|
[1] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/3/3f/ Toco_Toucan_%28Ramphastos_toco%29_in_Papaya_Tree_%28Carica_papaya% 29_%2828997424215%29.jpg [2] [Online]. Available: https://www.shutterstock.com/image-vector/ artificial-intelligence-ai-processor-chip-600nw-2290558891.jpg [3] [Online]. Available: https://en.pimg.jp/086/865/586/1/86865586.jpg [4] [Online]. Available: https://assets-global.website-files.com/5f75fe1dce99248be5a892db/ 65675d8fc22847beed4f30c3_6552522d4721d918c9e1a8d3_ 652459065e829ba5dff7799b_homomorphic-encryption-1024x978.png [5] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/thumb/9/9e/ SinusRhythmLabels.svg/1024px-SinusRhythmLabels.svg.png [6] [Online]. Available: https://cadenceheart.sg/condition/atrial-fibrillation/ [7] [Online]. Available: https://en.wikipedia.org/wiki/Atrioventricular_block [8] [Online]. Available: https://en.wikipedia.org/wiki/Right_bundle_branch_block [9] [Online]. Available: https://en.wikipedia.org/wiki/Left_bundle_branch_block [10] [Online]. Available: https://en.wikipedia.org/wiki/Premature_ventricular_contraction [11] [Online]. Available: https://en.wikipedia.org/wiki/ST_elevation [12] [Online]. Available: https://en.wikipedia.org/wiki/ST_depression [13] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/thumb/9/93/ LSTM_Cell.svg/450px-LSTM_Cell.svg.png [14] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/thumb/3/37/ Gated_Recurrent_Unit%2C_base_type.svg/1920px-Gated_Recurrent_Unit%2C_base_ type.svg.png [15] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/thumb/8/8f/ The-Transformer-model-architecture.png/600px-The-Transformer-model-architecture. png [16] S. Ali, T. Abuhmed, S. El-Sappagh, K. Muhammad, J. M. Alonso-Moral, R. Confalonieri, R. Guidotti, J. D. Ser, N. Díaz-Rodríguez, and F. Herrera, “Explainable artificial intelligence (xai): What we know and what is left to attain trustworthy artificial intelligence,” ScienceDirect, 2023. [17] [Online]. Available: https://medium.com/trustableai/%E5%AE%83%E6%98%AF%E6% 80%8E%E9%BA%BC%E7%9F%A5%E9%81%93%E7%9A%84-%E8%A7%A3% E9%87%8B%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92%E6%A8% A1%E5%9E%8B-f18f57d18d4f [18] M. Abououf, S. Singh, R. Mizouni, and H. Otrok, “Explainable ai for event and anomaly detection and classification in healthcare monitoring systems,” IEEE Internet of Things Journal, vol. 11, no. 2, pp. 3446–3457, 2024. [19] B.-Y. Mo, S. Nuannimnoi, A. Baskoro, A. Khan, J. A. D. Pratiwi, and C.-Y. Huang, “Clusteredshap: Faster gradientexplainer based on k-means clustering and selections of gradients in explaining 12-lead ecg classification model,” IAIT ’23: Proceedings of the 13th International Conference on Advances in Information Technology, no. 27, p. 1–8, 2017. [20] J. Jung, “Development of optimized user-recognition technology using multilayered xaibased ecg signals,” IEEE Internet of Things Journal, vol. 11, no. 6, pp. 10 856–10 864, 2024. [21] I. Neves, D. Folgado, S. Santos, M. Barandas, A. Campagner, L. Ronzio, F. Cabitza, and H. Gamboa, “Interpretable heartbeat classification using local model-agnostic explanations on ecgs,” Computers in Biology and Medicine, vol. 133, p. 104393, 2021. [22] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative localization,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2922–2929, 2016. [23] M. Jiang, Y. Qiu, W. Zhang, J. Zhang, Z. Wang, W. Ke, Y. Wu, and Z. Wang, “Visualization deep learning model for automatic arrhythmias classification,” 43, pp. 1–13, 2022. [24] L. L. M. Kang and B. Li, “Fashapley: Fast and approximated shapley based model pruning towards certifiably robust dnns,” IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), pp. 575–592, 2023. [25] A. Nayebi, S. Tipirneni, C. K. Reddy, B. Foreman, and V. Subbian, “Windowshap: An efficient framework for explaining time-series classifiers based on shapley values,” Journal of Biomedical Informatics, vol. 144, 2023. [26] G. Jiang, F. Zhuang, B. Song, T. Zhang, and D. Wang, “Prishap: Prior-guided shapley value explanations for correlated features,” CIKM ’23: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, p. 955–964, 2023. [27] Z. Liu, Y. Chen, H. Yu, Y. Liu, and L. Cui, “Gtg-shapley: Efficient and accurate participant contribution evaluation in federated learning,” ACM Transactions on Intelligent Systems and Technology, vol. 13, no. 60, pp. 1–21, 2022. [28] V. Turina, Z. Zhang, F. Esposito, and I. Matta, “Federated or split? a performance and privacy analysis of hybrid split and federated learning architectures,” 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), pp. 250–260, 2021. [29] A. Bakhtiarnia, N. Milošević, Q. Zhang, D. Bajović, and A. Iosifidis, “Dynamic split computing for efficient deep edge intelligence,” ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, 2023. [30] J. Kim, Y. Park, G. Kim, and S. J. Hwang, “Splitnet: learning to semantically split deep networks for parameter reduction and model parallelization,” Proceedings of the 34th International Conference on Machine Learning, vol. 70, p. 1866–1874, 2017. [31] W. Ni, H. Ao, H. Tian, Y. C. Eldar, and D. Niyato, “Fedsl: Federated split learning for collaborative healthcare analytics on resource-constrained wearable iomt devices,” IEEE Internet of Things Journal, 2024. [32] Z. Zhang, A. Pinto, V. Turina, F. Esposito, and I. Matta, “Privacy and efficiency of communications in federated split learning,” IEEE Transactions on Big Data, vol. 9, no. 5, pp. 1380–1391, 203. [33] A. Ayad, M. Barhoush, M. Frei, B. Völker, and A. Schmeink, “An efficient and private ecg classification system using split and semi-supervised learning,” IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 9, pp. 4261–4272, 2023. [34] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/thumb/1/11/ Centralized_federated_learning_protocol.png/1280px-Centralized_federated_learning_ protocol.png [35] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/thumb/9/9e/P2P_ network.svg/1024px-P2P_network.svg.png [36] [Online]. Available: https://eur-lex.europa.eu/eli/reg/2016/679/oj [37] [Online]. Available: https://privacy.ca.gov [38] [Online]. Available: https://www.ftc.gov/business-guidance/privacy-security/ childrens-privacy [39] [Online]. Available: https://www.hhs.gov/hipaa/index.html [40] [Online]. Available: https://www.ppc.go.jp/en/ [41] [Online]. Available: https://law.moj.gov.tw/Eng/LawClass/LawAll.aspx?PCode= I0050021#:~:text=The%20Personal%20Data%20Protection%20Act,proper%20use% 20of%20personal%20data.&text=The%20competent%20authority%20of%20the,(the% 20%22PDPC%22). [42] R. Nowrozy, K. Ahmed, A. Kayes, H. Wang, and T. R. McIntosh, “Privacy preservation of electronic health records in the modern era: A systematic survey,” ACM Computing Surveys, 2024. [43] A. LENHART, S. PARK, M. ZIMMER, and J. VITAK, “”you shouldn’t need to share your data”: Perceived privacy risks and mitigation strategies among privacy-conscious smart home power users,” Proceedings of the ACM on Human-Computer Interaction, vol. 7, no. 247, p. 1–34, 2023. [44] M. Yang, L. Lyu, J. Zhao, T. Zhu, and K.-Y. Lam, “Local differential privacy and its applications: A comprehensive survey,” ACM Computing Surveys, 2020. [45] W. Wei and L. Liu, “Trustworthy distributed ai systems: Robustness, privacy, and governance,” ACM Computing Surveys, 2024. [46] R. C. et al., “Advancing dierential privacy: Where we are now and future directions for real-world deployment,” Harvard Data Science Review, 2024. [47] K. Y. Chai and M. F. Zolkipli, “Review on confidentiality, integrity and availability in information security,” Journal of ICT in Education, vol. 8, no. 2, pp. 34–42, 2021. [48] [Online]. Available: https://securityscorecard.com/blog/what-is-the-cia-triad/ [49] [Online]. Available: https://mark43.com/resources/blog/ 3-pillars-of-data-security-confidentiality-availability-integrity/ 102 [50] M. Gul, “Fully homomorphic encryption with applications to privacy-preserving machine learning,” Bachelor’s thesis, Harvard College., 2023. [51] C. Gentry, “A fully homomorphic encryption scheme,” PhD’s thesis, Stanford University, 2009. [52] A. Viand, C. Knabenhans, and A. Hithnawi, “Verifiable fully homomorphic encryption,” 2023. [53] R. S. Sandhu and P. Samarati, “Access control: principle and practice,” IEEE Communications Magazine, vol. 32, no. 9, pp. 40–48, 1994. [54] E. Bertino, “Data security,” Data Knowledge Engineering, vol. 25, pp. 199–216, 1994. [55] F. L. et al., “An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection,” J. Med. Imag. Health Inform, vol. 8, no. 7, p. 1368–1373, 2018. [56] T. Garcia, 12-Lead ECG: The Art of Interpretation. Jones Bartlett Learning, 2013. [57] X. Y. D. Zhang, S. Yang and P. Zhang, “Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram,” iScience, vol. 24, no. 4, 2021. [58] [Online]. Available: https://github.com/shap/shap [59] A. T. Sundararajan, Mukund and Q. Yan, “Axiomatic attribution for deep networks.” Proceedings of the 34th International Conference on Machine Learning, vol. 70, 2017. [60] G. Tse, “Mechanisms of cardiac arrhythmias,” J. Arrhythmia, vol. 32, no. 2, p. 75–81, 2016. [61] G. Chow, J. Marine, and J. Fleg, “Epidemiology of arrhythmias and conduction disorders in older adults,” clinics in geriatric medicine. Med, p. 539–553, 2012.
|