|
[1] Dean A Pomerleau. “Alvinn: An autonomous land vehicle in a neural network”. In: Advances in neural information processing systems 1 (1988). [2] Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. “A survey on motion prediction and risk assessment for intelligent vehicles”. In: ROBOMECH journal 1.1 (2014), pp. 1–14. [3] Wei Zhan, Arnaud de La Fortelle, Yi-Ting Chen, Ching-Yao Chan, and Masayoshi Tomizuka. “Probabilistic prediction from planning perspective: Problem formula- tion, representation simplification and evaluation metric”. In: 2018 IEEE intelligent vehicles symposium (IV). IEEE. 2018, pp. 1150–1156. [4] Jaume Barceló et al. Fundamentals of traffic simulation. Vol. 145. Springer, 2010. [5] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong Li, and Cordelia Schmid. “Vectornet: Encoding hd maps and agent dynamics from vector- ized representation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 11525–11533. [6] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel Ur- tasun. “Learning lane graph representations for motion forecasting”. In: ComputerVision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16. Springer. 2020, pp. 541–556. [7] Jiquan Ngiam, Benjamin Caine, Vijay Vasudevan, Zhengdong Zhang, Hao-Tien Lewis Chiang, Jeffrey Ling, Rebecca Roelofs, Alex Bewley, Chenxi Liu, Ashish Venugopal, et al. “Scene Transformer: A unified architecture for predicting multiple agent trajectories”. In: arXiv preprint arXiv:2106.08417 (2021). [8] Balakrishnan Varadarajan, Ahmed Hefny, Avikalp Srivastava, Khaled S Refaat, Nigamaa Nayakanti, Andre Cornman, Kan Chen, Bertrand Douillard, Chi Pang Lam, Dragomir Anguelov, et al. “Multipath++: Efficient information fusion and trajectory aggregation for behavior prediction”. In: 2022 International Conference on Robotics and Automation (ICRA). IEEE. 2022, pp. 7814–7821. [9] Zikang Zhou, Luyao Ye, Jianping Wang, Kui Wu, and Kejie Lu. “Hivt: Hierar- chical vector transformer for multi-agent motion prediction”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 8823–8833. [10] Zikang Zhou, Jianping Wang, Yung-Hui Li, and Yu-Kai Huang. “Query-Centric Trajectory Prediction”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, pp. 17863–17873. [11] Xishun Wang, Tong Su, Fang Da, and Xiaodong Yang. “ProphNet: Efficient agent- centric motion forecasting with anchor-informed proposals”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, pp. 21995– 22003. [12] Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. “Motion transformer with global intention localization and local movement refinement”. In: Advances in Neural Information Processing Systems 35 (2022), pp. 6531–6543. [13] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. “End-to-end object detection with transformers”. In: European conference on computer vision. Springer. 2020, pp. 213–229. [14] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kae- semodel Pontes, Deva Ramanan, Peter Carr, and James Hays. “Argoverse 2: Next Generation Datasets for Self-Driving Perception and Forecasting”. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2). 2021. url: https://openreview.net/forum?id=vKQGe36av4k. [15] Alexander Barth and Uwe Franke. “Where will the oncoming vehicle be the next second?” In: 2008 IEEE Intelligent Vehicles Symposium. IEEE. 2008, pp. 1068– 1073. [16] Sajjad Mozaffari, Omar Y Al-Jarrah, Mehrdad Dianati, Paul Jennings, and Alexan- dros Mouzakitis. “Deep learning-based vehicle behavior prediction for autonomous driving applications: A review”. In: IEEE Transactions on Intelligent Transportation Systems 23.1 (2020), pp. 33–47. [17] Yanjun Huang, Jiatong Du, Ziru Yang, Zewei Zhou, Lin Zhang, and Hong Chen. “A survey on trajectory-prediction methods for autonomous driving”. In: IEEE Transactions on Intelligent Vehicles 7.3 (2022), pp. 652–674. [18] Long Chen, Yuchen Li, Chao Huang, Bai Li, Yang Xing, Daxin Tian, Li Li, Zhongxu Hu, Xiaoxiang Na, Zixuan Li, et al. “Milestones in Autonomous Driving and Intel- ligent Vehicles: Survey of Surveys”. In: IEEE Transactions on Intelligent Vehicles 8.2 (2023), pp. 1046–1056. [19] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi Nguyen, Tzu-Kuo Huang, Jeff Schneider, and Nemanja Djuric. “Multimodal trajectory pre- dictions for autonomous driving using deep convolutional networks”. In: 2019 Inter- national Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 2090– 2096. [20] ByeoungDo Kim, Seong Hyeon Park, Seokhwan Lee, Elbek Khoshimjonov, Dong- suk Kum, Junsoo Kim, Jeong Soo Kim, and Jun Won Choi. “Lapred: Lane-aware prediction of multi-modal future trajectories of dynamic agents”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 14636–14645. [21] Zhiyu Huang, Xiaoyu Mo, and Chen Lv. “Multi-modal motion prediction with transformer-based neural network for autonomous driving”. In: 2022 International Conference on Robotics and Automation (ICRA). IEEE. 2022, pp. 2605–2611. [22] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and Fa- bien Moutarde. “Home: Heatmap output for future motion estimation”. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE. 2021, pp. 500–507. [23] Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Ben Sapp, Balakrishnan Varadara- jan, Yue Shen, Yi Shen, Yuning Chai, Cordelia Schmid, et al. “Tnt: Target-driven trajectory prediction”. In: Conference on Robot Learning. PMLR. 2021, pp. 895– 904. [24] Junru Gu, Chen Sun, and Hang Zhao. “Densetnt: End-to-end trajectory prediction from dense goal sets”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 15303–15312. [25] Lingyao Zhang, Po-Hsun Su, Jerrick Hoang, Galen Clark Haynes, and Micol Marchetti- Bowick. “Map-adaptive goal-based trajectory prediction”. In: Conference on Robot Learning. PMLR. 2021, pp. 1371–1383. [26] Nachiket Deo and Mohan M Trivedi. “Convolutional social pooling for vehicle tra- jectory prediction”. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2018, pp. 1468–1476. [27] Mohamed Hasan, Evangelos Paschalidis, Albert Solernou, He Wang, Gustav Markkula, and Richard Romano. “Maneuver-based anchor trajectory hypotheses at round- abouts”. In: arXiv preprint arXiv:2104.11180 (2021). [28] Mudasir A Ganaie, Minghui Hu, AK Malik, M Tanveer, and PN Suganthan. “En- semble deep learning: A review”. In: Engineering Applications of Artificial Intelli- gence 115 (2022), p. 105151. [29] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. “Nerf: Representing scenes as neural radiance fields for view synthesis”. In: Communications of the ACM 65.1 (2021), pp. 99–106. [30] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. “Fourier features let networks learn high frequency functions in low dimensional do- mains”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 7537– 7547. [31] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. “Trajec- tron++: Dynamically-feasible trajectory forecasting with heterogeneous data”. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16. Springer. 2020, pp. 683–700. [32] Yicheng Liu, Jinghuai Zhang, Liangji Fang, Qinhong Jiang, and Bolei Zhou. “Multi- modal motion prediction with stacked transformers”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 7577–7586. [33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances in neural information processing systems 30 (2017). [34] Stefan Lee, Senthil Purushwalkam Shiva Prakash, Michael Cogswell, Viresh Ranjan, David Crandall, and Dhruv Batra. “Stochastic multiple choice learning for training diverse deep ensembles”. In: Advances in Neural Information Processing Systems 29 (2016). [35] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”. In: arXiv preprint arXiv:1711.05101 (2017). [36] Ilya Loshchilov and Frank Hutter. “Sgdr: Stochastic gradient descent with warm restarts”. In: arXiv preprint arXiv:1608.03983 (2016). [37] Mingkun Wang, Xinge Zhu, Changqian Yu, Wei Li, Yuexin Ma, Ruochun Jin, Xi- aoguang Ren, Dongchun Ren, Mingxu Wang, and Wenjing Yang. “Ganet: Goal area network for motion forecasting”. In: 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2023, pp. 1609–1615.
|