|
1.I. C. Jeong; D. Bychkov; P. C. Searson, Wearable Devices for Precision Medicine and Health State Monitoring. IEEE Trans. Biomed. Eng. 2019, 66(5), 1242 – 1258. 2.W. Gao; S. Emaminejad; H. Y. Y. Nyein, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529(7587), 509-514. 3.S. Bian; B. Zhu; G. Rong, Towards wearable and implantable continuous drug monitoring: A review. J. Pharm. Anal. 2020, 11(1), 1-14. 4.L. C. Tai; W. Gao; M. Chao, Methylxanthine Drug Monitoring with Wearable Sweat Sensors. Adv. Mater. 2018, 30 (23), 1707442. 5.D. E. Raya; S. Todd; M. S. Okun, The Emerging Evidence of the Parkinson Pandemic. Journal of Parkinson's Disease 2018, 8, 10.3233/JPD-181474 6.Bastiaan R Bloem; Michael S Okun; Christine Klein, Parkinson's disease. Lancet 2021, 397, 2284–303. 7.The Parkinson Study Group, Levodopa and the Progression of Parkinson's Disease, N. Engl. J. Med. 2004, 351, 2498-2508. 8.M. Tsunoda; M. Hirayama; T. Tsuda, Noninvasive monitoring of plasma L-dopa concentrations using sweat samples in Parkinson's disease. Clinica Chimica Acta 2015, 442. 9.W. W. He; X. W. Zhou; J. Q. Lu, Simultaneous determination of benserazide and levodopa by capillary electrophoresis–chemiluminescence using an improved interface. Journal of Chromatography A 2006, 1131 10.F. Belal; F. Ibrahim; Z.A. Sheribah; H. Alaa, Micellar HPLC-UV method for the simultaneous determination of levodopa, carbidopa and entacapone in pharmaceuticals and human plasma. Journal of Chromatography B 2018, 1091 11.M. R. Ajmal; T. I. Chandel; P. Alam, Fibrillogenesis of human serum albumin in the presence of levodopa – spectroscopic, calorimetric and microscopic studies. International Journal of Biological Macromolecules 2017, 94 12.M. Lettieri; R. Emanuele; S. Scarano, Melanochrome-based colorimetric assay for quantitative detection of levodopa in co-presence of carbidopa and its application to relevant anti-Parkinson drugs. Analytical and Bioanalytical Chemistry 2022, 414 13.M. F. Bergamini; A. L. Santos; N. R. Stradiotto, A disposable electrochemical sensor for the rapid determination of levodopa. Journal of Pharmaceutical and Biomedical Analysis 2005, 39 14.N. Dag MD, PhD; L. Tommy MD, PhD; G. T. Cecilia PhD, Pharmacokinetics of Levodopa/Carbidopa Microtablets Versus Levodopa/Benserazide and Levodopa/Carbidopa in Healthy Volunteers. Clinical Neuropharmacology 2012, 35. 15.Y. Z. Zhou; R. G. Alany; V. Chuang, Studies of the Rate Constant of L-DOPA Oxidation and Decarboxylation by HPLC. Chromatographia 2012, 75, 597-606. 16.H. Beitollahi; M. Safaei; S. Tajik, Electrochemical deduction of levodopa by utilizing modified electrodes: A review. Microchemical Journal 2020, 152 17.M. Hedenmo; A. Narvaez; Elena Domínguez, Improved mediated tyrosinase amperometric enzyme electrodes. J. Electroanal. 1997, 425. 18.N. Wongkaew; M. Simsek; C. Griesche, Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem. Rev. 2019, 119(1), 120–194. 19.H. Beitollahi; S. Z. Mohammadi; M. Safaei, Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: a review. Anal. Methods 2020,12, 1547-1560. 20.H. Beitollahi, F. G. Nejad, S. Shakeri, GO/Fe3O4@SiO2 core-shell nanocomposite-modified graphite screen-printed electrode for sensitive and selective electrochemical sensing of dopamine and uric acid. Anal. Methods 2019, 9, 5541-5549. 21.L. Lin; H.T. Lian; X. Y. Sun, An L-dopa electrochemical sensor based on a graphene doped molecularly imprinted chitosan film, Anal. Methods 2015, 7, 1387-1394 22.M. Arvand; N. Ghodsi, Electrospun TiO2 nanofiber/graphite oxide modified electrode for electrochemical detection of l-DOPA in human cerebrospinal fluid. Sens. Actuators B: Chem. 2014, 204, 393-401 23.K. J. Stine, Biosensor Applications of Electrodeposited Nanostructures. Appl. Sci. 2019, 9(4), 797 24.A. Rochefort; J. D. Wuest, Interaction of Substituted Aromatic Compounds with Graphene. Langmuir 2009, 25(1), 210–215 25.Y. Wang; Y. M. Li; L.H. Tang, Application of graphene-modified electrode for selective detection of dopamine. Electrochem. commun. 2009, 11(4), 889-892 26.D. A. C. Brownson, C. E. Banks, Graphene electrochemistry: an overview of potential applications. Analyst 2010, 135, 2768-2778 27.F. Nasirpouri, Electrodeposition of Nanostructured Materials, 2016 28.H. Natter; R. Hempelmann, Tailor-made nanomaterials designed by electrochemical methods. Electrochim. Acta 2003, 49(1), 51-61 29.E. Budevski; G. Staikov; J.W. Lorenz, Electrochemical Phase Transformation and Growth, VCH, Weinheim, 1996. 30.F. Pagnanelli; P. Altimari; M. Bellagamba, Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology. Electrochim. Acta 2015, 155(10), 228-235 31.A. Mahapatro; S. K. Suggu, Modeling and simulation of electrodeposition: Effect of electrolyte current density and conductivity on electroplating thickness. Adv. Mater. Sci 2018, 3(2), 1-9 32.H. H. Shu; L. L. Cao; G. Chang, Direct Electrodeposition of Gold Nanostructures onto Glassy Carbon Electrodes for Non-enzymatic Detection of Glucose. Electrochim. Acta 2014, 132(20), 524-532 33.Y. Wang; J. J. Deng; J. W. Di, Electrodeposition of large size gold nanoparticles on indium tin oxide glass and application as refractive index sensor. Electrochem. commun. 2009, 11(5), 1034-1037 34.H. Natter; R. Hempelmann, Tailor-made nanomaterials designed by electrochemical methods. Electrochim. Acta 2003, 49(1), 51-61 35.D. S. Jayakrishnan, Corrosion Protection and Control Using Nanomaterials. 2012, 86-125. 36.L. Chen; H. W. Zhang; L. Y. Liang, Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model. J. Power Sources 2015, 300(30) 376-385 37.H. D. Hill; J. E. Millstone; M. J. Banholzer, The Role Radius of Curvature Plays in Thiolated Oligonucleotide Loading on Gold Nanoparticles. ACS Nano 2009, 3(2), 418–424 38.A. J. Bard; L. R. Faulkner, Electrochemical Methods and Applications 2nd, 2001 39.J. Wang, Analytical Electrochemistry 2nd ed., 2000 40.M. A. Morales, J. M. Halpern; Guide to Selecting a Biorecognition Element for Biosensors. Bioconjugate Chem. 2018, 29(10), 3231-3239 41.C. Sicard; J. D. Brennan; Bioactive paper: Biomolecule immobilization methods and applications in environmental monitoring. MRS Bull. 2013, 38, 331-334 42.S. N. Jeyaraman; G. Slaughter, Membranes, immobilization, and protective strategies for enzyme fuel cell stability. Curr. Opin. Electrochem. 2021, 29, 100753 43.J. E. Maiss; M. Cuccarese; C. Maerten, Mussel-Inspired Electro-Cross-Linking of Enzymes for the Development of Biosensors. ACS Appl. Mater. Interfaces 2018, 10(22), 18574-18584 44.D. Stan; A. C. Mirica; R. Iosub, What Is the Optimal Method for Cleaning Screen-Printed Electrodes? Processes 2022, 10(4), 723 45.Rajaram R.; Mathiyarasu, J. Chapter 1: The Design and Fabrication of Disposable Sensors: An Overview. In Disposable Electrochemical Sensors for Healthcare Monitoring: Material Properties and Design; Royal Society of Chemistry: Cambridge, UK, 2021; pp. 1–26. 46.R. Bi; X. Y. Ma; K. P. Miao, Enzymatic biosensor based on dendritic gold nanostructure and enzyme precipitation coating for glucose sensing and detection. Enzyme Microb. Technol 2023, 162, 110132 47.Wu, L.; Zhang, X.; Chen, J. A new third-generation biosensor for superoxide anion based on dendritic gold nanostructure. J. Electroanal. Chem. 2014, 726, 112–118 48.M. M. Rahman; X. b. Li; J. Kim, A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film, Sens. Actuators B: Chem. 2014, 202(31), 536-542 49.C. Vericat; M. E. Vela; G. Benitez, Preparation of cross-linked tyrosinase aggregates. Process Biochem. 2008, 43(2), 125-131 50.C. Vericat; M.E. Vela; G. Benitez, Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev.2010, 39, 1805-1834 51.S. K. Pandey; S. Sachan; S. K. Singh, Electrochemically reduced graphene oxide modified with electrodeposited thionine and horseradish peroxidase for hydrogen peroxide sensing and inhibitive measurement of chromium. Mater. Sci. Energy Technol. 2019, 2(3), 676-686 52.F. Subrizi; M. Crucianelli; V. Grossi, Carbon Nanotubes as Activating Tyrosinase Supports for the Selective Synthesis of Catechols. ACS Catal. 2014, 4(3), 810–822 53.A. C. Mohan; B. Renjanadevi, Preparation of Zinc Oxide Nanoparticles and its Characterization Using Scanning Electron Microscopy (SEM) and X-Ray Diffraction(XRD). Proc. Technol. 2016, 24, 761-766 54.J. Krejci; Z. Sajdlova; V. Nedela, Effective Surface Area of Electrochemical Sensors. J. Electrochem. Soc. 2014, 161(6) 55.H. Beitollahi; F. G. Nejad, Graphene Oxide/ZnO Nano Composite for Sensitive and Selective Electrochemical Sensing of Levodopa and Tyrosine Using Modified Graphite Screen Printed Electrode. Electroanalysis 2016, 28(9), 2237–2244 56.D. Z. Ji; N. Xu; Z. X. Liu, Smartphone-based differential pulse amperometry system for real-time monitoring of levodopa with carbon nanotubes and gold nanoparticles modified screen-printing electrodes. Biosens. Bioelectron. 2019, 129(15), 216-223 57.L. C. Tai; T. S. Liaw; Y. J. Lin, Wearable Sweat Band for Noninvasive Levodopa Monitoring. Nano Lett. 2019, 19(9), 6346–6351 58.C. I.L. Justino; T. A. R. Santos; A. C. Duarte, Review of analytical figures of merit of sensors and biosensors in clinical applications. Trends. Analyt. Chem. 2010, 24(10), 1172-1183 59.K. T. Rotko; J. Kozak; A. Węzinska, Electrochemically Activated Screen-Printed Carbon Electrode for Determination of Ibuprofen. Appl. Sci. 2021, 11(21), 9908 60.A. Chen; S. Chatterjee, Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425-5438 61.A. Bonanni; M. Pumera; Y. Miyahara, Influence of gold nanoparticle size (2–50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study. Phys. Chem. Chem. Phys. 2011, 13, 4980-4986 62.M. Contin; P. Martinelli, Pharmacokinetics of levodopa. J. Neurol. 2010, 257, 253-261. 63.D. Ji; N. Xu; Z. X. Liu, Smartphone-based differential pulse amperometry system for real-time monitoring of levodopa with carbon nanotubes and gold nanoparticles modified screen-printing electrodes. Biosens. Bioelectron. 2019, 129(15), 216-223 64.R. D. Crapnell; C. E. Banks, Eleroanalytical Overview: The Determination of Levodopa (L-DOPA). ACS Meas. Sci. Au 2023, 3(2), 84–97 65.M. F. Bergamini; A. L. Santos; N. R. Stradiotto, A disposable electrochemical sensor for the rapid determination of levodopa. J. Pharm. Biomed. Anal. 2005, 39(1-2), 54-59 66.B. Brunetti; G. V. Ramirez; I. Litvan, A disposable electrochemical biosensor for l-DOPA determination in undiluted human serum. Electrochem. commun. 2014, 48, 28-31 67.M. Arvand; N. Ghodsi, A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of L-dopa in mouse brain extract and pharmaceuticals. J. Solid State Electrochem. 2013, 17, 775-784 68.J. Xiao; C. Fan; T. Xu, An electrochemical wearable sensor for levodopa quantification in sweat based on a metal–Organic framework/graphene oxide composite with integrated enzymes. Sens. Actuators B: Chem. 2022, 359(15), 131586 69.K. Yugender Goud; C. Moonla; R. K. Mishra, Wearable Electrochemical Microneedle Sensor for Continuous Monitoring of Levodopa: Toward Parkinson Management. ACS Sens. 2019, 4(8), 2196–2204 70.D. Dascalescu; C. Apetrei, Voltammetric Determination of Levodopa Using Mesoporous Carbon—Modified Screen-Printed Carbon Sensors. Sensors 2021, 21(18), 6301 71.H. Beitollahi, M. Mostafavi, Nanostructured Base Electrochemical Sensor for Simultaneous Quantification and Voltammetric Studies of Levodopa and Carbidopa in Pharmaceutical Products and Biological Samples. Electroanalysis 2014, 26(5), 1090-1098 72.S. Y. Yi; J. H. Lee; H. G. Hong, A selective determination of levodopa in the presence of ascorbic acid and uric acid using a glassy carbon electrode modified with reduced graphene oxide. J. Appl. Electrochem. 2014, 44, 589-597 73.M. A. Kamyabi; N. Rahmanian, An electrochemical sensing method for the determination of levodopa using a poly(4-methyl-ortho-phenylenediamine)/MWNT modified GC electrode. Anal. Methods 2015, 7, 1339-1348 74.A. Babaei; M. Babazadeh, A Selective Simultaneous Determination of Levodopa and Serotonin Using a Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotube/Chitosan Composite. Electroanalysis 2011, 23(7), 1726-1735
|