[1]S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997, doi: 10.1162/neco.1997.9.8.1735.
[2]X. Deng, S. Wang, X. Huang, H. Liu, and B. Cui, "Modified Modeling Method of Quartz Crystal Resonator Frequency-Temperature Characteristic With Considering Thermal Hysteresis," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 68, no. 3, pp. 890-898, Mar 2021, doi: 10.1109/TUFFC.2020.3014887.
[3]Y. Xu, B. Cui, J. Li, J. Lin, S. Zhang, and Y. Shi, "Modeling of temperature-frequency characteristics of crystal oscillator based on BP neural network," presented at the 2021 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), 2021.
[4]J. R. Vig, "Military applications of high accuracy frequency standards and clocks," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 40, no. 5, pp. 522-527, 1993, doi: 10.1109/58.238104.
[5]Q. Gu, T. Huang, L. Pu, and S. Xie, "Design of Electrical Parameter Measurement System of Quartz Crystal Oscillator," presented at the 2017 10th International Symposium on Computational Intelligence and Design (ISCID), 2017.
[6]P. Kumar and S. Rekha, "Fast startup crystal oscillator design," in 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), 1-2 Aug. 2017 2017, pp. 3844-3849, doi: 10.1109/ICECDS.2017.8390183.
[7]S. Iguchi, T. Sakurai, and M. Takamiya, "A Low-Power CMOS Crystal Oscillator Using a Stacked-Amplifier Architecture," IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 3006-3017, 2017, doi: 10.1109/jssc.2017.2743174.
[8]J. Wang, J.-D. Yu, Y.-K. Yong, and T. Imai, "A finite element analysis of frequency–temperature relations of AT-cut quartz crystal resonators with higher-order Mindlin plate theory," Acta Mechanica, vol. 199, pp. 117-130, 08/01 2008, doi: 10.1007/s00707-007-0538-5.
[9]D. Oh, K. Mun, H. Lee, and J. Yoo, "Frequency-Temperature Characteristics of AT-Cut Crystal Resonator and Oscillator Utilizing Relaxator Ceramic as Load Capacitor," Japanese Journal of Applied Physics, vol. 44, pp. 6661-6663, 09/01 2005, doi: 10.1143/JJAP.44.6661.
[10]J. A. Kusters and J. R. Vig, "Hysteresis in quartz resonators-a review," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 38, no. 3, pp. 281-290, 1991, doi: 10.1109/58.79613.
[11]H. Zhou, C. W. T. Nicholls, T. Kunz, and H. M. Schwartz, "Frequency Accuracy & Stability Dependencies of Crystal Oscillators," 2008.
[12]A. Ballato, "Static and Dynamic Behavior of Quartz Resonators," IEEE Transactions on Sonics and Ultrasonics, vol. 26, no. 4, pp. 299-305, 1979, doi: 10.1109/T-SU.1979.31103.
[13]M. S. Islam, R. Wei, J. Lee, Y. Xie, S. Mandal, and P. X. Feng, "A Temperature-Compensated Single-Crystal Silicon-on-Insulator (SOI) MEMS Oscillator with a CMOS Amplifier Chip," Micromachines (Basel), vol. 9, no. 11, Oct 29 2018, doi: 10.3390/mi9110559.
[14]T.-H. Tran, H.-W. Peng, P. C. P. Chao, and J.-W. Hsieh, "A Low-ppm Digitally Controlled Crystal Oscillator Compensated by a New 0.19-mm2 Time-Domain Temperature Sensor," IEEE Sensors Journal, vol. 17, no. 1, pp. 51-62, 2017, doi: 10.1109/jsen.2016.2623744.
[15]R. L. Filler, "Thermal hysteresis in quartz crystal resonators and oscillators," in 44th Annual Symposium on Frequency Control, 23-25 May 1990 1990, pp. 176-184, doi: 10.1109/FREQ.1990.177495.
[16]彭玄文, "以0.18微米CMOS製程設計一高精準度低功率之溫度補償石英震盪器," 碩士, 電控工程研究所, 國立交通大學, 新竹市, 2014. [Online]. Available: https://hdl.handle.net/11296/ctzhx3[17]謝景文, "以0.18微米CMOS製程設計一具有自動校正之溫度補償石英振盪器," 碩士, 影像與生醫光電研究所, 國立交通大學, 2015. [Online]. Available: http://thesis.lib.nccu.edu.tw/record/#GT070258216%22.[18]H. W. Peng, C. H. Su, P. C. P. Chao, J. W. Hsieh, and C. K. Chang, "A new small-sized pierce crystal oscillator readout with novel on-chip all-digital temperature sensing and compensation," in SENSORS, 2014 IEEE, 2-5 Nov. 2014 2014, pp. 225-228, doi: 10.1109/ICSENS.2014.6984974.
[19]F. Tan, S. Liao, L. Xu, D. Qiu, L. Guo, and P. Ye, "New Method for 100-MHz High-Frequency Temperature-Compensated Crystal Oscillator," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 12, pp. 2745-2749, 2020, doi: 10.1109/TUFFC.2020.3013664.
[20]J. C. Esterline, "Temperature compensation of crystal oscillators using an Artificial Neural Network," in 2012 IEEE International Frequency Control Symposium Proceedings, 21-24 May 2012 2012, pp. 1-7, doi: 10.1109/FCS.2012.6243582.