跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃元九
研究生(外文):Yuan-Chiu Huang
論文名稱:新型高分子材料在低溫聚合物之異質接合、低翹曲之2.5D有機中介層及扇出型先進封裝技術開發
論文名稱(外文):Development of Novel Polymer Materials for Low Temperature Polymer-based Hybrid Bonding, Low Warpage 2.5D Organic Interposer and Fan-out Advanced Packaging Technology
指導教授:陳冠能
指導教授(外文):Chen, Kuan-Neng
口試委員:陳冠能曾俊元曾銘綸周苡嘉駱韋仲沈昌宏
口試委員(外文):Chen, Kuan-NengTseng, Tseung-YuenTseng, Ming-LunChou, Yi-ChiaLo, Wei-ChungShen, Chang-Hong
口試日期:2024-06-26
學位類別:博士
校院名稱:國立陽明交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:132
中文關鍵詞:先進封裝、混合接合、低熱預算、低溫接合技術、金屬鈍化層、感 光型聚醯亞胺、線路重佈中介層
外文關鍵詞:advanced packaginghybrid bondinglow thermal budgetlow temperature bonding technologymetal passivationphotosensitive polyimide (PSPI)re-distribution layer (RDL) interposer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:14
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文開發出適用於先進封裝製程材料的高分子異質接合技術及新型HRDL (Hyper Re-distribution Layer)之可堆疊中介層整合平台結構。其主要目的為達成低熱預算且具成本效益的製程技術的同時,最大限度地降低熱膨脹係數差異及翹曲造成的後續可靠度問題。為此,本論文主要針對三款高分子材料進行開發及研究。
首先,一款低熱膨脹係數的感光型聚醯亞胺為基底的PSPI-314在開發後,針對其微影製程、附著性強度、可靠度測試等進行了深入的研究和改進,使其能有效作為重佈線製程中的保護層,並應用於扇出型封裝技術中。此外,本研究透過電漿前處理有效降低接觸角,提升銅與感光型聚醯亞胺的表面能以及加入添加劑大幅提升與銅金屬接觸介面之附著性。本款材料的優勢在於其低熱膨脹係數,使其在進行熱循環可靠度測試後,其仍然保有穩定的電阻值以及良好的附著力強度。
其針對已商用化的低玻璃轉化溫度的感光型聚醯亞胺為基底的Fuji Film進行研究,成功將其應用於低溫及室溫的異質接合結構中。玻璃轉化溫度對於高分子接合至關重要,若過低的玻璃轉化溫度會導致後續製程之高分子材料不穩定,而過高的玻璃轉化溫度會使低溫接合介面品質、接合強度不如預期,本論文針對玻璃轉化溫度對接合結果的影響進行了討論。本高分子材料在經過測試後,除了有良好之接合品質外,也有優異的接合強度、電性表現。經過可靠度測試後,阻值無明顯變化。
此外,本研究進一步將此材料應用於新型HRDL可堆疊中介層整合平台結構。相較於傳統的半加成製程(SAP),HRDL堆疊結構能顯著減少多層RDL中介層的翹曲,其翹曲程度至少減少20倍。基於聚合物混合接合的HRDL堆疊結構在接合溫度180度的大氣環境中進行,其接合品質和強度都非常出色,斷裂面直接碎於矽晶片區域而非接合介面,證明了其良好的接合強度。在經過1000次熱循環和168小時無偏壓加速應力的可靠度測試後,其電阻變化小於1.5%,證明了其穩定性。另外,HRDL結構使用雷射去接合材料做為暫時性接合材料,而暫時性接合在先進封裝中也是相當重要的製程之一,因此,本研究也針對雷射去接合的機制進行討論,並歸納了一些雷射去接合製程中樣品可能受到的損傷以及其解決方式。此外,這款Fuji Film高分子材料也應用於室溫接合。經過1小時的200-250度退火,該材料也能獲得良好的接合品質和強度,其碎裂區同樣發生於矽晶片區非接合介面,經過可靠度測試後,阻值變化接近小於2.5%,顯示出優秀的穩定性。
本論文研究的第三款高分子材料為以環氧樹脂為基底的DPAS 100,這款材料的主要特點是其CTE(熱膨脹係數)與銅相近,大大減少了因升溫導致的CTE不匹配問題。此材料在180-250度低溫接合時,也能達到良好的接合品質、強度和電性表現。最後,本論文也對金屬接合進行了研究。以往的研究中,開發了金屬鈍化層接合技術來避免銅氧化,顯著降低了接合溫度。本論文針對金屬鈍化層使用無電鍍沉積法,與業界常用的物理氣相沉積法(PVD)相比,無電鍍沉積法因可以在大氣條件下將金屬鈍化層直接選擇性的鍍到銅的表面上,無須額外的微影製程,因此可以簡化製程,進而提高產量、降低生產成本。本論文採用聚合物基的無電鍍銀金屬鈍化層混合接合結構,達成大氣條件下160度下接合300秒後,仍能保持良好的接合品質、接合強度及電性表現(<10-8 Ω·cm²)。
This thesis develops a polymer-based hybrid bonding technology and a novel HRDL (Hyper Re-distribution Layer) stackable interposer platform structure suitable for advanced packaging applications. The research goal is to achieve a low thermal budget and cost-effective process technology while minimizing the issues caused by the CTE (coefficient of thermal expansion) mismatch and warpage that cause the reliability issue. To achieve the goal, three types of polymer materials have been developed and investigated in this thesis.
First, a developed PSPI-based (photosensitive polyimide-based) with a low CTE, named PSPI-314 was studied with extensive investigations. Optimizations were performed on its lithography process, adhesion strength, and reliability testing, enabling its effective use as a protective layer in the RDL (re-distribution layer) process and its application in fan-out packaging technology. Additionally, plasma pretreatment effectively reduced the contact angle, enhancing the surface energy between Cu and the PSPI. Adding additives significantly improved the adhesion strength at the Cu/PSPI interface. The advantage of PSPI-314 lies in its low CTE, allowing it to maintain stable resistance and outstanding adhesion strength on the Cu surface after thermal cycling reliability tests.
Second, a commercial PSPI with a low glass transition temperature (Tg) , named Fuji Film E19, was successfully applied to low-temperature and room-temperature hybrid bonding schemes. The Tg is crucial in polymer bonding since a too low Tg results in instability in subsequent high-temperature processes, while a too high Tg produces low bonding quality and poor bonding strength in low bonding temperature conditions. This thesis discusses the impact of the Tg on bonding results. In conclusion, Fuji Film E19 demonstrated excellent bonding quality, bonding strength, and electrical performance, with no significant change in resistance values after reliability testing.
Furthermore, E19 was applied in a novel HRDL stackable interposer platform. Compared to conventional semi-additive processes (SAP), the HRDL stackable platform significantly reduces warpage in multilayer RDL structure by at least 20 times. The HRDL stackable structure, based on polymer-based hybrid bonding, performed excellently in bonding quality and bonding strength after bonding in an atmospheric environment at 180 °C, with fracture area occurring directly in the silicon wafer rather than the bonding interface, proving its excellent bonding strength. After 1000 cycles of TCT and 168 hours of un-biased HAST, the resistance change was less than 1.5%, demonstrating its good stability. The HRDL structure used laser release materials as temporary bonding materials, which is crucial in advanced packaging processes. This thesis also discusses the laser release mechanism, summarizing potential sample damage during the laser release process and the solutions. Additionally, the E19 PSPI material was used for room temperature bonding. After 1 hour of annealing at 200-250 °C, the bonded material achieved excellent bonding quality and bonding strength, with fractures area occurring in the silicon wafer rather than the bonding interface. After reliability testing, the resistance change was close to less than 2.5%, indicating excellent stability.
The third polymer material studied in this thesis was an epoxy-based DPAS 100, characterized by its CTE being close to that of copper, significantly reducing CTE mismatch issues caused by the high-temperature process. DPAS 100 also achieved excellent bonding quality, bonding strength, and electrical performance at 180-250 °C low bonding temperature. Finally, low-temperature metal bonding was studied. Previous research developed a metal passivation layer bonding technology to avoid copper oxidation, significantly reducing bonding temperature. This thesis used an electroless plating method for the metal passivation layer. Compared to the industry standard physical vapor deposition (PVD) process, the electroless plating method can directly selectively deposit the metal passivation layer onto the copper surface under atmospheric conditions without additional lithography processes, thus simplifying the process, increasing throughput, and reducing production costs. This thesis achieved a polymer-based electroless Ag metal passivation layer hybrid bonding at 160 °C for 300 seconds under atmospheric with excellent bonding quality, bonding strength, and electrical performance (<10-8 Ω·cm²).
Abstractiv
Contentviii
Figure Captionsxi
Table Captionsxxi
Chapter 1 Introduction1
1.1General Background of 3DIC1
1.2Introduction of Bonding Technology2
1.3Organization of the Thesis4
Chapter 2 Investigation of PSPI Featuring Low CTE and Superior Adhesion for Advanced Packaging Applications 10
2.1Introduction10
2.2Preparation of Materials and Samples11
2.2.1PSPI and Samples Fabrication11
2.2.2Abilities of PSPI for Lithography Process12
2.3Adhesion Strength Enhancement for PSPI13
2.3.1Four-Point Bending System13
2.3.2Adhesion Test on Different Substrate15
2.3.3Adhesion Improvement16
2.4Reliability Investigation of PSPI19
2.4.1Chemical Resistance Test19
2.4.2Adhesion Strength after TCT19
2.5 Summary20
Chapter 3 Low Temperature (180 ℃) and Room Temperature Polymer-based Hybrid Bonding35
3.1Introduction35
3.2Materials Selection37
3.3 Process Flow of Polymer Bonding and polymer-based hybrid bonding.38
3.3.1Low Temperature Polymer Bonding and Polymer-based Hybrid Bonding Application39
3.3.2Room Temperature Polymer Bonding and Polymer-based Hybrid Bonding Application41
3.4 Summary43
Chapter 4 Low-Temperature (< 250 ℃) Hybrid Bonding Application Using Electroless Metal Passivation58
4.1Introduction58
4.2Mechanism of Electroless Deposition 59
4.3Result of Metal Passivation Deposition by Electroless Deposition60
4.4Bonding Results with Ag Passivation62
4.5 Summary63
Chapter 5 Hyper RDL Interposer by Low Temperaute (< 250 ℃) Polymer-based Hybrid Bonding Schemes75
5.1Introduction75
5.2Temporary Bonding Materials Investigation76
5.3Mechanism of Laser Release Process78
5.4The Novel Hyper RDL Structure80
5.4.1Core concept of HRDL80
5.4.2Warpage Reduction81
5.4.3Process Flow of HRDL83
5.4.4Results and Disscussion84
5.5Summary86
Chapter 6 Conclusion and Prospects107
6.1Conclusion107
6.2Future Prospects108
Reference110
[1]K. Salah, Y. Ismail, and A. El-Rouby, “Arbitrary Modeling of TSVs for 3D Integrated Circuits. in Analog Circuits and Signal Processing,” Cham: Springer International Publishing, 2015. doi: 10.1007/978-3-319-07611-9.
[2]M. S. Lundstrom and M. A. Alam, “Moore’s law: The journey ahead,” Science, vol. 378, no. 6621, pp. 722–723, Nov. 2022, doi: 10.1126/science.ade2191.
[3]K. Roy, B. Jung, D. Peroulis, and A. Raghunathan, “Integrated Systems in the More-Than-Moore Era: Designing Low-Cost Energy-Efficient Systems Using Heterogeneous Components,” IEEE Des. Test, vol. 33, no. 3, pp. 56–65, Jun. 2016, doi: 10.1109/MDT.2011.49.
[4]M. Badaroglu, “More Moore,” in 2021 IEEE International Roadmap for Devices and Systems Outbriefs, Santa Clara, CA, USA: IEEE, Nov. 2021, pp. 01–38. doi: 10.1109/IRDS54852.2021.00010.
[5]M. Graef, “More Than Moore White Paper,” in 2021 IEEE International Roadmap for Devices and Systems Outbriefs, Santa Clara, CA, USA: IEEE, Nov. 2021, pp. 1–47. doi: 10.1109/IRDS54852.2021.00013.
[6]J. H. Lau, “Recent Advances and Trends in Advanced Packaging,” IEEE Trans. Compon., Packag. Manufact. Technol., vol. 12, no. 2, pp. 228–252, Feb. 2022, doi: 10.1109/TCPMT.2022.3144461.
[7]H.-C. Cheng and Y.-C. Liu, “Warpage Characterization of Molded Wafer for Fan-Out Wafer-Level Packaging,” Journal of Electronic Packaging, vol. 142, no. 1, p. 011004, Mar. 2020, doi: 10.1115/1.4044625.
[8]K. Ouyang, L. Li, J. Fang, G. Shao, N. Mei, and T. Sun, “Reliability Improvement Research of 2.5D CoWoS package,” in 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, China: IEEE, Aug. 2022, pp. 1–4. doi: 10.1109/ICEPT56209.2022.9873298.
[9]M. L. Lin et al., “Organic Interposer CoWoS-R+ (plus) Technology,” in 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA: IEEE, May 2022, pp. 1–6. doi: 10.1109/ECTC51906.2022.00008.
[10]E.-J. Jang, S. Hyun, H.-J. Lee, and Y.-B. Park, “Effect of Wet Pretreatment on Interfacial Adhesion Energy of Cu-Cu Thermocompression Bond for 3D IC Packages,” Journal of Elec Materi, vol. 38, no. 12, pp. 2449–2454, Dec. 2009, doi: 10.1007/s11664-009-0942-9.
[11]Swinnen, B.; Ruythooren, W.; De Moor, P.; Bogaerts, L.; Carbonell, L.; De Munck, K.; Eyckens, B.; Stoukatch, S.; Tezcan, D.S.; Tokei, Z.; et al. "3D integration by Cu-Cu thermo-compression bonding of extremely thinned bulk-Si die containing 10 μm pitch through-Si vias," 2006 International Electron Devices Meeting, San Francisco, CA, USA, 2006, pp. 1-4, doi: 10.1109/IEDM.2006.346786.
[12]S. Shin, E. Higurashi, K. Furuyama and T. Suga, "Hydrogen radical treatment for surface oxide removal from copper," 2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D), Tokyo, Japan, 2017, pp. 72-72, doi: 10.23919/LTB-3D.2017.7947468.
[13]D. Chir and J. Toh, "Effect of RF plasma process gas chemistry and electrode configuration on the removal of copper lead frame oxidation," 2022 IEEE 24th Electronics Packaging Technology Conference (EPTC), Singapore, Singapore, 2022, pp. 493-497, doi: 10.1109/EPTC56328.2022.10013132.
[14]T. -H. Hung et al., "Investigation of Wet Pretreatment to Improve Cu-Cu Bonding for Hybrid Bonding Applications," 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2021, pp. 700-705, doi: 10.1109/ECTC32696.2021.00121.
[15]M. Yamamoto et al., "Wafer-scale Au-Au surface activated bonding using atmospheric-pressure plasma," 2019 International Conference on Electronics Packaging (ICEP), Niigata, Japan, 2019, pp. 361-364, doi: 10.23919/ICEP.2019.8733602.
[16]A. Shigetou, T. Itoh, and T. Suga, “Bumpless interconnect of ultrafine Cu electrodes by surface activated bonding (SAB) method,” Electron Comm Jpn Pt II, vol. 89, no. 12, pp. 34–42, Dec. 2006, doi: 10.1002/ecjb.20247.
[17]K. Takeuchi, E. Higurashi, J. Wang, A. Yamauchi and T. Suga, "Removal of Adsorbed Water on Si Wafers for Surface Activated Bonding," 2022 IEEE CPMT Symposium Japan (ICSJ), Kyoto, Japan, 2022, pp. 61-64, doi: 10.1109/ICSJ55786.2022.10034710.
[18]T. Suga and F. Mu, "Surface Activated Bonding Method for Low Temperature Bonding," 2018 7th Electronic System-Integration Technology Conference (ESTC), Dresden, Germany, 2018, pp. 1-4, doi: 10.1109/ESTC.2018.8546367.
[19]T. Suga, "Feasibility of surface activated bonding for ultra-fine pitch interconnection-a new concept of bump-less direct bonding for system level packaging," 2000 Proceedings. 50th Electronic Components and Technology Conference (Cat. No.00CH37070), Las Vegas, NV, USA, 2000, pp. 702-705, doi: 10.1109/ECTC.2000.853235.
[20]S. Bonam, H. K. Cheemalamarri, S. R. K. Vanjari and S. G. Singh, "Diffusion Enhanced Optimized Thin Passivation Layer for Realizing Copper to Copper Wafer Bonding at Low Thermal Budget," 2022 IEEE 24th Electronics Packaging Technology Conference (EPTC), Singapore, Singapore, 2022, pp. 344-347, doi: 10.1109/EPTC56328.2022.10013232.
[21]A. K. Panigrahi, S. Bonam, T. Ghosh, S. G. Singh, and S. R. K. Vanjari, “Ultra-thin Ti passivation mediated breakthrough in high quality Cu-Cu bonding at low temperature and pressure,” Materials Letters, vol. 169, pp. 269–272, Apr. 2016, doi: 10.1016/j.matlet.2016.01.126.
[22]Z.-J. Hong et al., “Low-temperature hybrid bonding with high electromigration resistance scheme for application on heterogeneous integration,” Applied Surface Science, vol. 610, p. 155470, Feb. 2023, doi: 10.1016/j.apsusc.2022.155470.
[23]Y. -P. Huang et al., "Novel Cu-to-Cu Bonding With Ti Passivation at 180 ∘C in 3-D Integration," in IEEE Electron Device Letters, vol. 34, no. 12, pp. 1551-1553, Dec. 2013, doi: 10.1109/LED.2013.2285702.
[24]Y. -P. Huang, Y. -S. Chien, R. -N. Tzeng and K. -N. Chen, "Demonstration and Electrical Performance of Cu–Cu Bonding at 150 °C With Pd Passivation," in IEEE Transactions on Electron Devices, vol. 62, no. 8, pp. 2587-2592, Aug. 2015, doi: 10.1109/TED.2015.2446507.
[25]T. -C. Chou et al., "Electrical and Reliability Investigation of Cu-to-Cu Bonding With Silver Passivation Layer in 3-D Integration," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 11, no. 1, pp. 36-42, Jan. 2021, doi: 10.1109/TCPMT.2020.3037365.
[26]D. Liu, P. -C. Chen, Y. -C. Tsai and K. -N. Chen, "Low Temperature Cu to Cu Direct Bonding below 150 °C with Au Passivation Layer," 2019 International 3D Systems Integration Conference (3DIC), Sendai, Japan, 2019, pp. 1-4, doi: 10.1109/3DIC48104.2019.9058873.
[27]Y.-P. Huang, "Development of Low Temperature Cu Bonding and Heterogeneous Integration Platform," PhD Thesis, National Chiao Tung University, Hsinchu, Taiwan, March 2017.
[28]T.-C. Chou, "Investigation and Discussion on Passivation Bonding and Asymmetric Bonding Structure of Low Temperature Cu-Cu Direct Bonding in 3D Heterogeneous Integration," PhD Thesis, National Chiao Tung University, Hsinchu, Taiwan, December 2020.
[29]D. Liu, "Development of Low-Temperature Cu-Cu Direct Bonding Technology Based on Passivation Scheme," PhD Thesis, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, November 2021.
[30]P. Uttam, V. Kumar, K.-H. Kim, and A. Deep, “Nanotwinning: Generation, properties, and application,” Materials & Design, vol. 192, p. 108752, Jul. 2020, doi: 10.1016/j.matdes.2020.108752.
[31]T. Zhu and H. Gao, “Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling,” Scripta Materialia, vol. 66, no. 11, pp. 843–848, Jun. 2012, doi: 10.1016/j.scriptamat.2012.01.031.
[32]J.-J. Ong et al., “Low-Temperature Cu/SiO2 Hybrid Bonding with Low Contact Resistance Using (111)-Oriented Cu Surfaces,” Materials, vol. 15, no. 5, p. 1888, Mar. 2022, doi: 10.3390/ma15051888.
[33]P. M. Agrawal, B. M. Rice, and D. L. Thompson, “Predicting trends in rate parameters for self-diffusion on FCC metal surfaces,” Surface Science, vol. 515, no. 1, pp. 21–35, Aug. 2002, doi: 10.1016/S0039-6028(02)01916-7.
[34]K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Wen, “Microstructure evolution and abnormal grain growth during copper wafer bonding,” Applied Physics Letters, vol. 81, no. 20, pp. 3774–3776, Nov. 2002, doi: 10.1063/1.1521240.
[35]P.-F. Lin, D.-P. Tran, H.-C. Liu, Y.-Y. Li, and C. Chen, “Interfacial Characterization of Low-Temperature Cu-to-Cu Direct Bonding with Chemical Mechanical Planarized Nanotwinned Cu Films,” Materials, vol. 15, no. 3, p. 937, Jan. 2022, doi: 10.3390/ma15030937.
[36]S. Bonam, C. H. Kumar, S. R. K. Vanjari and S. G. Singh, "Gold Passivated Cu-Cu Bonding At 140°C For 3D IC Packaging And Heterogeneous Integration Applications," 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), Singapore, 2018, pp. 547-550, doi: 10.1109/EPTC.2018.8654445.
[37]Y.-C. Huang, Y.-X. Lin, C.-K. Hsiung, T.-H. Hung, and K.-N. Chen, “Cu-Based Thermocompression Bonding and Cu/Dielectric Hybrid Bonding for Three-Dimensional Integrated Circuits (3D ICs) Application,” Nanomaterials, vol. 13, no. 17, p. 2490, Sep. 2023, doi: 10.3390/nano13172490.
[38]M. F. Chen, C. S. Lin, E. B. Liao, W. C. Chiou, C. C. Kuo, C. C. Hu, C. H. Tsai, C. T. Wang and D. Yu, "SoIC for Low-Temperature, Multi-Layer 3D Memory Integration," in 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), 2020, pp. 855-860, doi: 10.1109/ECTC32862.2020.00139.
[39]H. Sakakibara, H. Akimaru, A. Hiro, K. Sato, K. Fujiwara, K. Okamoto, K. Hasegawa and S. Kusumoto, "Advanced plating photoresist development for advanced IC packages," in 2015 16th International Conference on Electronic Packaging Technology (ICEPT), 2015, pp. 1348-1351, doi: 10.1109/ICEPT.2015.7236828.
[40]J. H. Lau, Semiconductor advanced packaging. Springer Nature, 2021, DOI: 10.1007/978-981-16-1376-0_1.
[41]S. W. Yoon, J. A. Caparas, Y. Lin and P. C. Marimuthu, "Advanced low profile PoP solution with embedded wafer level PoP (eWLB-PoP) technology," in 2012 IEEE 62nd Electronic Components and Technology Conference, 2012, pp. 1250-1254, doi: 10.1109/ECTC.2012.6248995.
[42]M. Brunnbauer, E. Furgut, G. Beer, T. Meyer, H. Hedler, J. Belonio, E. Nomura, K. Kiuchi and K. Kobayashi, "An embedded device technology based on a molded reconfigured wafer," in 56th Electronic Components and Technology Conference 2006, 2006, pp. 5 pp.-, doi: 10.1109/ECTC.2006.1645702.
[43]H. Araki, Y. Shoji, Y. Masuda, K. Hashimoto, K. Matsumura, Y. Koyama and M. Tomikawa, "Fabrication of Redistribution Structure Using Highly Reliable Photosensitive Polyimide for Fan Out Panel Level Packages," in 2018 International Wafer Level Packaging Conference (IWLPC), 2018, pp. 1-6, doi: 10.23919/IWLPC.2018.8573286.
[44]M. Hasegawa and S. Horii, "Low-CTE polyimides derived from 2, 3, 6, 7-naphthalenetetracarboxylic dianhydride," Polymer journal, vol. 39, no. 6, pp. 610-621, 2007, doi: 10.1295/polymj.PJ2006234.
[45]G. Qian, F. Dai, H. Chen, M. Wang, M. Hu, C. Chen and Y. Yu, "Polyimides with low coefficient of thermal expansion derived from diamines containing benzimidazole and amide: Synthesis, properties, and the N‐substitution effect," Journal of Polymer Science, vol. 59, no. 6, pp. 510-518, 2021, doi: 10.1002/pol.20200879.
[46]M. Hasegawa, "Development of solution-processable, optically transparent polyimides with ultra-low linear coefficients of thermal expansion," Polymers, vol. 9, no. 10, p. 520, 2017, doi: 10.3390/polym9100520.
[47]S. Xi, X. Wang, Z. Zhang, T. Liu, X. Zhang, and J. Shen, "Influence of diamine rigidity and dianhydride rigidity on the microstructure, thermal and mechanical properties of cross-linked polyimide aerogels," Journal of Porous Materials, vol. 28, no. 3, pp. 717-725, 2021, doi: 10.1007/s10934-020-01028-2.
[48]M. Tomikawa, R. Okuda, and H. Ohnishi, "Photosensitive polyimide for packaging applications," Journal of Photopolymer Science and Technology, vol. 28, no. 1, pp. 73-77, 2015, doi: 10.2494/photopolymer.28.73.
[49]Y. Shoji, Y. Masuda, K. Hashimoto, K. Isobe, Y. Koyama, and R. Okuda, "Development of novel low-temperature curable positive-tone photosensitive dielectric materials with high elongation," in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), 2016, pp. 1707-1712, doi: 10.1109/ECTC.2016.149.
[50]T. Yuba, R. Okuda, M. Tomikawa, and J. H. Kim, "Soft baking effect on lithographic performance by positive tone photosensitive polyimide," Journal of Photopolymer Science and Technology, vol. 23, no. 6, pp. 775-779, 2010, doi: 10.2494/photopolymer.23.775.
[51]H.-J. Sue and A. F. Yee, "Study of fracture mechanisms of multiphase polymers using the double-notch four-point-bending method," Journal of materials science, vol. 28, no. 11, pp. 2975-2980, 1993, doi: 10.1007/BF00354702.
[52]Y. -L. Yang, H. Ito, Y. S. Kim, T. Ohba and K. -N. Chen, "Evaluation of Metal/Polymer Adhesion and Highly Reliable Four-Point Bending Test Using Stealth Dicing Method in 3-D Integration," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 10, no. 6, pp. 956-962, June 2020, doi: 10.1109/TCPMT.2020.2968561.
[53]Y. -C. Huang, H. -W. Hu, Y. -H. Liu, H. -C. Hsieh and K. -N. Chen, "Investigation of Photosensitive Polyimide With Low Coefficient of Thermal Expansion and Excellent Adhesion Strength for Advanced Packaging Applications," in IEEE Journal of the Electron Devices Society, vol. 12, pp. 96-103, 2024, doi: 10.1109/JEDS.2024.3358830.
[54]H. Li, G. Cheng, G. Xu, and L. Luo, “Influence of polyimide on thermal stress evolution in polyimide/Cu thick film composite,” J Mater Sci: Mater Electron, vol. 27, no. 8, pp. 8325–8331, Aug. 2016, doi: 10.1007/s10854-016-4841-6.
[55]R. Jensen, J. Cummings, and H. Vora, “Copper/polyimide Materials System for High Performance Packaging,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 7, no. 4, pp. 384–393, Dec. 1984, doi: 10.1109/TCHMT.1984.1136378.
[56]C. Zhu, W. Ning, G. Xu, and L. Luo, “Stress evolution during thermal cycling of copper/polyimide layered structures,” Materials Science in Semiconductor Processing, vol. 27, pp. 819–826, Nov. 2014, doi: 10.1016/j.mssp.2014.08.022.
[57]N. Inagaki, S. Tasaka, and T. Baba, "Surface modification of polyimide film surface by silane coupling reactions for copper metallization," Journal of adhesion science and technology, vol. 15, no. 7, pp. 749-762, 2001, doi: 10.1163/15685610152540821.
[58]Y. I. Lee and Y. H. Choa, "Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate," Journal of Materials Chemistry, vol. 22, no. 25, pp. 12517-12522, 2012, doi: 10.1039/C2JM31381B.
[59]U. Cvelbar, S. Pejovnik, M. Mozetiè, and A. Zalar, “Increased surface roughness by oxygen plasma treatment of graphite/polymer composite,” Applied Surface Science, vol. 210, no. 3–4, pp. 255–261, Apr. 2003, doi: 10.1016/S0169-4332(02)01286-2.
[60]S.-J. Cho, J.-W. Choi, I.-S. Bae, T. Nguyen, and J.-H. Boo, “Surface Plasma Treatment of Polyimide Film for Cu Metallization,” Jpn. J. Appl. Phys., vol. 50, no. 1S1, p. 01AK02, Jan. 2011, doi: 10.1143/JJAP.50.01AK02.
[61]S. H. Kim, S. W. Na, N.-E. Lee, Y. W. Nam, and Y.-H. Kim, “Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma,” Surface and Coatings Technology, vol. 200, no. 7, pp. 2072–2079, Dec. 2005, doi: 10.1016/j.surfcoat.2005.05.021.
[62]J. S. Eom and S. H. Kim, “Plasma surface treatment of polyimide for adhesive Cu/80Ni20Cr/PI flexible copper clad laminate,” Thin Solid Films, vol. 516, no. 14, pp. 4530–4534, May 2008, doi: 10.1016/j.tsf.2008.01.022.
[63]D. Wojcieszak, A. Poniedziałek, M. Mazur, J. Domaradzki, D. Kaczmarek, and J. Dora, “Influence of plasma treatment on wettability and scratch resistance of Ag-coated polymer substrates,” Materials Science-Poland, vol. 34, no. 2, pp. 418–426, Jun. 2016, doi: 10.1515/msp-2016-0058.
[64]M. Miyazaki, Y. Kanegae, and T. Iwasaki, “Adhesion analysis of silane coupling agent/copper interface with density functional theory,” Mechanical Engineering Journal, vol. 1, no. 4, pp. SMM0032–SMM0032, 2014, doi: 10.1299/mej.2014smm0032.
[65]N. Encinas, R. Dillingham, B. Oakley, J. Abenojar, M. Martínez, and M. Pantoja, "Atmospheric pressure plasma hydrophilic modification of a silicone surface," The Journal of Adhesion, vol. 88, no. 4-6, pp. 321-336, 2012, doi: 10.1080/00218464.2012.659994.
[66]S.-J. Cho, T. Nguyen, and J.-H. Boo, "Polyimide surface modification by using microwave plasma for adhesion enhancement of Cu electroless plating," Journal of nanoscience and nanotechnology, vol. 11, no. 6, pp. 5328-5333, 2011, doi: 10.1166/jnn.2011.3793.
[67]C. Xiao, D. Li, D. Zeng, F. Lang, Y. Xiang, and Y. Lin, "A comparative investigation on different silane coupling agents modified sericite mica/polyimide composites prepared by in situ polymerization," Polymer Bulletin, vol. 78, no. 2, pp. 863-883, 2021, doi: 10.1007/s00289-020-03143-1.
[68]S. Babanzadeh, A. R. Mahjoub, and S. Mehdipour-Ataei, "Novel soluble thermally stable silane-containing aromatic polyimides with reduced dielectric constant," Polymer degradation and stability, vol. 95, no. 12, pp. 2492-2498, 2010, doi: 10.1016/j.polymdegradstab.2010.08.001.
[69]H.K. Yun, K. Cho, J.K. Kim, C.E. Park, S.M. Sim, S.Y. Oh, J.M. Park “Adhesion improvement of epoxy resin/polyimide joints by amine treatment of polyimide surface,” Polymer, vol. 38, no. 4, pp. 827–834, Feb. 1997, doi: 10.1016/S0032-3861(96)00592-7.
[70]M. Miyazaki, Y. Kanegae, and T. Iwasaki, “Adhesion analysis of silane coupling agent/copper interface with density functional theory,” Mechanical Engineering Journal, vol. 1, no. 4, pp. SMM0032–SMM0032, 2014, doi: 10.1299/mej.2014smm0032.
[71]A. Tsiamis et al., "Comparison of Conventional and Maskless Lithographic Techniques for More than Moore Post-Processing of Foundry CMOS Chips," in Journal of Microelectromechanical Systems, vol. 29, no. 5, pp. 1245-1252, Oct. 2020, doi: 10.1109/JMEMS.2020.3015964.
[72]C. Maleville, "Engineered substrates for Moore and more than Moore's law: Device scaling: Entering the substrate era," 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Rohnert Park, CA, USA, 2015, pp. 1-5, doi: 10.1109/S3S.2015.7333494.
[73]M. -F. Chen, F. -C. Chen, W. -C. Chiou and D. C. H. Yu, "System on Integrated Chips (SoIC(TM) for 3D Heterogeneous Integration," 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2019, pp. 594-599, doi: 10.1109/ECTC.2019.00095.
[74]T. H. Lin et al., "Electromigration study of micro bumps at Si/Si interface in 3DIC package for 28nm technology and beyond," 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 2011, pp. 346-350, doi: 10.1109/ECTC.2011.5898536.
[75]D. Prasad, A. Ceyhan, C. Pan and A. Naeemi, "Adapting Interconnect Technology to Multigate Transistors for Optimum Performance," in IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 3938-3944, Dec. 2015, doi: 10.1109/TED.2015.2487888.
[76]Y. Macé, C. Urban, C. Pradet, J. Blazejewski, and E. Magnier, “Aromatic and Benzylic C–H Bond Functionalization Upon Reaction between Nitriles and Perfluoroalkyl Sulfoxides,” Eur J Org Chem, vol. 2009, no. 31, pp. 5313–5316, Nov. 2009, doi: 10.1002/ejoc.200900873.
[77]Y. C. Chen, K. Wan, C. A. Chang and R. Lee, "Low Temperature Curable Polyimide Film Properties and WLP Reliability Performance with Various Curing Conditions," 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2017, pp. 2040-2046, doi: 10.1109/ECTC.2017.337.
[78]J. H. Lau, "Recent Advances and Trends in Advanced Packaging," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 12, no. 2, pp. 228-252, Feb. 2022, doi: 10.1109/TCPMT.2022.3144461.
[79]S. -W. Kim et al., "Novel Cu/SiCN surface topography control for 1 μm pitch hybrid wafer-to-wafer bonding," 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2020, pp. 216-222, doi: 10.1109/ECTC32862.2020.00046.
[80]M. Yao, D. Yu, N. Zhao, J. Fan, Z. Xiao and H. Ma, "Development of wafer level hybrid bonding process using photosensitive adhesive and Cu pillar bump," 2017 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 2017, pp. 1-3, doi: 10.1109/CSTIC.2017.7919865.
[81]Ahmad, Z. Polymer Dielectric Materials. In Dielectric Material; Silaghi, M.A., Ed.; InTech, 2012 ISBN 978-953-51-0764-4.
[82]S. R. A. Ahmed, S. Naito, and K. Kobayashi, “Characterization of Low-Dielectric Constant Silicon Carbonitride (SiCN) Dielectric Films for Charge Trapping Nonvolatile Memories,” ECS Trans., vol. 69, no. 3, pp. 99–109, Sep. 2015, doi: 10.1149/06903.0099ecst.
[83]G. Carlotti et al., “Measurement of the elastic and viscoelastic properties of dielectric films used in microelectronics,” Thin Solid Films, vol. 414, no. 1, pp. 99–104, Jul. 2002, doi: 10.1016/S0040-6090(02)00430-3.
[84]P.D.C. Goncalves, “Dry Sliding Behavior of Filled PDC Coatings Applied onto Surface Modified Sintered Steel,” Thesis, 2016, doi: 10.13140/RG.2.2.11713.97124.
[85]Z. -C. Hsiao et al., "Cu/BCB hybrid bonding with TSV for 3D integration by using fly cutting technology," 2015 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), Kyoto, Japan, 2015, pp. 834-837, doi: 10.1109/ICEP-IAAC.2015.7111128.
[86]C.-T. Ko and K.-N. Chen, “Low temperature bonding technology for 3D integration,” Microelectronics Reliability, vol. 52, no. 2, pp. 302–311, Feb. 2012, doi: 10.1016/j.microrel.2011.03.038.
[87]Y. I. Kim, K. H. Yang and W. S. Lee, "Thermal degradation of DRAM retention time: Characterization and improving techniques," 2004 IEEE International Reliability Physics Symposium. Proceedings, Phoenix, AZ, USA, 2004, pp. 667-668, doi: 10.1109/RELPHY.2004.1315442.
[88]Y. -C. Huang et al., "Low Temperature Cu-Cu Bonding with Electroless Deposited Metal Passivation for Fine-Pitch 3D Packaging," 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2021, pp. 377-382, doi: 10.1109/ECTC32696.2021.00070.
[89]J. Zhao, D. Zhang, and X. Song, “Simple and eco-friendly preparation of silver films coated on copper surface by replacement reaction,” Applied Surface Science, vol. 258, no. 19, pp. 7430–7434, Jul. 2012, doi: 10.1016/j.apsusc.2012.04.056.
[90]L. Hu et al., “Facile and low-cost fabrication of Ag-Cu substrates via replacement reaction for highly sensitive SERS applications,” Chemical Physics Letters, vol. 667, pp. 351–356, Jan. 2017, doi: 10.1016/j.cplett.2016.11.022.
[91]H. T. Hai, J. G. Ahn, D. J. Kim, J. R. Lee, H. S. Chung, and C. O. Kim, “Developing process for coating copper particles with silver by electroless plating method,” Surface and Coatings Technology, vol. 201, no. 6, pp. 3788–3792, Dec. 2006, doi: 10.1016/j.surfcoat.2006.03.025.
[92]L. Cao, T.C. Lee, R. Chen, Y.-S. Chang, H. Lu, N. Chao, Y.-L. Huang, C.-C. Wang, C.-Y. Huang, H.-C. Kuo, Y. Wu, and H.-H. Cheng, "Advanced Fanout packaging technology for hybrid substrate integration," in 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), 2022: IEEE, pp. 1362-1370, doi: 10.1109/ECTC51906.2022.00219.
[93]J.-g. Jang, K.-l. Suk, S.-h. Lee, J.-w. Park, G.-j. Jeon, J.-h. Park, J.-g. Jin, S.-c. Lee, G.b. Kim, J.-y. Choi, D.-w. Kim, D. Oh, and W.-k. Choi, "Advanced RDL interposer PKG technology for heterogeneous integration," in 2020 International Wafer Level Packaging Conference (IWLPC), 2020: IEEE, pp. 1-5, doi: 10.23919/IWLPC52010.2020.9375895.
[94]S.-P. Jeng and M. Liu, "Heterogeneous and Chiplet Integration Using Organic Interposer (CoWoS-R)," in 2022 International Electron Devices Meeting (IEDM), 2022: IEEE, pp. 3.2. 1-3.2. 4, doi:10.1109/IEDM45625.2022.10019517.
[95]J. H. Lau, G. Chen, C. Yang, A. Peng, J. Huang, C. Peng, C. Ko, H. Yang, Y. Chen, and T. Tseng, "Hybrid Substrates for Chiplet Design and Heterogeneous Integration Packaging," in 2022 International Electron Devices Meeting (IEDM), 2022: IEEE, pp. 3.5. 1-3.5. 4, doi: 10.1109/IEDM45625.2022.10019568.
[96]D. C. Yu, J. Yeh, K. C. Yee, and C. H. Tung, "Integrated Fan‐Out (InFO) for High Performance Computing," Embedded and Fan‐Out Wafer and Panel Level Packaging Technologies for Advanced Application Spaces: High Performance Compute and System‐in‐Package, pp. 95-124, 2022, doi: 10.1002/9781119793908.ch4.
[97]D. Bai et al., "Laser release technology for wafer level packaging," 2018 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 2018, pp. 1-3, doi: 10.1109/CSTIC.2018.8369304.
[98]C. -H. Lee et al., "Optimization of Laser Release Process for Throughput Enhancement of Fan-Out Wafer-Level Packaging," 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2018, pp. 1824-1829, doi: 10.1109/ECTC.2018.00273.
[99]M. Fowler, J. P. Massey, R. K. Trichur and M. Koch, "Dual-Carrier Process Using Mechanical and Laser Release Technologies for Advanced Wafer-Level Packaging," 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2018, pp. 1214-1219, doi: 10.1109/ECTC.2018.00187.
[100]C. Wei, Y. Ma, Y. Han, Y. Zhang, L. Yang, and X. Chen, “Study on Femtosecond Laser Processing Characteristics of Nano-Crystalline CVD Diamond Coating,” Applied Sciences, vol. 9, no. 20, p. 4273, Oct. 2019, doi: 10.3390/app9204273.
[101]C. -H. Lee et al., "Study of Bondable Laser Release Material Using 355 nm Energy to Facilitate RDL-First and Die-First Fan-Out Wafer-Level Packaging (FOWLP)," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 12, no. 4, pp. 692-699, April 2022, doi: 10.1109/TCPMT.2022.3156730.
[102]P. Andry et al., "Advanced wafer bonding and laser debonding," 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2014, pp. 883-887, doi: 10.1109/ECTC.2014.6897391.
[103]D. Xu et al., "A Novel Design of Temporary Bond Debond Adhesive Technology for Wafer-Level Assembly," 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2020, pp. 68-74, doi: 10.1109/ECTC32862.2020.00024.
[104]Y. -C. Huang, Y. -X. Lin, C. -K. Hsiung, Y. -T. Yang, T. -H. Hung and K. -N. Chen, "A Novel Low-Warpage Hyper RDL (HRDL) Interposer Enabled by Low Temperature Hybrid Bonding for Advanced Packaging Applications," in IEEE Electron Device Letters, vol. 45, no. 3, pp. 452-455, March 2024, doi: 10.1109/LED.2024.3352252.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top