跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:歐思奇
研究生(外文):Barabash Oleksii
論文名稱:用於穿透率及反射率之積分球光學性質量測系統
論文名稱(外文):Integrating Sphere Measurement Systems for Reflectance and Transmittance Optical Properties Measurements
指導教授:張瑞永
指導教授(外文):CHANG, JUI-YUNG
口試日期:2023-08-18
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:英文
論文頁數:54
中文關鍵詞:積分球超穎材料可見光紅外光反射率折射率
外文關鍵詞:Integrating SphereMetamaterialsVisibleInfraredReflectanceTransmittance.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
近幾十年來,全球暖化所造成的環境變遷已成為一個非常重要的議題,同時也吸引了非常多學者進行相關研究。其中,使用不同的方法來獲取如太陽能、地熱能、風能等綠能已成為一個重要的解決方案,而超穎材料則在這些領域中占據了非常重要的位置。超穎材料是一種人工的材料,其具備了自然產物不具備的特殊材料性質,因此也被應用在如航太、生醫、軍用等領域。除此之外,超穎材料亦具有光學、感測、天線等領域的發展潛力。超穎材料本身多為具備高漫反射及漫穿透的非均質異向性材料,因此其光學性質在設計這些材料的過程尤為重要。然而,目前為止這些材料光學性質和溫度/入射角的相依性卻鮮少被研究。本研究設計並搭建一以積分球為基礎的光學性質量測系統,可涵蓋從近紅外光到中忠紅外光範圍的光學性質量測。相較於量測方向性材料性質的傅立葉轉換紅外光譜儀,使用積分球搭建系統能夠量測半球光學性質且可將鏡射和散射的部分分開量測。本研究以一些常見已有光學性質文獻的材料驗證系統量測結果的可靠度,並確認量測誤差;其結果顯示量測數據與文獻吻合,僅存在3-5%的絕對誤差。此外本研究亦延續先前另一套可見光到近紅外光的量測系統搭建溫控系統進行不同溫度及入射角下的量測,其結果與文獻比較僅有低於2%的誤差。至此本系統已被驗證可用用於獲得不同溫度及不同入射角下的超穎材料光學性質。
In recent decades, global warming, which can result in many serious changes to the environment, has been a significant issue and has drawn an enormous share of scientists’ attention. Over the years, various methods for utilizing abundant renewable energy resources, have been proposed to deal with this problem including, solar energy, geothermal energy, wind power, etc. Nowadays, metamaterials play an essential role in almost all of those fields. Metamaterials are artificially engineered materials that possess unique properties that cannot be found in naturally occurring materials. Other fields where metamaterials are used: aerospace, biomedicine, military, etc., and their potential applications are diverse and include optical filters, sensors, antennas, and lenses, just to name a few. Metamaterials, by nature, are inherently inhomogeneous and anisotropic and have high scattering reflection and transmission due to their artificial structure. Thus, during the design process knowledge of their optical properties is very important. To date, little research has been done on the thermal and incident angle dependence of the optical properties. During the course of this project, a system for measuring optical properties was successfully designed, built, and tested. The system is based on the utilization of an integrating sphere, covering the near-infrared (NIR) to mid-infrared (MIR) spectral region. Incorporating IS into the system has several advantages over some other techniques. For example, compared to Fourier-transform infrared spectrometer (FTIR, directional properties) IS can measure both specular and diffuse components to obtain hemispherical properties. Verification of the system was accomplished by employing various materials with well-known optical properties. The results obtained are in good agreement with the reference data, indicating an error between 3-5 %, which underscores the system’s reliability. Continuing the work on the system designed for measurements over the wavelength range visible (VIS) to near-infrared (NIR), the system for heating the sample was successfully designed, tested, and implemented. The obtained measurements show a high level of consistency with reference data with an error below 2%. The system could be further utilized to establish temperature and incident angle-dependent property models/tables for metamaterials.
ACKNOWLEDGEMENT ...................................................................................................... i
摘要 ......................................................................................................................................... iii
ABSTRACT ........................................................................................................................... iv
List of Figures ...................................................................................................................... viii
List of Tables ........................................................................................................................... x
Nomenclature ......................................................................................................................... xi
Chapter 1. Introduction. ........................................................................................................ 1
1.1 Background. ................................................................................................................ 1
1.2 Literature Review. ....................................................................................................... 2
1.3 Motivation. .................................................................................................................. 4
1.4 Purpose. ....................................................................................................................... 4
1.5 Thesis Overview .......................................................................................................... 5
Chapter 2. Working Principle of Integrating Spheres. ....................................................... 6
2.1. Basics.......................................................................................................................... 6
2.1.1. Single Integrating Sphere Theory. .................................................................... 7
2.1.2. Double Integrating Sphere Theory. .................................................................. 8
2.1.3. Sphere Multiplier. ............................................................................................. 9
2.1.4. The Average Reflectance of Integrating Sphere. ............................................ 11
2.2. Integrating Sphere Design. .................................................................................. 11
2.2.1. Port Fraction. .................................................................................................. 11
2.2.2. Integrating Sphere and Port Diameters. .......................................................... 12
2.2.3. Integrating sphere coating selection. .............................................................. 13
vi
2.2.4. Integrating Sphere Baffles. ............................................................................. 14
2.3. Optical Properties of the Integrating Sphere Surface and its Measurements....... 16
Chapter 3. Experimental setup and its components.......................................................... 21
3.1. Systems’ Description. .......................................................................................... 21
3.2. Components of the Systems Covering the NIR to MIR Region. ......................... 25
Infrared Light Source Kit. ........................................................................................... 25
Motorized Filter Wheel. .............................................................................................. 26
Configured Monochromator. ....................................................................................... 27
Parabolic Mirrors. ........................................................................................................ 29
Optical Chopper. ......................................................................................................... 30
Pyroelectric detector. ................................................................................................... 31
TracQ Basic Software. ................................................................................................ 32
Chapter 4. Results and Discussion. ..................................................................................... 33
4.1 Transmittance Measurements .................................................................................... 33
4.2 Reflectance Measurements ........................................................................................ 34
4.3 Standard Operational Procedure ................................................................................ 30
4.3.1. Infrared region (1.2 - 17 μm) ............................................................................ 30
4.3.2. Visible Region (0.4-1.8 μm) ............................................................................. 32
4.4 Parameters selection. ................................................................................................. 35
4.5 Measurement Results ................................................................................................ 39
4.5.1 Transmittance and Reflectance measurements results for NIR to MIR spectral region. .......................................................................................................................... 40
4.5.2 Transmittance measurement results for VIS to NIR spectral region. .............. 47
Chapter 5. Conclusion and Future Recommendations. .................................................... 52
vii
5.1. Conclusion ................................................................................................................ 52
5.2 Future Recommendations .......................................................................................... 53
REFERENCES ..................................................................................................................... 54
[1] N. Suresh Kumar, K. Naidu, P. Banerjee, T. Anil Babu, B. Venkata Shiva Reddy, A Review on Metamaterials for Device Applications, Crystals, 11(5) (2021) 518.
[2] R. Trivedi, N. Rai, K. Bharadwaj, Metamaterial: Materials with Exceptional Properties.
[3] A. Brockschmidt, Electrical environments in aerospace applications, in: IEEE International Electric Machines and Drives Conference. IEMDC'99. Proceedings (Cat. No. 99EX272), IEEE, 1999, pp. 719-721.
[4] A.J. Welch, M.J. Van Gemert, Optical-thermal response of laser-irradiated tissue, Springer, 2011.
[5] Z. Diao, M. Kraus, R. Brunner, J.-H. Dirks, J.P. Spatz, Nanostructured stealth surfaces for visible and near-infrared light, Nano letters, 16(10) (2016) 6610-6616.
[6] G. Oliveri, D.H. Werner, A. Massa, Reconfigurable electromagnetics through metamaterials—A review, Proceedings of the IEEE, 103(7) (2015) 1034-1056.
[7] D. Bruggeman, Dielectric constant and conductivity of mixtures of isotropic materials, Ann. Phys.(Leipzig), 24 (1935) 636-679.
[8] J.C. MAXWELL-GARNETT, Colours in metal glasses and in metallic films, Phil. Trans. R. Soc. Lond, A, 203 (1904) 385-420.
[9] S.N. Thennadil, Y.-c. Chen, Alternative measurement configurations for extracting bulk optical properties using an integrating sphere setup, Applied spectroscopy, 71(2) (2017) 224-237.
[10] G. Zerlaut, T. Anderson, Multiple-integrating sphere spectrophotometer for measuring absolute spectral reflectance and transmittance, Applied Optics, 20(21) (1981) 3797-3804.
[11] J.G. Symons, E.A. Christie, M. Peck, Integrating sphere for solar transmittance measurement of planar and nonplanar samples, Applied optics, 21(15) (1982) 2827-2832.
[12] J.W. Pickering, C.J. Moes, H. Sterenborg, S.A. Prahl, M.J. Van Gemert, Two integrating spheres with an intervening scattering sample, JOSA A, 9(4) (1992) 621-631.
[13] T. Tesfamichael, E. Wäckelgård, Angular solar absorptance of absorbers used in solar thermal collectors, Applied optics, 38(19) (1999) 4189-4197.
[14] M.L. Baker, V.L. Yen, Effects of the variation of angle of incidence and temperature on infrared filter characteristics, Applied optics, 6(8) (1967) 1343-1351.
[15] K. Gindele, M. Köhl, M. Mast, Spectral reflectance measurements using an integrating sphere in the infrared, Applied optics, 24(12) (1985) 1757-1760.
[16] K. Grandin, A. Roos, Evaluation of correction factors for transmittance measurements in single-beam integrating spheres, Applied optics, 33(25) (1994) 6098-6104.
[17] X. Wang, J. Flicker, B.J. Lee, W. Ready, Z. Zhang, Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes, Nanotechnology, 20(21) (2009) 215704.
[18] J. Valenta, Determination of absolute quantum yields of luminescing nanomaterials over a broad spectral range: from the integrating sphere theory to the correct methodology, Nanoscience Methods, 3(1) (2014) 11-27.
[19] J.W. Pickering, S.A. Prahl, N. Van Wieringen, J.F. Beek, H.J. Sterenborg, M.J. Van Gemert, Double-integrating-sphere system for measuring the optical properties of tissue, Applied optics, 32(4) (1993) 399-410.
[20] K. Carr, Integrating sphere theory and applications Part I: integrating sphere theory and design, Surface coatings international, 80(8) (1997) 380-385.
[21] A. Ducharme, A. Daniels, E. Grann, G. Boreman, Design of an integrating sphere as a uniform illumination source, IEEE Transactions on education, 40(2) (1997) 131-134.
[22] Newport, Integrating Sphere Fundamentals and Applications, in, 2021.
[23] Y.A. Çengel, A.J. Ghajar, M. Kanoglu, Heat and mass transfer: fundamentals & applications, 5th in SI units. ed., Mcgraw-Hill Education, New York, N.Y, 2015.
[24] V. Yadav, Modification of Integrating Spheres for Directional and Polarization Dependent Reflectance and Transmittance measurements, NYCU, 2021.
[25] Newport, Parabolic Mirror, Off-Axis Replicated, 1.5 in., 0.8 in. EFL, Bare Gold, in, Newport, 2023.
[26] Newport, Enclosed Head Optical Choppers in, Newport, 2023.
[27] Newport, Pyroelectric Detector, Lithium Tantalate, 2 mm, FET Amplifier, 0.60-50 µm, in, Newport, 2023.
[28] C.-H. Cheng, Development of a Hemispherical Radiative Properties Measurement System and Directional Emissivity Measurement System 56 (2016).
[29] THORLABS, Zinc Selenide (ZnSe) Windows, Uncoated, in, THORLABS, 2023.
[30] THORLABS, Optical Substrates, in, THORLABS, 2023.
[31] H.H. Ku, Notes on the use of propagation of error formulas, Journal of Research of the National Bureau of Standards, 70(4) (1966).
[32] Hapeoptics, What is JGS1, JGS2, JGS3 In Optical Quartz Glass, in, Hapeoptics, 2023.
[33] P.G.O. GmbH, Fused Quartz Glass, in, Präzisions Glas & Optik GmbH, 1994-2023.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊