跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張凱翔
研究生(外文):Chang, Kai-Hsiang
論文名稱:以隱私為中心的可解釋人工智慧技術應用於心電圖的跨平台分割計算
論文名稱(外文):SplitSHAP: Privacy-Centric XAI Techniques for Cross-Platform Split Computing in ECG Applications
指導教授:黃經堯黃經堯引用關係
指導教授(外文):Huang, Ching-Yao
口試委員:郭信甫陳威宇黃經堯
口試委員(外文):Kuo, Hsin-FuChen, Wei-YuHuang, Ching-Yao
口試日期:2024-07-25
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:103
中文關鍵詞:心臟病診斷可解釋人工智慧沙普利值分散式學習差異隱私
外文關鍵詞:Heart Disease DiagnosisExplainable AISHapley valueSplit ComputingDifferential Privacy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Experiment Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Overall Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 EXplainable Artificial Intelligence (XAI) . . . . . . . . . . . . . . . . . . . . 6
2.2 SHapley Additive exPlanations (SHAP) . . . . . . . . . . . . . . . . . . . . . 9
2.3 Split Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Privacy Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Data security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Classification Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Model Development and Deployment . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Model Split Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 Frontend Application Design . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Backend Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Baseline SHAP value estimation . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Proposed Approaches for SplitSHAP . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.1 Approach 0: Naive Exhaustive Integration of SHAPs . . . . . . . . . . 62
3.4.2 Approach 1: Integrated SHAPs . . . . . . . . . . . . . . . . . . . . . 67
3.4.3 Approach 2: Differentially Private SHAP . . . . . . . . . . . . . . . . 72
4 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1 Performance Metrics Results and Discussion . . . . . . . . . . . . . . . . . . . 78
4.1.1 Performance Metrics Definition . . . . . . . . . . . . . . . . . . . . . 78
4.1.2 Experiment’s Result and Discussion . . . . . . . . . . . . . . . . . . . 82
4.2 Visualization Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 84
5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
[1] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/3/3f/
Toco_Toucan_%28Ramphastos_toco%29_in_Papaya_Tree_%28Carica_papaya%
29_%2828997424215%29.jpg
[2] [Online]. Available: https://www.shutterstock.com/image-vector/
artificial-intelligence-ai-processor-chip-600nw-2290558891.jpg
[3] [Online]. Available: https://en.pimg.jp/086/865/586/1/86865586.jpg
[4] [Online]. Available: https://assets-global.website-files.com/5f75fe1dce99248be5a892db/
65675d8fc22847beed4f30c3_6552522d4721d918c9e1a8d3_
652459065e829ba5dff7799b_homomorphic-encryption-1024x978.png
[5] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/thumb/9/9e/
SinusRhythmLabels.svg/1024px-SinusRhythmLabels.svg.png
[6] [Online]. Available: https://cadenceheart.sg/condition/atrial-fibrillation/
[7] [Online]. Available: https://en.wikipedia.org/wiki/Atrioventricular_block
[8] [Online]. Available: https://en.wikipedia.org/wiki/Right_bundle_branch_block
[9] [Online]. Available: https://en.wikipedia.org/wiki/Left_bundle_branch_block
[10] [Online]. Available: https://en.wikipedia.org/wiki/Premature_ventricular_contraction
[11] [Online]. Available: https://en.wikipedia.org/wiki/ST_elevation
[12] [Online]. Available: https://en.wikipedia.org/wiki/ST_depression
[13] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/thumb/9/93/
LSTM_Cell.svg/450px-LSTM_Cell.svg.png
[14] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/thumb/3/37/
Gated_Recurrent_Unit%2C_base_type.svg/1920px-Gated_Recurrent_Unit%2C_base_
type.svg.png
[15] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/thumb/8/8f/
The-Transformer-model-architecture.png/600px-The-Transformer-model-architecture.
png
[16] S. Ali, T. Abuhmed, S. El-Sappagh, K. Muhammad, J. M. Alonso-Moral, R. Confalonieri,
R. Guidotti, J. D. Ser, N. Díaz-Rodríguez, and F. Herrera, “Explainable artificial intelligence
(xai): What we know and what is left to attain trustworthy artificial intelligence,”
ScienceDirect, 2023.
[17] [Online]. Available: https://medium.com/trustableai/%E5%AE%83%E6%98%AF%E6%
80%8E%E9%BA%BC%E7%9F%A5%E9%81%93%E7%9A%84-%E8%A7%A3%
E9%87%8B%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92%E6%A8%
A1%E5%9E%8B-f18f57d18d4f
[18] M. Abououf, S. Singh, R. Mizouni, and H. Otrok, “Explainable ai for event and anomaly
detection and classification in healthcare monitoring systems,” IEEE Internet of Things
Journal, vol. 11, no. 2, pp. 3446–3457, 2024.
[19] B.-Y. Mo, S. Nuannimnoi, A. Baskoro, A. Khan, J. A. D. Pratiwi, and C.-Y. Huang, “Clusteredshap:
Faster gradientexplainer based on k-means clustering and selections of gradients
in explaining 12-lead ecg classification model,” IAIT ’23: Proceedings of the 13th
International Conference on Advances in Information Technology, no. 27, p. 1–8, 2017.
[20] J. Jung, “Development of optimized user-recognition technology using multilayered xaibased
ecg signals,” IEEE Internet of Things Journal, vol. 11, no. 6, pp. 10 856–10 864,
2024.
[21] I. Neves, D. Folgado, S. Santos, M. Barandas, A. Campagner, L. Ronzio, F. Cabitza, and
H. Gamboa, “Interpretable heartbeat classification using local model-agnostic explanations
on ecgs,” Computers in Biology and Medicine, vol. 133, p. 104393, 2021.
[22] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features
for discriminative localization,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2922–2929, 2016.
[23] M. Jiang, Y. Qiu, W. Zhang, J. Zhang, Z. Wang, W. Ke, Y. Wu, and Z. Wang, “Visualization
deep learning model for automatic arrhythmias classification,” 43, pp. 1–13, 2022.
[24] L. L. M. Kang and B. Li, “Fashapley: Fast and approximated shapley based model pruning
towards certifiably robust dnns,” IEEE Conference on Secure and Trustworthy Machine
Learning (SaTML), pp. 575–592, 2023.
[25] A. Nayebi, S. Tipirneni, C. K. Reddy, B. Foreman, and V. Subbian, “Windowshap: An efficient
framework for explaining time-series classifiers based on shapley values,” Journal
of Biomedical Informatics, vol. 144, 2023.
[26] G. Jiang, F. Zhuang, B. Song, T. Zhang, and D. Wang, “Prishap: Prior-guided shapley
value explanations for correlated features,” CIKM ’23: Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management, p. 955–964, 2023.
[27] Z. Liu, Y. Chen, H. Yu, Y. Liu, and L. Cui, “Gtg-shapley: Efficient and accurate participant
contribution evaluation in federated learning,” ACM Transactions on Intelligent Systems
and Technology, vol. 13, no. 60, pp. 1–21, 2022.
[28] V. Turina, Z. Zhang, F. Esposito, and I. Matta, “Federated or split? a performance and
privacy analysis of hybrid split and federated learning architectures,” 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD), pp. 250–260, 2021.
[29] A. Bakhtiarnia, N. Milošević, Q. Zhang, D. Bajović, and A. Iosifidis, “Dynamic split computing
for efficient deep edge intelligence,” ICASSP 2023 - 2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, 2023.
[30] J. Kim, Y. Park, G. Kim, and S. J. Hwang, “Splitnet: learning to semantically split deep
networks for parameter reduction and model parallelization,” Proceedings of the 34th International
Conference on Machine Learning, vol. 70, p. 1866–1874, 2017.
[31] W. Ni, H. Ao, H. Tian, Y. C. Eldar, and D. Niyato, “Fedsl: Federated split learning for
collaborative healthcare analytics on resource-constrained wearable iomt devices,” IEEE
Internet of Things Journal, 2024.
[32] Z. Zhang, A. Pinto, V. Turina, F. Esposito, and I. Matta, “Privacy and efficiency of communications
in federated split learning,” IEEE Transactions on Big Data, vol. 9, no. 5, pp.
1380–1391, 203.
[33] A. Ayad, M. Barhoush, M. Frei, B. Völker, and A. Schmeink, “An efficient and private ecg
classification system using split and semi-supervised learning,” IEEE Journal of Biomedical
and Health Informatics, vol. 27, no. 9, pp. 4261–4272, 2023.
[34] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/thumb/1/11/
Centralized_federated_learning_protocol.png/1280px-Centralized_federated_learning_
protocol.png
[35] [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/thumb/9/9e/P2P_
network.svg/1024px-P2P_network.svg.png
[36] [Online]. Available: https://eur-lex.europa.eu/eli/reg/2016/679/oj
[37] [Online]. Available: https://privacy.ca.gov
[38] [Online]. Available: https://www.ftc.gov/business-guidance/privacy-security/
childrens-privacy
[39] [Online]. Available: https://www.hhs.gov/hipaa/index.html
[40] [Online]. Available: https://www.ppc.go.jp/en/
[41] [Online]. Available: https://law.moj.gov.tw/Eng/LawClass/LawAll.aspx?PCode=
I0050021#:~:text=The%20Personal%20Data%20Protection%20Act,proper%20use%
20of%20personal%20data.&text=The%20competent%20authority%20of%20the,(the%
20%22PDPC%22).
[42] R. Nowrozy, K. Ahmed, A. Kayes, H. Wang, and T. R. McIntosh, “Privacy preservation
of electronic health records in the modern era: A systematic survey,” ACM Computing
Surveys, 2024.
[43] A. LENHART, S. PARK, M. ZIMMER, and J. VITAK, “”you shouldn’t need to share your
data”: Perceived privacy risks and mitigation strategies among privacy-conscious smart
home power users,” Proceedings of the ACM on Human-Computer Interaction, vol. 7, no.
247, p. 1–34, 2023.
[44] M. Yang, L. Lyu, J. Zhao, T. Zhu, and K.-Y. Lam, “Local differential privacy and its applications:
A comprehensive survey,” ACM Computing Surveys, 2020.
[45] W. Wei and L. Liu, “Trustworthy distributed ai systems: Robustness, privacy, and governance,”
ACM Computing Surveys, 2024.
[46] R. C. et al., “Advancing dierential privacy: Where we are now and future directions for
real-world deployment,” Harvard Data Science Review, 2024.
[47] K. Y. Chai and M. F. Zolkipli, “Review on confidentiality, integrity and availability in
information security,” Journal of ICT in Education, vol. 8, no. 2, pp. 34–42, 2021.
[48] [Online]. Available: https://securityscorecard.com/blog/what-is-the-cia-triad/
[49] [Online]. Available: https://mark43.com/resources/blog/
3-pillars-of-data-security-confidentiality-availability-integrity/
102
[50] M. Gul, “Fully homomorphic encryption with applications to privacy-preserving machine
learning,” Bachelor’s thesis, Harvard College., 2023.
[51] C. Gentry, “A fully homomorphic encryption scheme,” PhD’s thesis, Stanford University,
2009.
[52] A. Viand, C. Knabenhans, and A. Hithnawi, “Verifiable fully homomorphic encryption,”
2023.
[53] R. S. Sandhu and P. Samarati, “Access control: principle and practice,” IEEE Communications
Magazine, vol. 32, no. 9, pp. 40–48, 1994.
[54] E. Bertino, “Data security,” Data Knowledge Engineering, vol. 25, pp. 199–216, 1994.
[55] F. L. et al., “An open access database for evaluating the algorithms of electrocardiogram
rhythm and morphology abnormality detection,” J. Med. Imag. Health Inform, vol. 8, no. 7,
p. 1368–1373, 2018.
[56] T. Garcia, 12-Lead ECG: The Art of Interpretation. Jones Bartlett Learning, 2013.
[57] X. Y. D. Zhang, S. Yang and P. Zhang, “Interpretable deep learning for automatic diagnosis
of 12-lead electrocardiogram,” iScience, vol. 24, no. 4, 2021.
[58] [Online]. Available: https://github.com/shap/shap
[59] A. T. Sundararajan, Mukund and Q. Yan, “Axiomatic attribution for deep networks.” Proceedings
of the 34th International Conference on Machine Learning, vol. 70, 2017.
[60] G. Tse, “Mechanisms of cardiac arrhythmias,” J. Arrhythmia, vol. 32, no. 2, p. 75–81,
2016.
[61] G. Chow, J. Marine, and J. Fleg, “Epidemiology of arrhythmias and conduction disorders
in older adults,” clinics in geriatric medicine. Med, p. 539–553, 2012.
電子全文 電子全文(網際網路公開日期:20270730)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top