[1]M. Dubey and P. L. Singh, "Automatic Emotion Recognition Using Facial Expression: A Review," International Research Journal of Engineering and Technology, 2016.
[2]Y. Hsu, J. Wang, W. Chiang and C. Hung, " Automatic ECG-Based Emotion Recognition in Music Listening," IEEE Transactions on Affective Computing, vol. 11, no. 1, pp. 85–99, 2020.
[3]Q. Zhang, X. X. Chen, Q. Y. Zhan, T. Yang, S. H. Xia. "Respiration-based emotion recognition with deep learning," Computers in Industry, vol. 92–93, pp. 84–90, 2017.
[4]J. Kim and E. Andre, "Emotion-specific dichotomous classification and feature-level fusion of multichannel biosignals for automatic emotion recognition," Proc. IEEE Int’l Conf. on Multisensor Fusion and Integration for Intelligent Systems, Seoul, Korea, 20–22 August 2008; pp. 114–119.
[5]L. Mirmohamadsadeghi, A. Yazdani and J.M. Vesin, "Using cardio-respiratory signals to recognize emotions elicited by watching music video clips," IEEE International Workshop on Multimedia Signal Processing, 2017.
[6]W. Seo, N. Kim, S. Kim, C. Lee and S.-M. Park, "Deep ECG-respiration network (DeepER net) for recognizing mental stress," Sensors, vol. 19, no. 13, pp. 3021, 2019.
[7]Z. Zeng, M. Pantic, G.I. Roisman, and T.S. Huang, “A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions,” IEEE Trans. Pattern Analysis and Machine Intelligence,vol. 31, no. 1, pp. 39-58, Mar. 2009.
[8]M. Pantic, M. Valstar, R. Rademaker, and L. Maat, “Web-Based Database for Facial Expression Analysis,” Proc. IEEE Int’l Conf. Multimedia and Expo, pp. 317-321, 2005.
[9]M.F. Valstar and M. Pantic, “Induced Disgust, Happiness and Surprise: An Addition to the MMI Facial Expression Database,” Proc. Int’l Conf. Language Resources and Evaluation, Workshop EMOTION, pp. 65-70, May 2010.
[10]E. Douglas-Cowie, R. Cowie, I. Sneddon, C. Cox, O. Lowry, M. McRorie, J.-C. Martin, L. Devillers, S. Abrilian, A. Batliner, N. Amir, and K. Karpouzis, “The HUMAINE Database: Addressing the Collection and Annotation of Naturalistic and Induced Emotional Data,” Proc. Second Int’l Conf. Affective Computing and Intelligent Interaction, A. Paiva et al., pp. 488-500, 2007.
[11]E. Douglas-cowie, R. Cowie, and M. Schro¨der, “A New Emotion Database: Considerations, Sources and Scope,” Proc. ISCA Int’l Technical Research Workshop Speech and Emotion, pp. 39-44, 2000.
[12]M. Grimm, K. Kroschel, and S. Narayanan, “The Vera am Mittag German Audio-Visual Emotional Speech Database,” Proc. IEEE Int’l Conf. Multimedia and Expo, pp. 865-868, Apr. 2008.
[13]J.A. Healey and R.W. Picard, “Detecting Stress during Real-World Driving Tasks Using Physiological Sensors,” IEEE Trans. Intelligent Transportation Systems, vol. 6, no. 2, pp. 156-166, June 2005.
[14]S. Koelstra, C. Mu¨ hl, M. Soleymani, A. Yazdani, J.-S. Lee, T. Ebrahimi, T. Pun, A. Nijholt, and I. Patras, “DEAP: A Database for Emotion Analysis Using Physiological Signals,” IEEE Trans. Affective Computing, vol. 3, no. 1, pp. 18-31, Jan.-Mar. 2012.
[15]M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, “A multimodal database for affect recognition and implicit tagging,” IEEE Trans. Affect. Comput., vol. 3, no. 1, pp. 42–55, Jan.-Mar. 2012.
[16]Albu-Schaeffer, A., van den Broek, E.L., Castellini, C., Schwenker, F., Sharma, K. ‘ A dataset of continuous affect annotations and physiological signals for emotion analysis’. Scientific Data, vol. 6, no. 1, pp 196, Oct, 2019.
[17]W. Wen, G. Liu, N. Cheng, J. Wei, P. Shangguan, and W. Huang, “Emotion recognition based on multi-variant correlation of physiological signals,” IEEE Trans. Affect. Comput., vol. 5, no. 2, pp. 126– 140, Apr.-Jun. 2014.
[18]P. Ekman, “An argument for basic emotions,” Cognition Emotion, vol. 6, pp. 169–200, 1992.
[19]J. Kim and E. Andr_e, “Emotion recognition based on physiological changes in music listening,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 12, pp. 2067–2083, Dec. 2008.
[20]F. Agrafioti, D. Hatzinakos, and A. K. Anderson, “ECG pattern analysis for emotion detection,” IEEE Trans. Affect. Comput., vol. 3, no. 1, pp. 102–115, Jan.-Mar. 2012.
[21]J. Posner, J. A. Russell, and B. S. Peterson, “The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology,” Develop. Psychopathology, vol. 17, no. 3, pp. 715–734, 2005.
[22]M. D. van der Zwaag, J. H. Janssen, and J. H. D. M. Wesrerlink, “Directing physiology and mood through music: Validation of an affectice music player,” IEEE Trans. Affect. Comput., vol. 4, no. 1, pp. 57–68, Jan.-Mar. 2013.
[23]Tongshuai Song, Guanming Lu, and Jingjie Yan. 2020. Emotion recognition based on physiological signals using convolution neural networks. In Proceedings of the 2020 12th International Conference on Machine Learning and Computing. 161–165.
[24]Martinez, H.P.; Bengio, Y.; Yannakakis, G.N. Learning deep physiological models of affect. IEEE Comput. Intell. Mag. 2013, 8, 20–33.
[25]Yang, Y.;Wu, Q.; Qiu, M.;Wang, Y.; Chen, X. Emotion Recognition from Multi-Channel EEG through Parallel Convolutional Recurrent Neural Network. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–7.
[26]M. Ben Henia Wiem and Z. Lachiri, "Emotion assessing using valence-arousal evaluation based on peripheral physiological signals and support vector machine," 2016 4th International Conference on Control Engineering & Information Technology (CEIT), Hammamet, Tunisia, 2016, pp. 1-5, doi: 10.1109/CEIT.2016.7929117.
[27]M. B. H. Wiem and Z. Lachiri, “Emotion classification in arousal valence model using MAHNOB-HCI database,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 3, pp. 318–323, 2017.
[28]A. Albraikan, D. P. Tobón and A. El Saddik, "Toward User-Independent Emotion Recognition Using Physiological Signals," in IEEE Sensors Journal, vol. 19, no. 19, pp. 8402-8412, 1 Oct.1, 2019, doi: 10.1109/JSEN.2018.2867221.
[29]Guo, R.; Li, S.; He, L.; Gao, W.; Qi, H.; Owens, G. Pervasive and unobtrusive emotion sensing for human mental health. In Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare, Venice, Italy, 5–8 May 2013; pp. 436–439.
[30]Malmivuo, J., Plonsey, R., Bioelectromagnetism, 15, 12-Lead ECG System, Oxford University Press, 1975.
[31]Luthra A. ECG Made Easy. Jaypee Brothers, Medical Publisher; Delhi, India: 2012.
[32]The ECG leads: electrodes, limb leads, chest (precordial) leads, 12-Lead ECG (EKG) – ECG & ECHO, avaliable from: https://ecgwaves.com/topic/ekg-ecg-leads-electrodes-systems-limb-chest-precordial/.
[33]Szczepański A., Saeed K. A mobile device system for early warning of ECG anomalies. Sensors. 2014;14:11031–11044.
[34]EKMAN, Paul; FRIESEN, Wallace V. Constants across cultures in the face and emotion. Journal of personality and social psychology, 1971, 17.2: 124.
[35]Plutchik, R. The Nature of Emotions. Am. Sci. 2001, 89, 344–350.
[36]Goshvarpour A., Abbasi A., Goshvarpour A. An accurate emotion recognition system using ECG and GSR signals and matching pursuit method. Biomed. J. 2017;40:355–368.
[37]Minhad K.N., Ali S.H.M.D., Reaz M.B.I. A design framework for human emotion recognition using electrocardiogram and skin conductance response signals. J. Eng. Sci. Technol.
[38]Wei W., Jia Q., Feng Y., Chen G. Emotion Recognition Based on Weighted Fusion Strategy of Multichannel Physiological Signals. Comput. Intell. Neurosci. 2018;2018:5296523.
[39]Bulagang A.F., Weng N.G., Mountstephens J., Teo J. A review of recent approaches for emotion classification using electrocardiography and electrodermography signals. Inform. Med. Unlocked. 2020;20:100363. doi: 10.1016/j.imu.2020.100363.
[40]Shu, L.; Xie, J.; Yang, M.; Li, Z.; Li, Z.; Liao, D.; Xu, X.; Yang, X. A Review of Emotion Recognition Using Physiological Signals. Sensors 2018, 18, 2074.
[41]RUSSELL, James A. A circumplex model of affect. Journal of personality and social psychology, 1980, 39.6: 1161.
[42]Machine Recognition of Music Emotion: A Review - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/The-2D-valence-arousal-emotion-space-Russell-1980-the-position-of-the-affective_fig1_254004106
[43]R. E. Thayer, The Biopsychology of Mood and Arousal, New York, NY, USA: Oxford Univ. Press, 1989.
[44]BĂLAN, Oana, et al. Emotion classification based on biophysical signals and machine learning techniques. Symmetry, 2019, 12.1: 21.
[45]Mehrabian A. Comparison of the PAD and PANAS as models for describing emotions and for differentiating anxiety from depression. J. Psychopathol. Behav. Assess. 1997;19:331–357.
[46]Pothisarn, C.; Klomjit, J.; Ngaopitakkul, A.; Jettanasen, C.; Asfani, D.A.; Negara, I.M.Y. Comparison of various mother wavelets for fault classification in electrical systems. Appl. Sci. 2020, 10, 1203.
[47]M. Soleymani, F. Villaro-Dixon, T. Pun, G. Chanel, Toolbox for Emotional feAture extraction from Physiological signals (TEAP). Frontiers in ICT. 4 (2017), doi:10.3389/fict.2017.00001.
[48]Jirayucharoensak, S.; Pan-Ngum, S.; Israsena, P. EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Sci. World J. 2014, 2014, 627892.
[49]I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT press, 2016.
[50]黃頎凱(2022)。結合小波散射與卷積神經網路之內涵式音樂情緒辨識系統。國立陽明交通大學電信工程研究所碩士論文,新竹市。[51]陳宥丞(2021)。基於時間卷積網路之強健性心電圖身分識別系統。國立陽明交通大學電機工程學系碩士論文,新竹市。[52]C. Li, C. Zheng, and C. Tai, “Detection of ECG characteristic points using wavelet transforms,” IEEE Transactions on Biomedical Engineering, vol. 42, no. 1, pp. 21–28, 1995.
[53]T. Ince, S. Kiranyaz, and M. Gabbouj, “A generic and robust system for automated patient-specific classification of ECG signals,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 5, pp. 1415–1426, 2009.
[54]R. J. Martis, U. R. Acharya, and L. C. Min, “ECG beat classification using PCA, LDA, ICA and discrete wavelet transform,” Biomedical Signal Processing and Control, vol. 8, no. 5, pp. 437–448, 2013.
[55]S. Mallat, “Group invariant scattering,” Communications on Pure and Applied Mathematics, vol. 65, no. 10, pp. 1331–1398, 2012.
[56]J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1872–1886, 2013.
[57]S. Mallat, “Understanding deep convolutional networks,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065, article 20150203, 2016.
[58]Anden, J., Mallat, S. (2014) Deep scattering spectrum. IEEE Transactions on Signal Processing, 62(16), 4114-4128.
[59]Daubechies, I.; Heil, C. Ten Lectures on Wavelets. Comput. Phys. 1992, 6, 697.
[60]E. M. Polo, M. Mollura, M. Lenatti, M. Zanet, A. Paglialonga and R. Barbieri, "Emotion recognition from multimodal physiological measurements based on an interpretable feature selection method," 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico, 2021, pp. 989-992, doi: 10.1109/EMBC46164.2021.9631019.
[61]E. M. Polo, M. Mollura, M. Zanet, M. Lenatti, A. Paglialonga and R. Barbieri, "Analysis of the Effect of Emotion Elicitation on the Cardiovascular System," 2021 Computing in Cardiology (CinC), Brno, Czech Republic, 2021, pp. 1-4, doi: 10.23919/CinC53138.2021.9662859.
[62]J. Pan, W. J. Tompkins, “A Real-Time QRS Detection Algorithm,” Biomedical Engineering, IEEE Transactions, Vol. BME-32, No. 3, 1985, pp. 230-236.
[63]G. Rigas, C. D. Katsis, G. Ganiatsas, and D. I. Fotiadis, “A User Independent, Biosignal Based, Emotion Recognition Method,” in User Modeling 2007, Springer Berlin Heidelberg, pp. 314–318.
[64]Nussinovitch U, Elishkevitz KP, Katz K, Nussinovitch M, Segev S, Volovitz B, Nussinovitch N. Reliability of Ultra-Short ECG Indices for Heart Rate Variability. Ann Noninvasive Electrocardiol. 2011 Apr;16(2):117-22. doi: 10.1111/j.1542-474X.2011.00417.x. PMID: 21496161; PMCID: PMC6932379.
[65]Cortes, C.; Vapnik, V. Support-vector networks. Machine Learning. 1995, 20 (3): 273–297. doi:10.1007/BF00994018.
[66]Boser, B. E.; Guyon, I. M.; Vapnik, V. N. A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on Computational learning theory – COLT '92. 1992: 144. ISBN 089791497X. doi:10.1145/130385.130401
[67]MathWork[Online]
Available: https://www.mathworks.com/help/wavelet/ug/wavelet-scattering.html
[68]Patanè, A., Kwiatkowska, M. (2019). Calibrating the Classifier: Siamese Neural Network Architecture for End-to-End Arousal Recognition from ECG. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R., Sciacca, V. (eds) Machine Learning, Optimization, and Data Science. LOD 2018. Lecture Notes in Computer Science(), vol 11331. Springer, Cham.
[69]音樂情緒與樂理[Online]
Available: https://i.imgur.com/OUNCulQ.png