H. Tsai, C. T. Wang and D. Yu, "SoIC for Low-Temperature, Multi-Layer 3D Memory Integration," in 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), 2020, pp. 855-860, doi: 10.1109/ECTC32862.2020.00139. [39]H. Sakakibara, H. Akimaru, A. Hiro, K. Sato, K. Fujiwara, K. Okamoto, K. Hasegawa and S. Kusumoto, "Advanced plating photoresist development for advanced IC packages," in 2015 16th International Conference on Electronic Packaging Technology (ICEPT), 2015, pp. 1348-1351, doi: 10.1109/ICEPT.2015.7236828. [40]J. H. Lau, Semiconductor advanced packaging. Springer Nature, 2021, DOI: 10.1007/978-981-16-1376-0_1. [41]S. W. Yoon, J. A. Caparas, Y. Lin and P. C. Marimuthu, "Advanced low profile PoP solution with embedded wafer level PoP (eWLB-PoP) technology," in 2012 IEEE 62nd Electronic Components and Technology Conference, 2012, pp. 1250-1254, doi: 10.1109/ECTC.2012.6248995. [42]M. Brunnbauer, E. Furgut, G. Beer, T. Meyer, H. Hedler, J. Belonio, E. Nomura, K. Kiuchi and K. Kobayashi, "An embedded device technology based on a molded reconfigured wafer," in 56th Electronic Components and Technology Conference 2006, 2006, pp. 5 pp.-, doi: 10.1109/ECTC.2006.1645702. [43]H. Araki, Y. Shoji, Y. Masuda, K. Hashimoto, K. Matsumura, Y. Koyama and M. Tomikawa, "Fabrication of Redistribution Structure Using Highly Reliable Photosensitive Polyimide for Fan Out Panel Level Packages," in 2018 International Wafer Level Packaging Conference (IWLPC), 2018, pp. 1-6, doi: 10.23919/IWLPC.2018.8573286. [44]M. Hasegawa and S. Horii, "Low-CTE polyimides derived from 2, 3, 6, 7-naphthalenetetracarboxylic dianhydride," Polymer journal, vol. 39, no. 6, pp. 610-621, 2007, doi: 10.1295/polymj.PJ2006234. [45]G. Qian, F. Dai, H. Chen, M. Wang, M. Hu, C. Chen and Y. Yu, "Polyimides with low coefficient of thermal expansion derived from diamines containing benzimidazole and amide: Synthesis, properties, and the N‐substitution effect," Journal of Polymer Science, vol. 59, no. 6, pp. 510-518, 2021, doi: 10.1002/pol.20200879. [46]M. Hasegawa, "Development of solution-processable, optically transparent polyimides with ultra-low linear coefficients of thermal expansion," Polymers, vol. 9, no. 10, p. 520, 2017, doi: 10.3390/polym9100520. [47]S. Xi, X. Wang, Z. Zhang, T. Liu, X. Zhang, and J. Shen, "Influence of diamine rigidity and dianhydride rigidity on the microstructure, thermal and mechanical properties of cross-linked polyimide aerogels," Journal of Porous Materials, vol. 28, no. 3, pp. 717-725, 2021, doi: 10.1007/s10934-020-01028-2. [48]M. Tomikawa, R. Okuda, and H. Ohnishi, "Photosensitive polyimide for packaging applications," Journal of Photopolymer Science and Technology, vol. 28, no. 1, pp. 73-77, 2015, doi: 10.2494/photopolymer.28.73. [49]Y. Shoji, Y. Masuda, K. Hashimoto, K. Isobe, Y. Koyama, and R. Okuda, "Development of novel low-temperature curable positive-tone photosensitive dielectric materials with high elongation," in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), 2016, pp. 1707-1712, doi: 10.1109/ECTC.2016.149. [50]T. Yuba, R. Okuda, M. Tomikawa, and J. H. Kim, "Soft baking effect on lithographic performance by positive tone photosensitive polyimide," Journal of Photopolymer Science and Technology, vol. 23, no. 6, pp. 775-779, 2010, doi: 10.2494/photopolymer.23.775. [51]H.-J. Sue and A. F. Yee, "Study of fracture mechanisms of multiphase polymers using the double-notch four-point-bending method," Journal of materials science, vol. 28, no. 11, pp. 2975-2980, 1993, doi: 10.1007/BF00354702. [52]Y. -L. Yang, H. Ito, Y. S. Kim, T. Ohba and K. -N. Chen, "Evaluation of Metal/Polymer Adhesion and Highly Reliable Four-Point Bending Test Using Stealth Dicing Method in 3-D Integration," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 10, no. 6, pp. 956-962, June 2020, doi: 10.1109/TCPMT.2020.2968561. [53]Y. -C. Huang, H. -W. Hu, Y. -H. Liu, H. -C. Hsieh and K. -N. Chen, "Investigation of Photosensitive Polyimide With Low Coefficient of Thermal Expansion and Excellent Adhesion Strength for Advanced Packaging Applications," in IEEE Journal of the Electron Devices Society, vol. 12, pp. 96-103, 2024, doi: 10.1109/JEDS.2024.3358830. [54]H. Li, G. Cheng, G. Xu, and L. Luo, “Influence of polyimide on thermal stress evolution in polyimide/Cu thick film composite,” J Mater Sci: Mater Electron, vol. 27, no. 8, pp. 8325–8331, Aug. 2016, doi: 10.1007/s10854-016-4841-6. [55]R. Jensen, J. Cummings, and H. Vora, “Copper/polyimide Materials System for High Performance Packaging,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 7, no. 4, pp. 384–393, Dec. 1984, doi: 10.1109/TCHMT.1984.1136378. [56]C. Zhu, W. Ning, G. Xu, and L. Luo, “Stress evolution during thermal cycling of copper/polyimide layered structures,” Materials Science in Semiconductor Processing, vol. 27, pp. 819–826, Nov. 2014, doi: 10.1016/j.mssp.2014.08.022. [57]N. Inagaki, S. Tasaka, and T. Baba, "Surface modification of polyimide film surface by silane coupling reactions for copper metallization," Journal of adhesion science and technology, vol. 15, no. 7, pp. 749-762, 2001, doi: 10.1163/15685610152540821. [58]Y. I. Lee and Y. H. Choa, "Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate," Journal of Materials Chemistry, vol. 22, no. 25, pp. 12517-12522, 2012, doi: 10.1039/C2JM31381B. [59]U. Cvelbar, S. Pejovnik, M. Mozetiè, and A. Zalar, “Increased surface roughness by oxygen plasma treatment of graphite/polymer composite,” Applied Surface Science, vol. 210, no. 3–4, pp. 255–261, Apr. 2003, doi: 10.1016/S0169-4332(02)01286-2. [60]S.-J. Cho, J.-W. Choi, I.-S. Bae, T. Nguyen, and J.-H. Boo, “Surface Plasma Treatment of Polyimide Film for Cu Metallization,” Jpn. J. Appl. Phys., vol. 50, no. 1S1, p. 01AK02, Jan. 2011, doi: 10.1143/JJAP.50.01AK02. [61]S. H. Kim, S. W. Na, N.-E. Lee, Y. W. Nam, and Y.-H. Kim, “Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma,” Surface and Coatings Technology, vol. 200, no. 7, pp. 2072–2079, Dec. 2005, doi: 10.1016/j.surfcoat.2005.05.021. [62]J. S. Eom and S. H. Kim, “Plasma surface treatment of polyimide for adhesive Cu/80Ni20Cr/PI flexible copper clad laminate,” Thin Solid Films, vol. 516, no. 14, pp. 4530–4534, May 2008, doi: 10.1016/j.tsf.2008.01.022. [63]D. Wojcieszak, A. Poniedziałek, M. Mazur, J. Domaradzki, D. Kaczmarek, and J. Dora, “Influence of plasma treatment on wettability and scratch resistance of Ag-coated polymer substrates,” Materials Science-Poland, vol. 34, no. 2, pp. 418–426, Jun. 2016, doi: 10.1515/msp-2016-0058. [64]M. Miyazaki, Y. Kanegae, and T. Iwasaki, “Adhesion analysis of silane coupling agent/copper interface with density functional theory,” Mechanical Engineering Journal, vol. 1, no. 4, pp. SMM0032–SMM0032, 2014, doi: 10.1299/mej.2014smm0032. [65]N. Encinas, R. Dillingham, B. Oakley, J. Abenojar, M. Martínez, and M. Pantoja, "Atmospheric pressure plasma hydrophilic modification of a silicone surface," The Journal of Adhesion, vol. 88, no. 4-6, pp. 321-336, 2012, doi: 10.1080/00218464.2012.659994. [66]S.-J. Cho, T. Nguyen, and J.-H. Boo, "Polyimide surface modification by using microwave plasma for adhesion enhancement of Cu electroless plating," Journal of nanoscience and nanotechnology, vol. 11, no. 6, pp. 5328-5333, 2011, doi: 10.1166/jnn.2011.3793. [67]C. Xiao, D. Li, D. Zeng, F. Lang, Y. Xiang, and Y. Lin, "A comparative investigation on different silane coupling agents modified sericite mica/polyimide composites prepared by in situ polymerization," Polymer Bulletin, vol. 78, no. 2, pp. 863-883, 2021, doi: 10.1007/s00289-020-03143-1. [68]S. Babanzadeh, A. R. Mahjoub, and S. Mehdipour-Ataei, "Novel soluble thermally stable silane-containing aromatic polyimides with reduced dielectric constant," Polymer degradation and stability, vol. 95, no. 12, pp. 2492-2498, 2010, doi: 10.1016/j.polymdegradstab.2010.08.001. [69]H.K. Yun, K. Cho, J.K. Kim, C.E. Park, S.M. Sim, S.Y. Oh, J.M. Park “Adhesion improvement of epoxy resin/polyimide joints by amine treatment of polyimide surface,” Polymer, vol. 38, no. 4, pp. 827–834, Feb. 1997, doi: 10.1016/S0032-3861(96)00592-7. [70]M. Miyazaki, Y. Kanegae, and T. Iwasaki, “Adhesion analysis of silane coupling agent/copper interface with density functional theory,” Mechanical Engineering Journal, vol. 1, no. 4, pp. SMM0032–SMM0032, 2014, doi: 10.1299/mej.2014smm0032. [71]A. Tsiamis et al., "Comparison of Conventional and Maskless Lithographic Techniques for More than Moore Post-Processing of Foundry CMOS Chips," in Journal of Microelectromechanical Systems, vol. 29, no. 5, pp. 1245-1252, Oct. 2020, doi: 10.1109/JMEMS.2020.3015964. [72]C. Maleville, "Engineered substrates for Moore and more than Moore's law: Device scaling: Entering the substrate era," 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Rohnert Park, CA, USA, 2015, pp. 1-5, doi: 10.1109/S3S.2015.7333494. [73]M. -F. Chen, F. -C. Chen, W. -C. Chiou and D. C. H. Yu, "System on Integrated Chips (SoIC(TM) for 3D Heterogeneous Integration," 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2019, pp. 594-599, doi: 10.1109/ECTC.2019.00095. [74]T. H. Lin et al., "Electromigration study of micro bumps at Si/Si interface in 3DIC package for 28nm technology and beyond," 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 2011, pp. 346-350, doi: 10.1109/ECTC.2011.5898536. [75]D. Prasad, A. Ceyhan, C. Pan and A. Naeemi, "Adapting Interconnect Technology to Multigate Transistors for Optimum Performance," in IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 3938-3944, Dec. 2015, doi: 10.1109/TED.2015.2487888. [76]Y. Macé, C. Urban, C. Pradet, J. Blazejewski, and E. Magnier, “Aromatic and Benzylic C–H Bond Functionalization Upon Reaction between Nitriles and Perfluoroalkyl Sulfoxides,” Eur J Org Chem, vol. 2009, no. 31, pp. 5313–5316, Nov. 2009, doi: 10.1002/ejoc.200900873. [77]Y. C. Chen, K. Wan, C. A. Chang and R. Lee, "Low Temperature Curable Polyimide Film Properties and WLP Reliability Performance with Various Curing Conditions," 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2017, pp. 2040-2046, doi: 10.1109/ECTC.2017.337. [78]J. H. Lau, "Recent Advances and Trends in Advanced Packaging," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 12, no. 2, pp. 228-252, Feb. 2022, doi: 10.1109/TCPMT.2022.3144461. [79]S. -W. Kim et al., "Novel Cu/SiCN surface topography control for 1 μm pitch hybrid wafer-to-wafer bonding," 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2020, pp. 216-222, doi: 10.1109/ECTC32862.2020.00046. [80]M. Yao, D. Yu, N. Zhao, J. Fan, Z. Xiao and H. Ma, "Development of wafer level hybrid bonding process using photosensitive adhesive and Cu pillar bump," 2017 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 2017, pp. 1-3, doi: 10.1109/CSTIC.2017.7919865. [81]Ahmad, Z. Polymer Dielectric Materials. In Dielectric Material; Silaghi, M.A., Ed.; InTech, 2012 ISBN 978-953-51-0764-4. [82]S. R. A. Ahmed, S. Naito, and K. Kobayashi, “Characterization of Low-Dielectric Constant Silicon Carbonitride (SiCN) Dielectric Films for Charge Trapping Nonvolatile Memories,” ECS Trans., vol. 69, no. 3, pp. 99–109, Sep. 2015, doi: 10.1149/06903.0099ecst. [83]G. Carlotti et al., “Measurement of the elastic and viscoelastic properties of dielectric films used in microelectronics,” Thin Solid Films, vol. 414, no. 1, pp. 99–104, Jul. 2002, doi: 10.1016/S0040-6090(02)00430-3. [84]P.D.C. Goncalves, “Dry Sliding Behavior of Filled PDC Coatings Applied onto Surface Modified Sintered Steel,” Thesis, 2016, doi: 10.13140/RG.2.2.11713.97124. [85]Z. -C. Hsiao et al., "Cu/BCB hybrid bonding with TSV for 3D integration by using fly cutting technology," 2015 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), Kyoto, Japan, 2015, pp. 834-837, doi: 10.1109/ICEP-IAAC.2015.7111128. [86]C.-T. Ko and K.-N. Chen, “Low temperature bonding technology for 3D integration,” Microelectronics Reliability, vol. 52, no. 2, pp. 302–311, Feb. 2012, doi: 10.1016/j.microrel.2011.03.038. [87]Y. I. Kim, K. H. Yang and W. S. Lee, "Thermal degradation of DRAM retention time: Characterization and improving techniques," 2004 IEEE International Reliability Physics Symposium. Proceedings, Phoenix, AZ, USA, 2004, pp. 667-668, doi: 10.1109/RELPHY.2004.1315442. [88]Y. -C. Huang et al., "Low Temperature Cu-Cu Bonding with Electroless Deposited Metal Passivation for Fine-Pitch 3D Packaging," 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2021, pp. 377-382, doi: 10.1109/ECTC32696.2021.00070. [89]J. Zhao, D. Zhang, and X. Song, “Simple and eco-friendly preparation of silver films coated on copper surface by replacement reaction,” Applied Surface Science, vol. 258, no. 19, pp. 7430–7434, Jul. 2012, doi: 10.1016/j.apsusc.2012.04.056. [90]L. Hu et al., “Facile and low-cost fabrication of Ag-Cu substrates via replacement reaction for highly sensitive SERS applications,” Chemical Physics Letters, vol. 667, pp. 351–356, Jan. 2017, doi: 10.1016/j.cplett.2016.11.022. [91]H. T. Hai, J. G. Ahn, D. J. Kim, J. R. Lee, H. S. Chung, and C. O. Kim, “Developing process for coating copper particles with silver by electroless plating method,” Surface and Coatings Technology, vol. 201, no. 6, pp. 3788–3792, Dec. 2006, doi: 10.1016/j.surfcoat.2006.03.025. [92]L. Cao, T.C. Lee, R. Chen, Y.-S. Chang, H. Lu, N. Chao, Y.-L. Huang, C.-C. Wang, C.-Y. Huang, H.-C. Kuo, Y. Wu, and H.-H. Cheng, "Advanced Fanout packaging technology for hybrid substrate integration," in 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), 2022: IEEE, pp. 1362-1370, doi: 10.1109/ECTC51906.2022.00219. [93]J.-g. Jang, K.-l. Suk, S.-h. Lee, J.-w. Park, G.-j. Jeon, J.-h. Park, J.-g. Jin, S.-c. Lee, G.b. Kim, J.-y. Choi, D.-w. Kim, D. Oh, and W.-k. Choi, "Advanced RDL interposer PKG technology for heterogeneous integration," in 2020 International Wafer Level Packaging Conference (IWLPC), 2020: IEEE, pp. 1-5, doi: 10.23919/IWLPC52010.2020.9375895. [94]S.-P. Jeng and M. Liu, "Heterogeneous and Chiplet Integration Using Organic Interposer (CoWoS-R)," in 2022 International Electron Devices Meeting (IEDM), 2022: IEEE, pp. 3.2. 1-3.2. 4, doi:10.1109/IEDM45625.2022.10019517. [95]J. H. Lau, G. Chen, C. Yang, A. Peng, J. Huang, C. Peng, C. Ko, H. Yang, Y. Chen, and T. Tseng, "Hybrid Substrates for Chiplet Design and Heterogeneous Integration Packaging," in 2022 International Electron Devices Meeting (IEDM), 2022: IEEE, pp. 3.5. 1-3.5. 4, doi: 10.1109/IEDM45625.2022.10019568. [96]D. C. Yu, J. Yeh, K. C. Yee, and C. H. Tung, "Integrated Fan‐Out (InFO) for High Performance Computing," Embedded and Fan‐Out Wafer and Panel Level Packaging Technologies for Advanced Application Spaces: High Performance Compute and System‐in‐Package, pp. 95-124, 2022, doi: 10.1002/9781119793908.ch4. [97]D. Bai et al., "Laser release technology for wafer level packaging," 2018 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 2018, pp. 1-3, doi: 10.1109/CSTIC.2018.8369304. [98]C. -H. Lee et al., "Optimization of Laser Release Process for Throughput Enhancement of Fan-Out Wafer-Level Packaging," 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2018, pp. 1824-1829, doi: 10.1109/ECTC.2018.00273. [99]M. Fowler, J. P. Massey, R. K. Trichur and M. Koch, "Dual-Carrier Process Using Mechanical and Laser Release Technologies for Advanced Wafer-Level Packaging," 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2018, pp. 1214-1219, doi: 10.1109/ECTC.2018.00187. [100]C. Wei, Y. Ma, Y. Han, Y. Zhang, L. Yang, and X. Chen, “Study on Femtosecond Laser Processing Characteristics of Nano-Crystalline CVD Diamond Coating,” Applied Sciences, vol. 9, no. 20, p. 4273, Oct. 2019, doi: 10.3390/app9204273. [101]C. -H. Lee et al., "Study of Bondable Laser Release Material Using 355 nm Energy to Facilitate RDL-First and Die-First Fan-Out Wafer-Level Packaging (FOWLP)," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 12, no. 4, pp. 692-699, April 2022, doi: 10.1109/TCPMT.2022.3156730. [102]P. Andry et al., "Advanced wafer bonding and laser debonding," 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2014, pp. 883-887, doi: 10.1109/ECTC.2014.6897391. [103]D. Xu et al., "A Novel Design of Temporary Bond Debond Adhesive Technology for Wafer-Level Assembly," 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2020, pp. 68-74, doi: 10.1109/ECTC32862.2020.00024. [104]Y. -C. Huang, Y. -X. Lin, C. -K. Hsiung, Y. -T. Yang, T. -H. Hung and K. -N. Chen, "A Novel Low-Warpage Hyper RDL (HRDL) Interposer Enabled by Low Temperature Hybrid Bonding for Advanced Packaging Applications," in IEEE Electron Device Letters, vol. 45, no. 3, pp. 452-455, March 2024, doi: 10.1109/LED.2024.3352252.
|