跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 18:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮柏翔
研究生(外文):Juan, Po-Hsiang
論文名稱:奈米枝晶結構加工電極用於汗液中左旋多巴電化學量測
論文名稱(外文):Electrochemical Measurement of Levodopa in Sweat Using Nano-dendritic Modified Electrodes
指導教授:戴立嘉
指導教授(外文):TAI, LI-CHIA
口試委員:戴立嘉曾銘綸連德軒
口試委員(外文):Tai, Li-ChiaTseng, Ming-LunLien, Der-Hsien
口試日期:2023-09-18
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:中文
論文頁數:68
中文關鍵詞:可穿戴式裝置左旋多巴電化學汗液感測器奈米枝金改性電極
外文關鍵詞:Wearable devicelevodopaElectrochemistrysweat sensorgold nano-dendritic modified electrode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著個人化醫療的興起,可穿戴式裝置在其中扮演重要的角色,藉由蒐集與監測使用者的健康、運動和生理等數據,可以實現個性化的健康監測、早期發現健康狀況以及慢性病的管理。在生理數據的蒐集上,汗液是良好的量測標的,汗液能夠提供豐富的生理訊息,也能夠進行無創且連續性的量測。
本研究開發了包含奈米枝金結構交聯酪胺酸酶的電化學感測器,用於量測帕金森氏症的藥物左旋多巴在汗液裡濃度表現,以汗液裡的左旋多巴為量測標的,透過連續性的量測可以了解患者長時間藥物的代謝狀況,這些資訊可以提供醫生用於改善患者的投藥策略,使患者能夠獲得最佳的治療效果。在感測器的製造方面,奈米枝金結構能夠為感測器帶來更高的量測電流以及提供生物識別元件固定的錨點,酪胺酸酶則作為左旋多巴的氧化酶,能夠為感測器帶來良好的靈敏度與選擇性。我們採用金絲網印刷電極作為感測器改性的基底電極,並建立與優化改性的步驟,使感測器具有好的效能與可依賴性。本研究著重於利用感測器進行左旋多巴量測,並分析與比較各電化學方法得到的結果,制定出最佳量測方式使得感測器在左旋多巴的量測上呈現優異的效能並滿足左旋多巴在汗液裡的濃度範圍。最後利用感測器在汗液樣本中進行量測來模擬實際應用環境下感測器的表現,而結果顯示了感測器對於汗液中左旋多巴具有選擇性且仍然具備良好的靈敏度。本研究提供資訊與結果能夠作為後續開發可穿戴式汗液感測器的基石。
With the rise of personalized medicine in recent years, wearable devices play an important role in it. Through the collection and tracking of users' health, exercise, and physiological information, we can achieve tailored personalized health monitoring, timely identification of health issues, and effective management of chronic illnesses. For the wearable device, sweat is a good measurement target that can provide rich physiological information and can also be measured non-invasively and continuously.
In this study, an electrochemical sensor involving gold nano-dendritic cross-linked with tyrosinase was developed for the measurement of levodopa, a drug used in Parkinson's disease treatment. Gold screen-printed electrodes were employed as substrates for the modified sensor, and established and optimized the modification steps. For levodopa detection, we assessed the different electrochemical methods, ultimately identifying the most effective one to ensure superior sensor performance. Additionally, we evaluated the sensor's practicality by measuring levodopa in sweat samples, mimicking real-world conditions. and the results demonstrated that the sensor is selective for levodopa in sweat and has good sensitivity. This study serves as a reference for the future development of wearable sweat sensors.
摘要i
ABSTRACTii
目錄iii
圖目錄v
表目錄vii
第一章 緒論1
1.1 前言1
1.2 研究目的2
第二章 研究背景文獻回顧3
2.1左旋多巴簡介3
2.2 透過奈米結構改性的左旋多巴電化學感測器4
2.2.1電極的選擇4
2.2.2奈米結構改法的方法5
2.3電沉積簡介6
2.3.1沉積理論6
2.3.2影響沉積的因素8
2.3.3枝金沉積原理9
2.4電化學簡介9
2.4.1電化學系統10
2.4.2伏安法與安培法介紹10
2.5生物識別元件的固定方法15
第三章 實驗部分與方法17
3.1儀器17
3.2試劑18
3.3溶液配製18
3.4感測器製作流程19
3.4.1 電極預處理19
3.4.2 感測器製作19
3.5電化學量測21
3.5.1金絲網印刷電極氧化還原能力測試21
3.5.2枝金的穩定性與氧化還原能力測試22
3.5.3左旋多巴量測22
3.6差分脈衝伏安法與方波伏安法參數優化24
3.6.1差分脈衝伏安法參數優化24
3.6.2方波伏安法參數優化25
3.7連續量測26
3.8干擾物量測27
3.9實際汗液量測27
第四章 結果與討論28
4.1感測器電化學特性28
4.1.1電極改性前電化學特性28
4.1.2電極改性後電化學特性30
4.2單純金電極左旋多巴量測33
4.3感測器左旋多巴量測38
4.4差分脈衝伏安法與方波伏安法參數優化41
4.4.1差分脈衝伏安法參數優化41
4.4.2方波伏安法參數優化43
4.5左旋多巴連續量測與干擾物測試45
4.6 差分脈衝安培法用於左旋多巴量測與干擾物測試49
4.7效能比較53
4.8 可重複性評估54
4.9實際汗液量測56
4.9.1計時電流法用於汗液的連續量測與干擾物量測56
4.9.2差分脈衝安培法用於汗液的連續量測與干擾物量測59
第五章 結論62
5.1總結62
5.2未來展望63
參考文獻64
1.I. C. Jeong; D. Bychkov; P. C. Searson, Wearable Devices for Precision Medicine and Health State Monitoring. IEEE Trans. Biomed. Eng. 2019, 66(5), 1242 – 1258.
2.W. Gao; S. Emaminejad; H. Y. Y. Nyein, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529(7587), 509-514.
3.S. Bian; B. Zhu; G. Rong, Towards wearable and implantable continuous drug monitoring: A review. J. Pharm. Anal. 2020, 11(1), 1-14.
4.L. C. Tai; W. Gao; M. Chao, Methylxanthine Drug Monitoring with Wearable Sweat Sensors. Adv. Mater. 2018, 30 (23), 1707442.
5.D. E. Raya; S. Todd; M. S. Okun, The Emerging Evidence of the Parkinson Pandemic. Journal of Parkinson's Disease 2018, 8, 10.3233/JPD-181474
6.Bastiaan R Bloem; Michael S Okun; Christine Klein, Parkinson's disease. Lancet 2021, 397, 2284–303.
7.The Parkinson Study Group, Levodopa and the Progression of Parkinson's Disease, N. Engl. J. Med. 2004, 351, 2498-2508.
8.M. Tsunoda; M. Hirayama; T. Tsuda, Noninvasive monitoring of plasma L-dopa concentrations using sweat samples in Parkinson's disease. Clinica Chimica Acta 2015, 442.
9.W. W. He; X. W. Zhou; J. Q. Lu, Simultaneous determination of benserazide and levodopa by capillary electrophoresis–chemiluminescence using an improved interface. Journal of Chromatography A 2006, 1131
10.F. Belal; F. Ibrahim; Z.A. Sheribah; H. Alaa, Micellar HPLC-UV method for the simultaneous determination of levodopa, carbidopa and entacapone in pharmaceuticals and human plasma. Journal of Chromatography B 2018, 1091
11.M. R. Ajmal; T. I. Chandel; P. Alam, Fibrillogenesis of human serum albumin in the presence of levodopa – spectroscopic, calorimetric and microscopic studies. International Journal of Biological Macromolecules 2017, 94
12.M. Lettieri; R. Emanuele; S. Scarano, Melanochrome-based colorimetric assay for quantitative detection of levodopa in co-presence of carbidopa and its application to relevant anti-Parkinson drugs. Analytical and Bioanalytical Chemistry 2022, 414
13.M. F. Bergamini; A. L. Santos; N. R. Stradiotto, A disposable electrochemical sensor for the rapid determination of levodopa. Journal of Pharmaceutical and Biomedical Analysis 2005, 39
14.N. Dag MD, PhD; L. Tommy MD, PhD; G. T. Cecilia PhD, Pharmacokinetics of Levodopa/Carbidopa Microtablets Versus Levodopa/Benserazide and Levodopa/Carbidopa in Healthy Volunteers. Clinical Neuropharmacology 2012, 35.
15.Y. Z. Zhou; R. G. Alany; V. Chuang, Studies of the Rate Constant of L-DOPA Oxidation and Decarboxylation by HPLC. Chromatographia 2012, 75, 597-606.
16.H. Beitollahi; M. Safaei; S. Tajik, Electrochemical deduction of levodopa by utilizing modified electrodes: A review. Microchemical Journal 2020, 152
17.M. Hedenmo; A. Narvaez; Elena Domínguez, Improved mediated tyrosinase amperometric enzyme electrodes. J. Electroanal. 1997, 425.
18.N. Wongkaew; M. Simsek; C. Griesche, Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem. Rev. 2019, 119(1), 120–194.
19.H. Beitollahi; S. Z. Mohammadi; M. Safaei, Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: a review. Anal. Methods 2020,12, 1547-1560.
20.H. Beitollahi, F. G. Nejad, S. Shakeri, GO/Fe3O4@SiO2 core-shell nanocomposite-modified graphite screen-printed electrode for sensitive and selective electrochemical sensing of dopamine and uric acid. Anal. Methods 2019, 9, 5541-5549.
21.L. Lin; H.T. Lian; X. Y. Sun, An L-dopa electrochemical sensor based on a graphene doped molecularly imprinted chitosan film, Anal. Methods 2015, 7, 1387-1394
22.M. Arvand; N. Ghodsi, Electrospun TiO2 nanofiber/graphite oxide modified electrode for electrochemical detection of l-DOPA in human cerebrospinal fluid. Sens. Actuators B: Chem. 2014, 204, 393-401
23.K. J. Stine, Biosensor Applications of Electrodeposited Nanostructures. Appl. Sci. 2019, 9(4), 797
24.A. Rochefort; J. D. Wuest, Interaction of Substituted Aromatic Compounds with Graphene. Langmuir 2009, 25(1), 210–215
25.Y. Wang; Y. M. Li; L.H. Tang, Application of graphene-modified electrode for selective detection of dopamine. Electrochem. commun. 2009, 11(4), 889-892
26.D. A. C. Brownson, C. E. Banks, Graphene electrochemistry: an overview of potential applications. Analyst 2010, 135, 2768-2778
27.F. Nasirpouri, Electrodeposition of Nanostructured Materials, 2016
28.H. Natter; R. Hempelmann, Tailor-made nanomaterials designed by electrochemical methods. Electrochim. Acta 2003, 49(1), 51-61
29.E. Budevski; G. Staikov; J.W. Lorenz, Electrochemical Phase Transformation and Growth, VCH, Weinheim, 1996.
30.F. Pagnanelli; P. Altimari; M. Bellagamba, Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology. Electrochim. Acta 2015, 155(10), 228-235
31.A. Mahapatro; S. K. Suggu, Modeling and simulation of electrodeposition: Effect of electrolyte current density and conductivity on electroplating thickness. Adv. Mater. Sci 2018, 3(2), 1-9
32.H. H. Shu; L. L. Cao; G. Chang, Direct Electrodeposition of Gold Nanostructures onto Glassy Carbon Electrodes for Non-enzymatic Detection of Glucose. Electrochim. Acta 2014, 132(20), 524-532
33.Y. Wang; J. J. Deng; J. W. Di, Electrodeposition of large size gold nanoparticles on indium tin oxide glass and application as refractive index sensor. Electrochem. commun. 2009, 11(5), 1034-1037
34.H. Natter; R. Hempelmann, Tailor-made nanomaterials designed by electrochemical methods. Electrochim. Acta 2003, 49(1), 51-61
35.D. S. Jayakrishnan, Corrosion Protection and Control Using Nanomaterials. 2012, 86-125.
36.L. Chen; H. W. Zhang; L. Y. Liang, Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model. J. Power Sources 2015, 300(30) 376-385
37.H. D. Hill; J. E. Millstone; M. J. Banholzer, The Role Radius of Curvature Plays in Thiolated Oligonucleotide Loading on Gold Nanoparticles. ACS Nano 2009, 3(2), 418–424
38.A. J. Bard; L. R. Faulkner, Electrochemical Methods and Applications 2nd, 2001
39.J. Wang, Analytical Electrochemistry 2nd ed., 2000
40.M. A. Morales, J. M. Halpern; Guide to Selecting a Biorecognition Element for Biosensors. Bioconjugate Chem. 2018, 29(10), 3231-3239
41.C. Sicard; J. D. Brennan; Bioactive paper: Biomolecule immobilization methods and applications in environmental monitoring. MRS Bull. 2013, 38, 331-334
42.S. N. Jeyaraman; G. Slaughter, Membranes, immobilization, and protective strategies for enzyme fuel cell stability. Curr. Opin. Electrochem. 2021, 29, 100753
43.J. E. Maiss; M. Cuccarese; C. Maerten, Mussel-Inspired Electro-Cross-Linking of Enzymes for the Development of Biosensors. ACS Appl. Mater. Interfaces 2018, 10(22), 18574-18584
44.D. Stan; A. C. Mirica; R. Iosub, What Is the Optimal Method for Cleaning Screen-Printed Electrodes? Processes 2022, 10(4), 723
45.Rajaram R.; Mathiyarasu, J. Chapter 1: The Design and Fabrication of Disposable Sensors: An Overview. In Disposable Electrochemical Sensors for Healthcare Monitoring: Material Properties and Design; Royal Society of Chemistry: Cambridge, UK, 2021; pp. 1–26.
46.R. Bi; X. Y. Ma; K. P. Miao, Enzymatic biosensor based on dendritic gold nanostructure and enzyme precipitation coating for glucose sensing and detection. Enzyme Microb. Technol 2023, 162, 110132
47.Wu, L.; Zhang, X.; Chen, J. A new third-generation biosensor for superoxide anion based on dendritic gold nanostructure. J. Electroanal. Chem. 2014, 726, 112–118
48.M. M. Rahman; X. b. Li; J. Kim, A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film, Sens. Actuators B: Chem. 2014, 202(31), 536-542
49.C. Vericat; M. E. Vela; G. Benitez, Preparation of cross-linked tyrosinase aggregates. Process Biochem. 2008, 43(2), 125-131
50.C. Vericat; M.E. Vela; G. Benitez, Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev.2010, 39, 1805-1834
51.S. K. Pandey; S. Sachan; S. K. Singh, Electrochemically reduced graphene oxide modified with electrodeposited thionine and horseradish peroxidase for hydrogen peroxide sensing and inhibitive measurement of chromium. Mater. Sci. Energy Technol. 2019, 2(3), 676-686
52.F. Subrizi; M. Crucianelli; V. Grossi, Carbon Nanotubes as Activating Tyrosinase Supports for the Selective Synthesis of Catechols. ACS Catal. 2014, 4(3), 810–822
53.A. C. Mohan; B. Renjanadevi, Preparation of Zinc Oxide Nanoparticles and its Characterization Using Scanning Electron Microscopy (SEM) and X-Ray Diffraction(XRD). Proc. Technol. 2016, 24, 761-766
54.J. Krejci; Z. Sajdlova; V. Nedela, Effective Surface Area of Electrochemical Sensors. J. Electrochem. Soc. 2014, 161(6)
55.H. Beitollahi; F. G. Nejad, Graphene Oxide/ZnO Nano Composite for Sensitive and Selective Electrochemical Sensing of Levodopa and Tyrosine Using Modified Graphite Screen Printed Electrode. Electroanalysis 2016, 28(9), 2237–2244
56.D. Z. Ji; N. Xu; Z. X. Liu, Smartphone-based differential pulse amperometry system for real-time monitoring of levodopa with carbon nanotubes and gold nanoparticles modified screen-printing electrodes. Biosens. Bioelectron. 2019, 129(15), 216-223
57.L. C. Tai; T. S. Liaw; Y. J. Lin, Wearable Sweat Band for Noninvasive Levodopa Monitoring. Nano Lett. 2019, 19(9), 6346–6351
58.C. I.L. Justino; T. A. R. Santos; A. C. Duarte, Review of analytical figures of merit of sensors and biosensors in clinical applications. Trends. Analyt. Chem. 2010, 24(10), 1172-1183
59.K. T. Rotko; J. Kozak; A. Węzinska, Electrochemically Activated Screen-Printed Carbon Electrode for Determination of Ibuprofen. Appl. Sci. 2021, 11(21), 9908
60.A. Chen; S. Chatterjee, Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425-5438
61.A. Bonanni; M. Pumera; Y. Miyahara, Influence of gold nanoparticle size (2–50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study. Phys. Chem. Chem. Phys. 2011, 13, 4980-4986
62.M. Contin; P. Martinelli, Pharmacokinetics of levodopa. J. Neurol. 2010, 257, 253-261.
63.D. Ji; N. Xu; Z. X. Liu, Smartphone-based differential pulse amperometry system for real-time monitoring of levodopa with carbon nanotubes and gold nanoparticles modified screen-printing electrodes. Biosens. Bioelectron. 2019, 129(15), 216-223
64.R. D. Crapnell; C. E. Banks, Eleroanalytical Overview: The Determination of Levodopa (L-DOPA). ACS Meas. Sci. Au 2023, 3(2), 84–97
65.M. F. Bergamini; A. L. Santos; N. R. Stradiotto, A disposable electrochemical sensor for the rapid determination of levodopa. J. Pharm. Biomed. Anal. 2005, 39(1-2), 54-59
66.B. Brunetti; G. V. Ramirez; I. Litvan, A disposable electrochemical biosensor for l-DOPA determination in undiluted human serum. Electrochem. commun. 2014, 48, 28-31
67.M. Arvand; N. Ghodsi, A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of L-dopa in mouse brain extract and pharmaceuticals. J. Solid State Electrochem. 2013, 17, 775-784
68.J. Xiao; C. Fan; T. Xu, An electrochemical wearable sensor for levodopa quantification in sweat based on a metal–Organic framework/graphene oxide composite with integrated enzymes. Sens. Actuators B: Chem. 2022, 359(15), 131586
69.K. Yugender Goud; C. Moonla; R. K. Mishra, Wearable Electrochemical Microneedle Sensor for Continuous Monitoring of Levodopa: Toward Parkinson Management. ACS Sens. 2019, 4(8), 2196–2204
70.D. Dascalescu; C. Apetrei, Voltammetric Determination of Levodopa Using Mesoporous Carbon—Modified Screen-Printed Carbon Sensors. Sensors 2021, 21(18), 6301
71.H. Beitollahi, M. Mostafavi, Nanostructured Base Electrochemical Sensor for Simultaneous Quantification and Voltammetric Studies of Levodopa and Carbidopa in Pharmaceutical Products and Biological Samples. Electroanalysis 2014, 26(5), 1090-1098
72.S. Y. Yi; J. H. Lee; H. G. Hong, A selective determination of levodopa in the presence of ascorbic acid and uric acid using a glassy carbon electrode modified with reduced graphene oxide. J. Appl. Electrochem. 2014, 44, 589-597
73.M. A. Kamyabi; N. Rahmanian, An electrochemical sensing method for the determination of levodopa using a poly(4-methyl-ortho-phenylenediamine)/MWNT modified GC electrode. Anal. Methods 2015, 7, 1339-1348
74.A. Babaei; M. Babazadeh, A Selective Simultaneous Determination of Levodopa and Serotonin Using a Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotube/Chitosan Composite. Electroanalysis 2011, 23(7), 1726-1735
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top